Properties

Label 1452.1.m.d
Level $1452$
Weight $1$
Character orbit 1452.m
Analytic conductor $0.725$
Analytic rank $0$
Dimension $8$
Projective image $D_{6}$
CM discriminant -3
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,1,Mod(245,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.245"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1452.m (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.724642398343\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.324000000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.69574032.1
Artin image: $C_5\times D_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{60} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} + \beta_{4} + \beta_{2} + 1) q^{3} - \beta_{7} q^{7} + \beta_{6} q^{9} + \beta_{3} q^{19} + \beta_{5} q^{21} + ( - \beta_{6} - \beta_{4} - \beta_{2} - 1) q^{25} - \beta_{4} q^{27} + \beta_{6} q^{31}+ \cdots - \beta_{6} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 2 q^{9} - 2 q^{25} + 2 q^{27} - 2 q^{31} - 2 q^{37} - 4 q^{49} + 8 q^{67} + 2 q^{75} - 2 q^{81} + 2 q^{93} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 9 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 27\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 27\beta_{7} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
245.1
−1.40126 + 1.01807i
1.40126 1.01807i
−0.535233 1.64728i
0.535233 + 1.64728i
−0.535233 + 1.64728i
0.535233 1.64728i
−1.40126 1.01807i
1.40126 + 1.01807i
0 −0.309017 0.951057i 0 0 0 −0.535233 + 1.64728i 0 −0.809017 + 0.587785i 0
245.2 0 −0.309017 0.951057i 0 0 0 0.535233 1.64728i 0 −0.809017 + 0.587785i 0
269.1 0 0.809017 + 0.587785i 0 0 0 −1.40126 + 1.01807i 0 0.309017 + 0.951057i 0
269.2 0 0.809017 + 0.587785i 0 0 0 1.40126 1.01807i 0 0.309017 + 0.951057i 0
977.1 0 0.809017 0.587785i 0 0 0 −1.40126 1.01807i 0 0.309017 0.951057i 0
977.2 0 0.809017 0.587785i 0 0 0 1.40126 + 1.01807i 0 0.309017 0.951057i 0
1049.1 0 −0.309017 + 0.951057i 0 0 0 −0.535233 1.64728i 0 −0.809017 0.587785i 0
1049.2 0 −0.309017 + 0.951057i 0 0 0 0.535233 + 1.64728i 0 −0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 245.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner
33.d even 2 1 inner
33.f even 10 3 inner
33.h odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.1.m.d 8
3.b odd 2 1 CM 1452.1.m.d 8
11.b odd 2 1 inner 1452.1.m.d 8
11.c even 5 1 1452.1.e.c 2
11.c even 5 3 inner 1452.1.m.d 8
11.d odd 10 1 1452.1.e.c 2
11.d odd 10 3 inner 1452.1.m.d 8
33.d even 2 1 inner 1452.1.m.d 8
33.f even 10 1 1452.1.e.c 2
33.f even 10 3 inner 1452.1.m.d 8
33.h odd 10 1 1452.1.e.c 2
33.h odd 10 3 inner 1452.1.m.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1452.1.e.c 2 11.c even 5 1
1452.1.e.c 2 11.d odd 10 1
1452.1.e.c 2 33.f even 10 1
1452.1.e.c 2 33.h odd 10 1
1452.1.m.d 8 1.a even 1 1 trivial
1452.1.m.d 8 3.b odd 2 1 CM
1452.1.m.d 8 11.b odd 2 1 inner
1452.1.m.d 8 11.c even 5 3 inner
1452.1.m.d 8 11.d odd 10 3 inner
1452.1.m.d 8 33.d even 2 1 inner
1452.1.m.d 8 33.f even 10 3 inner
1452.1.m.d 8 33.h odd 10 3 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{8} + 3T_{7}^{6} + 9T_{7}^{4} + 27T_{7}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 3 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + 3 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} + 3 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$67$ \( (T - 1)^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + 3 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$79$ \( T^{8} + 3 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
show more
show less