Properties

Label 1452.1.e.d
Level $1452$
Weight $1$
Character orbit 1452.e
Analytic conductor $0.725$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,1,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.724642398343\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.52272.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{3} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{5} - \zeta_{6} q^{9} + ( - \zeta_{6} - 1) q^{15} + (\zeta_{6}^{2} + \zeta_{6}) q^{23} + (\zeta_{6}^{2} - \zeta_{6} - 1) q^{25} - q^{27} + q^{31} + \cdots - q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{9} - 3 q^{15} - 4 q^{25} - 2 q^{27} + 2 q^{31} + 2 q^{37} - 3 q^{45} - 2 q^{49} + 2 q^{67} + 3 q^{69} - 2 q^{75} - q^{81} + q^{93} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 1.73205i 0 0 0 −0.500000 0.866025i 0
485.2 0 0.500000 + 0.866025i 0 1.73205i 0 0 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
3.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.1.e.d 2
3.b odd 2 1 inner 1452.1.e.d 2
11.b odd 2 1 CM 1452.1.e.d 2
11.c even 5 4 1452.1.m.c 8
11.d odd 10 4 1452.1.m.c 8
33.d even 2 1 inner 1452.1.e.d 2
33.f even 10 4 1452.1.m.c 8
33.h odd 10 4 1452.1.m.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1452.1.e.d 2 1.a even 1 1 trivial
1452.1.e.d 2 3.b odd 2 1 inner
1452.1.e.d 2 11.b odd 2 1 CM
1452.1.e.d 2 33.d even 2 1 inner
1452.1.m.c 8 11.c even 5 4
1452.1.m.c 8 11.d odd 10 4
1452.1.m.c 8 33.f even 10 4
1452.1.m.c 8 33.h odd 10 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{2} + 3 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 3 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{2} \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 3 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 3 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 3 \) Copy content Toggle raw display
$97$ \( (T + 1)^{2} \) Copy content Toggle raw display
show more
show less