Properties

Label 145.6.a.c.1.13
Level $145$
Weight $6$
Character 145.1
Self dual yes
Analytic conductor $23.256$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,6,Mod(1,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 145.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [13,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2556538729\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 6 x^{12} - 296 x^{11} + 1238 x^{10} + 33250 x^{9} - 78360 x^{8} - 1708024 x^{7} + \cdots + 251513192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-9.63745\) of defining polynomial
Character \(\chi\) \(=\) 145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.6375 q^{2} +7.90198 q^{3} +81.1554 q^{4} -25.0000 q^{5} +84.0569 q^{6} +171.117 q^{7} +522.888 q^{8} -180.559 q^{9} -265.936 q^{10} +349.035 q^{11} +641.288 q^{12} -367.714 q^{13} +1820.25 q^{14} -197.550 q^{15} +2965.22 q^{16} -79.3079 q^{17} -1920.68 q^{18} -1922.95 q^{19} -2028.88 q^{20} +1352.16 q^{21} +3712.85 q^{22} +3602.40 q^{23} +4131.85 q^{24} +625.000 q^{25} -3911.54 q^{26} -3346.95 q^{27} +13887.0 q^{28} +841.000 q^{29} -2101.42 q^{30} -773.522 q^{31} +14810.0 q^{32} +2758.07 q^{33} -843.633 q^{34} -4277.92 q^{35} -14653.3 q^{36} -2307.63 q^{37} -20455.3 q^{38} -2905.67 q^{39} -13072.2 q^{40} -17859.0 q^{41} +14383.6 q^{42} +20958.8 q^{43} +28326.1 q^{44} +4513.97 q^{45} +38320.3 q^{46} -25263.7 q^{47} +23431.1 q^{48} +12474.0 q^{49} +6648.41 q^{50} -626.689 q^{51} -29842.0 q^{52} -5065.18 q^{53} -35603.0 q^{54} -8725.88 q^{55} +89474.9 q^{56} -15195.1 q^{57} +8946.10 q^{58} -16380.0 q^{59} -16032.2 q^{60} +9332.80 q^{61} -8228.30 q^{62} -30896.6 q^{63} +62653.4 q^{64} +9192.86 q^{65} +29338.8 q^{66} -72265.4 q^{67} -6436.26 q^{68} +28466.1 q^{69} -45506.2 q^{70} -34216.5 q^{71} -94411.9 q^{72} +64735.5 q^{73} -24547.3 q^{74} +4938.74 q^{75} -156058. q^{76} +59725.8 q^{77} -30909.0 q^{78} -35527.2 q^{79} -74130.5 q^{80} +17428.2 q^{81} -189974. q^{82} +74144.2 q^{83} +109735. q^{84} +1982.70 q^{85} +222948. q^{86} +6645.57 q^{87} +182506. q^{88} -33510.8 q^{89} +48017.1 q^{90} -62922.1 q^{91} +292354. q^{92} -6112.35 q^{93} -268742. q^{94} +48073.7 q^{95} +117028. q^{96} +165247. q^{97} +132691. q^{98} -63021.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q + 7 q^{2} + 2 q^{3} + 213 q^{4} - 325 q^{5} - 3 q^{6} - 18 q^{7} - 399 q^{8} + 1155 q^{9} - 175 q^{10} + 844 q^{11} + 167 q^{12} - 704 q^{13} + 4425 q^{14} - 50 q^{15} + 5805 q^{16} - 210 q^{17} + 7378 q^{18}+ \cdots - 3872 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.6375 1.88045 0.940227 0.340549i \(-0.110613\pi\)
0.940227 + 0.340549i \(0.110613\pi\)
\(3\) 7.90198 0.506912 0.253456 0.967347i \(-0.418433\pi\)
0.253456 + 0.967347i \(0.418433\pi\)
\(4\) 81.1554 2.53610
\(5\) −25.0000 −0.447214
\(6\) 84.0569 0.953225
\(7\) 171.117 1.31992 0.659960 0.751301i \(-0.270573\pi\)
0.659960 + 0.751301i \(0.270573\pi\)
\(8\) 522.888 2.88857
\(9\) −180.559 −0.743040
\(10\) −265.936 −0.840964
\(11\) 349.035 0.869736 0.434868 0.900494i \(-0.356795\pi\)
0.434868 + 0.900494i \(0.356795\pi\)
\(12\) 641.288 1.28558
\(13\) −367.714 −0.603465 −0.301733 0.953393i \(-0.597565\pi\)
−0.301733 + 0.953393i \(0.597565\pi\)
\(14\) 1820.25 2.48205
\(15\) −197.550 −0.226698
\(16\) 2965.22 2.89572
\(17\) −79.3079 −0.0665570 −0.0332785 0.999446i \(-0.510595\pi\)
−0.0332785 + 0.999446i \(0.510595\pi\)
\(18\) −1920.68 −1.39725
\(19\) −1922.95 −1.22204 −0.611018 0.791617i \(-0.709240\pi\)
−0.611018 + 0.791617i \(0.709240\pi\)
\(20\) −2028.88 −1.13418
\(21\) 1352.16 0.669084
\(22\) 3712.85 1.63550
\(23\) 3602.40 1.41995 0.709973 0.704229i \(-0.248707\pi\)
0.709973 + 0.704229i \(0.248707\pi\)
\(24\) 4131.85 1.46425
\(25\) 625.000 0.200000
\(26\) −3911.54 −1.13479
\(27\) −3346.95 −0.883568
\(28\) 13887.0 3.34746
\(29\) 841.000 0.185695
\(30\) −2101.42 −0.426295
\(31\) −773.522 −0.144567 −0.0722834 0.997384i \(-0.523029\pi\)
−0.0722834 + 0.997384i \(0.523029\pi\)
\(32\) 14810.0 2.55670
\(33\) 2758.07 0.440880
\(34\) −843.633 −0.125157
\(35\) −4277.92 −0.590286
\(36\) −14653.3 −1.88443
\(37\) −2307.63 −0.277117 −0.138558 0.990354i \(-0.544247\pi\)
−0.138558 + 0.990354i \(0.544247\pi\)
\(38\) −20455.3 −2.29798
\(39\) −2905.67 −0.305904
\(40\) −13072.2 −1.29181
\(41\) −17859.0 −1.65920 −0.829598 0.558361i \(-0.811430\pi\)
−0.829598 + 0.558361i \(0.811430\pi\)
\(42\) 14383.6 1.25818
\(43\) 20958.8 1.72860 0.864300 0.502977i \(-0.167762\pi\)
0.864300 + 0.502977i \(0.167762\pi\)
\(44\) 28326.1 2.20574
\(45\) 4513.97 0.332298
\(46\) 38320.3 2.67014
\(47\) −25263.7 −1.66822 −0.834109 0.551599i \(-0.814018\pi\)
−0.834109 + 0.551599i \(0.814018\pi\)
\(48\) 23431.1 1.46788
\(49\) 12474.0 0.742188
\(50\) 6648.41 0.376091
\(51\) −626.689 −0.0337386
\(52\) −29842.0 −1.53045
\(53\) −5065.18 −0.247688 −0.123844 0.992302i \(-0.539522\pi\)
−0.123844 + 0.992302i \(0.539522\pi\)
\(54\) −35603.0 −1.66151
\(55\) −8725.88 −0.388958
\(56\) 89474.9 3.81269
\(57\) −15195.1 −0.619465
\(58\) 8946.10 0.349191
\(59\) −16380.0 −0.612610 −0.306305 0.951933i \(-0.599093\pi\)
−0.306305 + 0.951933i \(0.599093\pi\)
\(60\) −16032.2 −0.574930
\(61\) 9332.80 0.321135 0.160567 0.987025i \(-0.448668\pi\)
0.160567 + 0.987025i \(0.448668\pi\)
\(62\) −8228.30 −0.271851
\(63\) −30896.6 −0.980753
\(64\) 62653.4 1.91203
\(65\) 9192.86 0.269878
\(66\) 29338.8 0.829054
\(67\) −72265.4 −1.96672 −0.983362 0.181659i \(-0.941853\pi\)
−0.983362 + 0.181659i \(0.941853\pi\)
\(68\) −6436.26 −0.168796
\(69\) 28466.1 0.719788
\(70\) −45506.2 −1.11001
\(71\) −34216.5 −0.805545 −0.402773 0.915300i \(-0.631953\pi\)
−0.402773 + 0.915300i \(0.631953\pi\)
\(72\) −94411.9 −2.14633
\(73\) 64735.5 1.42179 0.710895 0.703298i \(-0.248290\pi\)
0.710895 + 0.703298i \(0.248290\pi\)
\(74\) −24547.3 −0.521105
\(75\) 4938.74 0.101382
\(76\) −156058. −3.09921
\(77\) 59725.8 1.14798
\(78\) −30909.0 −0.575238
\(79\) −35527.2 −0.640462 −0.320231 0.947340i \(-0.603760\pi\)
−0.320231 + 0.947340i \(0.603760\pi\)
\(80\) −74130.5 −1.29501
\(81\) 17428.2 0.295148
\(82\) −189974. −3.12004
\(83\) 74144.2 1.18136 0.590680 0.806906i \(-0.298860\pi\)
0.590680 + 0.806906i \(0.298860\pi\)
\(84\) 109735. 1.69687
\(85\) 1982.70 0.0297652
\(86\) 222948. 3.25055
\(87\) 6645.57 0.0941313
\(88\) 182506. 2.51230
\(89\) −33510.8 −0.448446 −0.224223 0.974538i \(-0.571984\pi\)
−0.224223 + 0.974538i \(0.571984\pi\)
\(90\) 48017.1 0.624870
\(91\) −62922.1 −0.796526
\(92\) 292354. 3.60113
\(93\) −6112.35 −0.0732827
\(94\) −268742. −3.13701
\(95\) 48073.7 0.546511
\(96\) 117028. 1.29602
\(97\) 165247. 1.78322 0.891610 0.452804i \(-0.149576\pi\)
0.891610 + 0.452804i \(0.149576\pi\)
\(98\) 132691. 1.39565
\(99\) −63021.4 −0.646249
\(100\) 50722.1 0.507221
\(101\) −110741. −1.08020 −0.540099 0.841602i \(-0.681613\pi\)
−0.540099 + 0.841602i \(0.681613\pi\)
\(102\) −6666.38 −0.0634438
\(103\) 6335.82 0.0588450 0.0294225 0.999567i \(-0.490633\pi\)
0.0294225 + 0.999567i \(0.490633\pi\)
\(104\) −192273. −1.74315
\(105\) −33804.0 −0.299223
\(106\) −53880.7 −0.465766
\(107\) 16569.9 0.139914 0.0699569 0.997550i \(-0.477714\pi\)
0.0699569 + 0.997550i \(0.477714\pi\)
\(108\) −271623. −2.24082
\(109\) −8467.39 −0.0682627 −0.0341313 0.999417i \(-0.510866\pi\)
−0.0341313 + 0.999417i \(0.510866\pi\)
\(110\) −92821.1 −0.731417
\(111\) −18234.9 −0.140474
\(112\) 507399. 3.82212
\(113\) 89180.8 0.657015 0.328508 0.944501i \(-0.393454\pi\)
0.328508 + 0.944501i \(0.393454\pi\)
\(114\) −161637. −1.16487
\(115\) −90059.9 −0.635019
\(116\) 68251.7 0.470943
\(117\) 66394.0 0.448399
\(118\) −174242. −1.15199
\(119\) −13570.9 −0.0878499
\(120\) −103296. −0.654834
\(121\) −39225.4 −0.243559
\(122\) 99277.2 0.603879
\(123\) −141122. −0.841067
\(124\) −62775.4 −0.366636
\(125\) −15625.0 −0.0894427
\(126\) −328661. −1.84426
\(127\) −233526. −1.28477 −0.642385 0.766382i \(-0.722055\pi\)
−0.642385 + 0.766382i \(0.722055\pi\)
\(128\) 192553. 1.03878
\(129\) 165616. 0.876249
\(130\) 97788.6 0.507493
\(131\) 83915.3 0.427231 0.213616 0.976918i \(-0.431476\pi\)
0.213616 + 0.976918i \(0.431476\pi\)
\(132\) 223832. 1.11812
\(133\) −329049. −1.61299
\(134\) −768719. −3.69833
\(135\) 83673.8 0.395144
\(136\) −41469.1 −0.192255
\(137\) 316971. 1.44284 0.721420 0.692498i \(-0.243490\pi\)
0.721420 + 0.692498i \(0.243490\pi\)
\(138\) 302806. 1.35353
\(139\) 40266.1 0.176768 0.0883838 0.996086i \(-0.471830\pi\)
0.0883838 + 0.996086i \(0.471830\pi\)
\(140\) −347176. −1.49703
\(141\) −199634. −0.845641
\(142\) −363977. −1.51479
\(143\) −128345. −0.524856
\(144\) −535396. −2.15164
\(145\) −21025.0 −0.0830455
\(146\) 688621. 2.67361
\(147\) 98569.0 0.376224
\(148\) −187277. −0.702797
\(149\) −6919.79 −0.0255345 −0.0127673 0.999918i \(-0.504064\pi\)
−0.0127673 + 0.999918i \(0.504064\pi\)
\(150\) 52535.6 0.190645
\(151\) −25767.0 −0.0919647 −0.0459823 0.998942i \(-0.514642\pi\)
−0.0459823 + 0.998942i \(0.514642\pi\)
\(152\) −1.00549e6 −3.52994
\(153\) 14319.7 0.0494545
\(154\) 635330. 2.15873
\(155\) 19338.0 0.0646522
\(156\) −235811. −0.775805
\(157\) −118398. −0.383351 −0.191676 0.981458i \(-0.561392\pi\)
−0.191676 + 0.981458i \(0.561392\pi\)
\(158\) −377919. −1.20436
\(159\) −40025.0 −0.125556
\(160\) −370249. −1.14339
\(161\) 616430. 1.87421
\(162\) 185392. 0.555012
\(163\) 270076. 0.796190 0.398095 0.917344i \(-0.369671\pi\)
0.398095 + 0.917344i \(0.369671\pi\)
\(164\) −1.44935e6 −4.20790
\(165\) −68951.8 −0.197168
\(166\) 788706. 2.22149
\(167\) 471170. 1.30733 0.653667 0.756782i \(-0.273230\pi\)
0.653667 + 0.756782i \(0.273230\pi\)
\(168\) 707029. 1.93270
\(169\) −236079. −0.635830
\(170\) 21090.8 0.0559721
\(171\) 347205. 0.908021
\(172\) 1.70092e6 4.38391
\(173\) 420463. 1.06810 0.534051 0.845452i \(-0.320669\pi\)
0.534051 + 0.845452i \(0.320669\pi\)
\(174\) 70691.9 0.177009
\(175\) 106948. 0.263984
\(176\) 1.03497e6 2.51852
\(177\) −129435. −0.310540
\(178\) −356470. −0.843282
\(179\) −718345. −1.67572 −0.837858 0.545888i \(-0.816192\pi\)
−0.837858 + 0.545888i \(0.816192\pi\)
\(180\) 366333. 0.842741
\(181\) −12784.7 −0.0290064 −0.0145032 0.999895i \(-0.504617\pi\)
−0.0145032 + 0.999895i \(0.504617\pi\)
\(182\) −669331. −1.49783
\(183\) 73747.6 0.162787
\(184\) 1.88365e6 4.10162
\(185\) 57690.8 0.123930
\(186\) −65019.9 −0.137805
\(187\) −27681.2 −0.0578871
\(188\) −2.05029e6 −4.23078
\(189\) −572720. −1.16624
\(190\) 511382. 1.02769
\(191\) 659494. 1.30806 0.654030 0.756469i \(-0.273077\pi\)
0.654030 + 0.756469i \(0.273077\pi\)
\(192\) 495086. 0.969231
\(193\) 653003. 1.26189 0.630946 0.775827i \(-0.282667\pi\)
0.630946 + 0.775827i \(0.282667\pi\)
\(194\) 1.75781e6 3.35326
\(195\) 72641.8 0.136804
\(196\) 1.01233e6 1.88227
\(197\) 498950. 0.915991 0.457996 0.888954i \(-0.348568\pi\)
0.457996 + 0.888954i \(0.348568\pi\)
\(198\) −670387. −1.21524
\(199\) 552109. 0.988308 0.494154 0.869374i \(-0.335478\pi\)
0.494154 + 0.869374i \(0.335478\pi\)
\(200\) 326805. 0.577715
\(201\) −571040. −0.996956
\(202\) −1.17800e6 −2.03126
\(203\) 143909. 0.245103
\(204\) −50859.2 −0.0855646
\(205\) 446475. 0.742015
\(206\) 67397.0 0.110655
\(207\) −650444. −1.05508
\(208\) −1.09035e6 −1.74747
\(209\) −671177. −1.06285
\(210\) −359589. −0.562675
\(211\) 654995. 1.01282 0.506409 0.862293i \(-0.330972\pi\)
0.506409 + 0.862293i \(0.330972\pi\)
\(212\) −411067. −0.628164
\(213\) −270378. −0.408341
\(214\) 176261. 0.263101
\(215\) −523969. −0.773053
\(216\) −1.75008e6 −2.55225
\(217\) −132363. −0.190816
\(218\) −90071.4 −0.128365
\(219\) 511539. 0.720723
\(220\) −708152. −0.986438
\(221\) 29162.6 0.0401649
\(222\) −193973. −0.264154
\(223\) −374428. −0.504204 −0.252102 0.967701i \(-0.581122\pi\)
−0.252102 + 0.967701i \(0.581122\pi\)
\(224\) 2.53424e6 3.37464
\(225\) −112849. −0.148608
\(226\) 948657. 1.23549
\(227\) 608292. 0.783516 0.391758 0.920068i \(-0.371867\pi\)
0.391758 + 0.920068i \(0.371867\pi\)
\(228\) −1.23316e6 −1.57103
\(229\) 848366. 1.06904 0.534521 0.845155i \(-0.320492\pi\)
0.534521 + 0.845155i \(0.320492\pi\)
\(230\) −958008. −1.19412
\(231\) 471952. 0.581926
\(232\) 439749. 0.536395
\(233\) 742679. 0.896214 0.448107 0.893980i \(-0.352098\pi\)
0.448107 + 0.893980i \(0.352098\pi\)
\(234\) 706263. 0.843193
\(235\) 631594. 0.746050
\(236\) −1.32933e6 −1.55364
\(237\) −280735. −0.324658
\(238\) −144360. −0.165198
\(239\) 1.38563e6 1.56911 0.784553 0.620062i \(-0.212893\pi\)
0.784553 + 0.620062i \(0.212893\pi\)
\(240\) −585778. −0.656455
\(241\) 1.17901e6 1.30760 0.653801 0.756666i \(-0.273173\pi\)
0.653801 + 0.756666i \(0.273173\pi\)
\(242\) −417258. −0.458001
\(243\) 951027. 1.03318
\(244\) 757407. 0.814431
\(245\) −311849. −0.331917
\(246\) −1.50117e6 −1.58159
\(247\) 707096. 0.737456
\(248\) −404465. −0.417592
\(249\) 585886. 0.598846
\(250\) −166210. −0.168193
\(251\) −861676. −0.863296 −0.431648 0.902042i \(-0.642068\pi\)
−0.431648 + 0.902042i \(0.642068\pi\)
\(252\) −2.50743e6 −2.48729
\(253\) 1.25736e6 1.23498
\(254\) −2.48412e6 −2.41595
\(255\) 15667.2 0.0150884
\(256\) 43362.8 0.0413540
\(257\) −227140. −0.214517 −0.107258 0.994231i \(-0.534207\pi\)
−0.107258 + 0.994231i \(0.534207\pi\)
\(258\) 1.76173e6 1.64774
\(259\) −394875. −0.365772
\(260\) 746050. 0.684439
\(261\) −151850. −0.137979
\(262\) 892645. 0.803388
\(263\) 1.57114e6 1.40063 0.700316 0.713833i \(-0.253042\pi\)
0.700316 + 0.713833i \(0.253042\pi\)
\(264\) 1.44216e6 1.27351
\(265\) 126630. 0.110770
\(266\) −3.50024e6 −3.03315
\(267\) −264802. −0.227323
\(268\) −5.86472e6 −4.98782
\(269\) 1.95463e6 1.64697 0.823483 0.567340i \(-0.192028\pi\)
0.823483 + 0.567340i \(0.192028\pi\)
\(270\) 890076. 0.743050
\(271\) −2.03350e6 −1.68198 −0.840991 0.541049i \(-0.818027\pi\)
−0.840991 + 0.541049i \(0.818027\pi\)
\(272\) −235165. −0.192731
\(273\) −497209. −0.403769
\(274\) 3.37176e6 2.71319
\(275\) 218147. 0.173947
\(276\) 2.31017e6 1.82546
\(277\) 1.06404e6 0.833217 0.416609 0.909086i \(-0.363219\pi\)
0.416609 + 0.909086i \(0.363219\pi\)
\(278\) 428329. 0.332403
\(279\) 139666. 0.107419
\(280\) −2.23687e6 −1.70508
\(281\) −716996. −0.541690 −0.270845 0.962623i \(-0.587303\pi\)
−0.270845 + 0.962623i \(0.587303\pi\)
\(282\) −2.12359e6 −1.59019
\(283\) −1.62722e6 −1.20776 −0.603878 0.797077i \(-0.706379\pi\)
−0.603878 + 0.797077i \(0.706379\pi\)
\(284\) −2.77685e6 −2.04295
\(285\) 379878. 0.277033
\(286\) −1.36527e6 −0.986967
\(287\) −3.05598e6 −2.19001
\(288\) −2.67407e6 −1.89973
\(289\) −1.41357e6 −0.995570
\(290\) −223652. −0.156163
\(291\) 1.30578e6 0.903936
\(292\) 5.25363e6 3.60581
\(293\) −2.15555e6 −1.46686 −0.733430 0.679765i \(-0.762082\pi\)
−0.733430 + 0.679765i \(0.762082\pi\)
\(294\) 1.04852e6 0.707473
\(295\) 409501. 0.273968
\(296\) −1.20663e6 −0.800472
\(297\) −1.16820e6 −0.768472
\(298\) −73609.0 −0.0480164
\(299\) −1.32465e6 −0.856888
\(300\) 400805. 0.257117
\(301\) 3.58640e6 2.28161
\(302\) −274095. −0.172935
\(303\) −875069. −0.547565
\(304\) −5.70197e6 −3.53868
\(305\) −233320. −0.143616
\(306\) 152325. 0.0929969
\(307\) −2.75274e6 −1.66694 −0.833469 0.552567i \(-0.813648\pi\)
−0.833469 + 0.552567i \(0.813648\pi\)
\(308\) 4.84707e6 2.91140
\(309\) 50065.5 0.0298293
\(310\) 205707. 0.121575
\(311\) 1.43353e6 0.840437 0.420218 0.907423i \(-0.361953\pi\)
0.420218 + 0.907423i \(0.361953\pi\)
\(312\) −1.51934e6 −0.883626
\(313\) −987882. −0.569960 −0.284980 0.958533i \(-0.591987\pi\)
−0.284980 + 0.958533i \(0.591987\pi\)
\(314\) −1.25946e6 −0.720874
\(315\) 772416. 0.438606
\(316\) −2.88322e6 −1.62428
\(317\) −1.61385e6 −0.902017 −0.451009 0.892520i \(-0.648936\pi\)
−0.451009 + 0.892520i \(0.648936\pi\)
\(318\) −425764. −0.236103
\(319\) 293539. 0.161506
\(320\) −1.56633e6 −0.855085
\(321\) 130935. 0.0709240
\(322\) 6.55725e6 3.52437
\(323\) 152505. 0.0813351
\(324\) 1.41439e6 0.748527
\(325\) −229822. −0.120693
\(326\) 2.87292e6 1.49720
\(327\) −66909.2 −0.0346032
\(328\) −9.33826e6 −4.79271
\(329\) −4.32305e6 −2.20192
\(330\) −733471. −0.370764
\(331\) 1.84401e6 0.925109 0.462555 0.886591i \(-0.346933\pi\)
0.462555 + 0.886591i \(0.346933\pi\)
\(332\) 6.01720e6 2.99605
\(333\) 416663. 0.205909
\(334\) 5.01205e6 2.45838
\(335\) 1.80663e6 0.879545
\(336\) 4.00946e6 1.93748
\(337\) −3.81514e6 −1.82993 −0.914967 0.403528i \(-0.867784\pi\)
−0.914967 + 0.403528i \(0.867784\pi\)
\(338\) −2.51128e6 −1.19565
\(339\) 704705. 0.333049
\(340\) 160906. 0.0754877
\(341\) −269986. −0.125735
\(342\) 3.69338e6 1.70749
\(343\) −741456. −0.340291
\(344\) 1.09591e7 4.99319
\(345\) −711652. −0.321899
\(346\) 4.47266e6 2.00852
\(347\) 2.85411e6 1.27247 0.636235 0.771495i \(-0.280491\pi\)
0.636235 + 0.771495i \(0.280491\pi\)
\(348\) 539323. 0.238727
\(349\) −3.16307e6 −1.39010 −0.695049 0.718962i \(-0.744617\pi\)
−0.695049 + 0.718962i \(0.744617\pi\)
\(350\) 1.13765e6 0.496410
\(351\) 1.23072e6 0.533203
\(352\) 5.16920e6 2.22365
\(353\) 2.41123e6 1.02992 0.514959 0.857215i \(-0.327807\pi\)
0.514959 + 0.857215i \(0.327807\pi\)
\(354\) −1.37685e6 −0.583956
\(355\) 855413. 0.360251
\(356\) −2.71958e6 −1.13731
\(357\) −107237. −0.0445322
\(358\) −7.64136e6 −3.15111
\(359\) 1.18835e6 0.486639 0.243320 0.969946i \(-0.421764\pi\)
0.243320 + 0.969946i \(0.421764\pi\)
\(360\) 2.36030e6 0.959866
\(361\) 1.22164e6 0.493371
\(362\) −135996. −0.0545451
\(363\) −309958. −0.123463
\(364\) −5.10647e6 −2.02007
\(365\) −1.61839e6 −0.635844
\(366\) 784486. 0.306114
\(367\) −3.48335e6 −1.34999 −0.674997 0.737820i \(-0.735855\pi\)
−0.674997 + 0.737820i \(0.735855\pi\)
\(368\) 1.06819e7 4.11177
\(369\) 3.22460e6 1.23285
\(370\) 613683. 0.233045
\(371\) −866738. −0.326929
\(372\) −496050. −0.185852
\(373\) −1.08921e6 −0.405360 −0.202680 0.979245i \(-0.564965\pi\)
−0.202680 + 0.979245i \(0.564965\pi\)
\(374\) −294458. −0.108854
\(375\) −123468. −0.0453396
\(376\) −1.32101e7 −4.81877
\(377\) −309248. −0.112061
\(378\) −6.09228e6 −2.19306
\(379\) −645382. −0.230791 −0.115396 0.993320i \(-0.536814\pi\)
−0.115396 + 0.993320i \(0.536814\pi\)
\(380\) 3.90144e6 1.38601
\(381\) −1.84532e6 −0.651266
\(382\) 7.01534e6 2.45974
\(383\) 2.07721e6 0.723577 0.361788 0.932260i \(-0.382166\pi\)
0.361788 + 0.932260i \(0.382166\pi\)
\(384\) 1.52155e6 0.526572
\(385\) −1.49315e6 −0.513393
\(386\) 6.94629e6 2.37293
\(387\) −3.78429e6 −1.28442
\(388\) 1.34107e7 4.52243
\(389\) −879297. −0.294620 −0.147310 0.989090i \(-0.547061\pi\)
−0.147310 + 0.989090i \(0.547061\pi\)
\(390\) 772724. 0.257254
\(391\) −285698. −0.0945074
\(392\) 6.52248e6 2.14387
\(393\) 663097. 0.216569
\(394\) 5.30755e6 1.72248
\(395\) 888180. 0.286423
\(396\) −5.11452e6 −1.63895
\(397\) −3.05951e6 −0.974262 −0.487131 0.873329i \(-0.661957\pi\)
−0.487131 + 0.873329i \(0.661957\pi\)
\(398\) 5.87303e6 1.85847
\(399\) −2.60014e6 −0.817644
\(400\) 1.85326e6 0.579145
\(401\) 5.07268e6 1.57535 0.787674 0.616092i \(-0.211285\pi\)
0.787674 + 0.616092i \(0.211285\pi\)
\(402\) −6.07441e6 −1.87473
\(403\) 284435. 0.0872410
\(404\) −8.98718e6 −2.73949
\(405\) −435705. −0.131994
\(406\) 1.53083e6 0.460905
\(407\) −805445. −0.241018
\(408\) −327688. −0.0974564
\(409\) 3.26444e6 0.964941 0.482471 0.875912i \(-0.339740\pi\)
0.482471 + 0.875912i \(0.339740\pi\)
\(410\) 4.74936e6 1.39532
\(411\) 2.50470e6 0.731393
\(412\) 514186. 0.149237
\(413\) −2.80290e6 −0.808597
\(414\) −6.91906e6 −1.98402
\(415\) −1.85361e6 −0.528320
\(416\) −5.44584e6 −1.54288
\(417\) 318182. 0.0896057
\(418\) −7.13961e6 −1.99864
\(419\) −5.95132e6 −1.65607 −0.828033 0.560679i \(-0.810540\pi\)
−0.828033 + 0.560679i \(0.810540\pi\)
\(420\) −2.74338e6 −0.758862
\(421\) 1.63805e6 0.450426 0.225213 0.974310i \(-0.427692\pi\)
0.225213 + 0.974310i \(0.427692\pi\)
\(422\) 6.96747e6 1.90456
\(423\) 4.56159e6 1.23955
\(424\) −2.64852e6 −0.715466
\(425\) −49567.4 −0.0133114
\(426\) −2.87614e6 −0.767866
\(427\) 1.59700e6 0.423872
\(428\) 1.34474e6 0.354836
\(429\) −1.01418e6 −0.266056
\(430\) −5.57369e6 −1.45369
\(431\) −1.95855e6 −0.507856 −0.253928 0.967223i \(-0.581723\pi\)
−0.253928 + 0.967223i \(0.581723\pi\)
\(432\) −9.92445e6 −2.55857
\(433\) −5.83591e6 −1.49585 −0.747927 0.663781i \(-0.768951\pi\)
−0.747927 + 0.663781i \(0.768951\pi\)
\(434\) −1.40800e6 −0.358821
\(435\) −166139. −0.0420968
\(436\) −687174. −0.173121
\(437\) −6.92722e6 −1.73522
\(438\) 5.44147e6 1.35529
\(439\) −1.14265e6 −0.282978 −0.141489 0.989940i \(-0.545189\pi\)
−0.141489 + 0.989940i \(0.545189\pi\)
\(440\) −4.56266e6 −1.12353
\(441\) −2.25228e6 −0.551476
\(442\) 310216. 0.0755281
\(443\) −6.01198e6 −1.45549 −0.727744 0.685849i \(-0.759431\pi\)
−0.727744 + 0.685849i \(0.759431\pi\)
\(444\) −1.47986e6 −0.356256
\(445\) 837770. 0.200551
\(446\) −3.98296e6 −0.948132
\(447\) −54680.1 −0.0129438
\(448\) 1.07210e7 2.52372
\(449\) −1.99042e6 −0.465938 −0.232969 0.972484i \(-0.574844\pi\)
−0.232969 + 0.972484i \(0.574844\pi\)
\(450\) −1.20043e6 −0.279450
\(451\) −6.23342e6 −1.44306
\(452\) 7.23750e6 1.66626
\(453\) −203610. −0.0466180
\(454\) 6.47068e6 1.47336
\(455\) 1.57305e6 0.356217
\(456\) −7.94534e6 −1.78937
\(457\) −797270. −0.178573 −0.0892863 0.996006i \(-0.528459\pi\)
−0.0892863 + 0.996006i \(0.528459\pi\)
\(458\) 9.02445e6 2.01028
\(459\) 265440. 0.0588077
\(460\) −7.30884e6 −1.61048
\(461\) 4.15965e6 0.911601 0.455801 0.890082i \(-0.349353\pi\)
0.455801 + 0.890082i \(0.349353\pi\)
\(462\) 5.02037e6 1.09429
\(463\) −7.65502e6 −1.65956 −0.829781 0.558089i \(-0.811535\pi\)
−0.829781 + 0.558089i \(0.811535\pi\)
\(464\) 2.49375e6 0.537722
\(465\) 152809. 0.0327730
\(466\) 7.90022e6 1.68529
\(467\) 7.73628e6 1.64150 0.820749 0.571289i \(-0.193557\pi\)
0.820749 + 0.571289i \(0.193557\pi\)
\(468\) 5.38823e6 1.13719
\(469\) −1.23658e7 −2.59592
\(470\) 6.71855e6 1.40291
\(471\) −935582. −0.194326
\(472\) −8.56491e6 −1.76957
\(473\) 7.31535e6 1.50343
\(474\) −2.98631e6 −0.610504
\(475\) −1.20184e6 −0.244407
\(476\) −1.10135e6 −0.222797
\(477\) 914563. 0.184042
\(478\) 1.47396e7 2.95063
\(479\) 9.01260e6 1.79478 0.897390 0.441238i \(-0.145461\pi\)
0.897390 + 0.441238i \(0.145461\pi\)
\(480\) −2.92570e6 −0.579599
\(481\) 848550. 0.167230
\(482\) 1.25417e7 2.45889
\(483\) 4.87102e6 0.950063
\(484\) −3.18335e6 −0.617690
\(485\) −4.13118e6 −0.797480
\(486\) 1.01165e7 1.94285
\(487\) −2.33104e6 −0.445377 −0.222688 0.974890i \(-0.571483\pi\)
−0.222688 + 0.974890i \(0.571483\pi\)
\(488\) 4.88000e6 0.927621
\(489\) 2.13414e6 0.403599
\(490\) −3.31728e6 −0.624154
\(491\) −5.19866e6 −0.973168 −0.486584 0.873634i \(-0.661757\pi\)
−0.486584 + 0.873634i \(0.661757\pi\)
\(492\) −1.14528e7 −2.13303
\(493\) −66697.9 −0.0123593
\(494\) 7.52170e6 1.38675
\(495\) 1.57553e6 0.289011
\(496\) −2.29366e6 −0.418625
\(497\) −5.85502e6 −1.06326
\(498\) 6.23234e6 1.12610
\(499\) 4.69918e6 0.844833 0.422416 0.906402i \(-0.361182\pi\)
0.422416 + 0.906402i \(0.361182\pi\)
\(500\) −1.26805e6 −0.226836
\(501\) 3.72318e6 0.662704
\(502\) −9.16604e6 −1.62339
\(503\) 2.31325e6 0.407664 0.203832 0.979006i \(-0.434660\pi\)
0.203832 + 0.979006i \(0.434660\pi\)
\(504\) −1.61555e7 −2.83298
\(505\) 2.76851e6 0.483079
\(506\) 1.33751e7 2.32232
\(507\) −1.86549e6 −0.322310
\(508\) −1.89519e7 −3.25831
\(509\) −2.54650e6 −0.435661 −0.217831 0.975987i \(-0.569898\pi\)
−0.217831 + 0.975987i \(0.569898\pi\)
\(510\) 166659. 0.0283729
\(511\) 1.10773e7 1.87665
\(512\) −5.70042e6 −0.961019
\(513\) 6.43602e6 1.07975
\(514\) −2.41619e6 −0.403389
\(515\) −158396. −0.0263163
\(516\) 1.34406e7 2.22226
\(517\) −8.81794e6 −1.45091
\(518\) −4.20046e6 −0.687817
\(519\) 3.32249e6 0.541434
\(520\) 4.80683e6 0.779562
\(521\) 804949. 0.129919 0.0649597 0.997888i \(-0.479308\pi\)
0.0649597 + 0.997888i \(0.479308\pi\)
\(522\) −1.61530e6 −0.259463
\(523\) 302757. 0.0483994 0.0241997 0.999707i \(-0.492296\pi\)
0.0241997 + 0.999707i \(0.492296\pi\)
\(524\) 6.81018e6 1.08350
\(525\) 845101. 0.133817
\(526\) 1.67129e7 2.63382
\(527\) 61346.4 0.00962193
\(528\) 8.17829e6 1.27667
\(529\) 6.54091e6 1.01625
\(530\) 1.34702e6 0.208297
\(531\) 2.95755e6 0.455194
\(532\) −2.67041e7 −4.09071
\(533\) 6.56702e6 1.00127
\(534\) −2.81682e6 −0.427470
\(535\) −414247. −0.0625713
\(536\) −3.77867e7 −5.68102
\(537\) −5.67635e6 −0.849441
\(538\) 2.07923e7 3.09704
\(539\) 4.35385e6 0.645508
\(540\) 6.79058e6 1.00213
\(541\) −2.32952e6 −0.342194 −0.171097 0.985254i \(-0.554731\pi\)
−0.171097 + 0.985254i \(0.554731\pi\)
\(542\) −2.16313e7 −3.16289
\(543\) −101024. −0.0147037
\(544\) −1.17455e6 −0.170166
\(545\) 211685. 0.0305280
\(546\) −5.28904e6 −0.759268
\(547\) 4.12008e6 0.588758 0.294379 0.955689i \(-0.404887\pi\)
0.294379 + 0.955689i \(0.404887\pi\)
\(548\) 2.57239e7 3.65919
\(549\) −1.68512e6 −0.238616
\(550\) 2.32053e6 0.327100
\(551\) −1.61720e6 −0.226926
\(552\) 1.48846e7 2.07916
\(553\) −6.07930e6 −0.845358
\(554\) 1.13187e7 1.56683
\(555\) 455872. 0.0628218
\(556\) 3.26781e6 0.448301
\(557\) 646181. 0.0882503 0.0441252 0.999026i \(-0.485950\pi\)
0.0441252 + 0.999026i \(0.485950\pi\)
\(558\) 1.48569e6 0.201996
\(559\) −7.70684e6 −1.04315
\(560\) −1.26850e7 −1.70930
\(561\) −218737. −0.0293437
\(562\) −7.62701e6 −1.01862
\(563\) −5.89375e6 −0.783647 −0.391824 0.920040i \(-0.628156\pi\)
−0.391824 + 0.920040i \(0.628156\pi\)
\(564\) −1.62013e7 −2.14463
\(565\) −2.22952e6 −0.293826
\(566\) −1.73094e7 −2.27113
\(567\) 2.98226e6 0.389572
\(568\) −1.78914e7 −2.32688
\(569\) 899415. 0.116461 0.0582303 0.998303i \(-0.481454\pi\)
0.0582303 + 0.998303i \(0.481454\pi\)
\(570\) 4.04093e6 0.520948
\(571\) 9.70241e6 1.24534 0.622672 0.782483i \(-0.286047\pi\)
0.622672 + 0.782483i \(0.286047\pi\)
\(572\) −1.04159e7 −1.33109
\(573\) 5.21131e6 0.663071
\(574\) −3.25078e7 −4.11820
\(575\) 2.25150e6 0.283989
\(576\) −1.13126e7 −1.42071
\(577\) −1.76362e6 −0.220528 −0.110264 0.993902i \(-0.535170\pi\)
−0.110264 + 0.993902i \(0.535170\pi\)
\(578\) −1.50368e7 −1.87212
\(579\) 5.16002e6 0.639669
\(580\) −1.70629e6 −0.210612
\(581\) 1.26873e7 1.55930
\(582\) 1.38902e7 1.69981
\(583\) −1.76793e6 −0.215424
\(584\) 3.38494e7 4.10694
\(585\) −1.65985e6 −0.200530
\(586\) −2.29295e7 −2.75836
\(587\) 6.01294e6 0.720264 0.360132 0.932901i \(-0.382732\pi\)
0.360132 + 0.932901i \(0.382732\pi\)
\(588\) 7.99940e6 0.954145
\(589\) 1.48744e6 0.176666
\(590\) 4.35604e6 0.515184
\(591\) 3.94269e6 0.464327
\(592\) −6.84264e6 −0.802453
\(593\) −9.48290e6 −1.10740 −0.553700 0.832716i \(-0.686784\pi\)
−0.553700 + 0.832716i \(0.686784\pi\)
\(594\) −1.24267e7 −1.44507
\(595\) 339273. 0.0392877
\(596\) −561578. −0.0647582
\(597\) 4.36276e6 0.500985
\(598\) −1.40909e7 −1.61134
\(599\) 4.63972e6 0.528354 0.264177 0.964474i \(-0.414900\pi\)
0.264177 + 0.964474i \(0.414900\pi\)
\(600\) 2.58241e6 0.292851
\(601\) −989899. −0.111790 −0.0558952 0.998437i \(-0.517801\pi\)
−0.0558952 + 0.998437i \(0.517801\pi\)
\(602\) 3.81501e7 4.29047
\(603\) 1.30481e7 1.46135
\(604\) −2.09113e6 −0.233232
\(605\) 980634. 0.108923
\(606\) −9.30851e6 −1.02967
\(607\) −5.93495e6 −0.653801 −0.326901 0.945059i \(-0.606004\pi\)
−0.326901 + 0.945059i \(0.606004\pi\)
\(608\) −2.84788e7 −3.12438
\(609\) 1.13717e6 0.124246
\(610\) −2.48193e6 −0.270063
\(611\) 9.28984e6 1.00671
\(612\) 1.16212e6 0.125422
\(613\) 3.63601e6 0.390817 0.195409 0.980722i \(-0.437397\pi\)
0.195409 + 0.980722i \(0.437397\pi\)
\(614\) −2.92821e7 −3.13460
\(615\) 3.52804e6 0.376137
\(616\) 3.12299e7 3.31603
\(617\) 1.24047e7 1.31182 0.655910 0.754839i \(-0.272285\pi\)
0.655910 + 0.754839i \(0.272285\pi\)
\(618\) 532570. 0.0560926
\(619\) 2.09019e6 0.219260 0.109630 0.993972i \(-0.465033\pi\)
0.109630 + 0.993972i \(0.465033\pi\)
\(620\) 1.56939e6 0.163965
\(621\) −1.20570e7 −1.25462
\(622\) 1.52491e7 1.58040
\(623\) −5.73426e6 −0.591913
\(624\) −8.61596e6 −0.885813
\(625\) 390625. 0.0400000
\(626\) −1.05085e7 −1.07178
\(627\) −5.30363e6 −0.538771
\(628\) −9.60867e6 −0.972219
\(629\) 183013. 0.0184441
\(630\) 8.21653e6 0.824778
\(631\) 1.33502e7 1.33480 0.667399 0.744700i \(-0.267408\pi\)
0.667399 + 0.744700i \(0.267408\pi\)
\(632\) −1.85767e7 −1.85002
\(633\) 5.17576e6 0.513410
\(634\) −1.71672e7 −1.69620
\(635\) 5.83815e6 0.574567
\(636\) −3.24824e6 −0.318424
\(637\) −4.58686e6 −0.447885
\(638\) 3.12250e6 0.303704
\(639\) 6.17809e6 0.598552
\(640\) −4.81382e6 −0.464558
\(641\) −1.63488e7 −1.57159 −0.785797 0.618484i \(-0.787747\pi\)
−0.785797 + 0.618484i \(0.787747\pi\)
\(642\) 1.39281e6 0.133369
\(643\) 5.37759e6 0.512933 0.256466 0.966553i \(-0.417442\pi\)
0.256466 + 0.966553i \(0.417442\pi\)
\(644\) 5.00266e7 4.75321
\(645\) −4.14039e6 −0.391870
\(646\) 1.62226e6 0.152947
\(647\) 9.73809e6 0.914562 0.457281 0.889322i \(-0.348823\pi\)
0.457281 + 0.889322i \(0.348823\pi\)
\(648\) 9.11299e6 0.852557
\(649\) −5.71720e6 −0.532810
\(650\) −2.44472e6 −0.226958
\(651\) −1.04593e6 −0.0967272
\(652\) 2.19181e7 2.01922
\(653\) −1.59165e7 −1.46071 −0.730357 0.683065i \(-0.760646\pi\)
−0.730357 + 0.683065i \(0.760646\pi\)
\(654\) −711743. −0.0650697
\(655\) −2.09788e6 −0.191064
\(656\) −5.29559e7 −4.80457
\(657\) −1.16886e7 −1.05645
\(658\) −4.59862e7 −4.14060
\(659\) −5.28648e6 −0.474191 −0.237096 0.971486i \(-0.576195\pi\)
−0.237096 + 0.971486i \(0.576195\pi\)
\(660\) −5.59580e6 −0.500038
\(661\) −2.05506e7 −1.82945 −0.914725 0.404076i \(-0.867593\pi\)
−0.914725 + 0.404076i \(0.867593\pi\)
\(662\) 1.96156e7 1.73962
\(663\) 230443. 0.0203601
\(664\) 3.87691e7 3.41244
\(665\) 8.22622e6 0.721351
\(666\) 4.43223e6 0.387202
\(667\) 3.02961e6 0.263677
\(668\) 3.82380e7 3.31554
\(669\) −2.95872e6 −0.255587
\(670\) 1.92180e7 1.65394
\(671\) 3.25748e6 0.279303
\(672\) 2.00255e7 1.71065
\(673\) 9.36052e6 0.796641 0.398320 0.917246i \(-0.369593\pi\)
0.398320 + 0.917246i \(0.369593\pi\)
\(674\) −4.05834e7 −3.44111
\(675\) −2.09185e6 −0.176714
\(676\) −1.91591e7 −1.61253
\(677\) 6.38062e6 0.535046 0.267523 0.963551i \(-0.413795\pi\)
0.267523 + 0.963551i \(0.413795\pi\)
\(678\) 7.49627e6 0.626283
\(679\) 2.82766e7 2.35371
\(680\) 1.03673e6 0.0859790
\(681\) 4.80672e6 0.397174
\(682\) −2.87197e6 −0.236439
\(683\) −2.06286e7 −1.69207 −0.846035 0.533127i \(-0.821017\pi\)
−0.846035 + 0.533127i \(0.821017\pi\)
\(684\) 2.81776e7 2.30284
\(685\) −7.92427e6 −0.645257
\(686\) −7.88720e6 −0.639901
\(687\) 6.70377e6 0.541910
\(688\) 6.21473e7 5.00555
\(689\) 1.86254e6 0.149471
\(690\) −7.57016e6 −0.605316
\(691\) 7.08478e6 0.564457 0.282229 0.959347i \(-0.408926\pi\)
0.282229 + 0.959347i \(0.408926\pi\)
\(692\) 3.41228e7 2.70882
\(693\) −1.07840e7 −0.852997
\(694\) 3.03605e7 2.39282
\(695\) −1.00665e6 −0.0790529
\(696\) 3.47488e6 0.271905
\(697\) 1.41636e6 0.110431
\(698\) −3.36470e7 −2.61401
\(699\) 5.86864e6 0.454302
\(700\) 8.67940e6 0.669491
\(701\) −4.01930e6 −0.308927 −0.154463 0.987999i \(-0.549365\pi\)
−0.154463 + 0.987999i \(0.549365\pi\)
\(702\) 1.30918e7 1.00266
\(703\) 4.43746e6 0.338646
\(704\) 2.18682e7 1.66296
\(705\) 4.99084e6 0.378182
\(706\) 2.56494e7 1.93671
\(707\) −1.89496e7 −1.42577
\(708\) −1.05043e7 −0.787562
\(709\) −8.62373e6 −0.644288 −0.322144 0.946691i \(-0.604403\pi\)
−0.322144 + 0.946691i \(0.604403\pi\)
\(710\) 9.09941e6 0.677435
\(711\) 6.41474e6 0.475889
\(712\) −1.75224e7 −1.29537
\(713\) −2.78653e6 −0.205277
\(714\) −1.14073e6 −0.0837408
\(715\) 3.20863e6 0.234723
\(716\) −5.82975e7 −4.24979
\(717\) 1.09492e7 0.795399
\(718\) 1.26410e7 0.915103
\(719\) −1.00415e7 −0.724397 −0.362199 0.932101i \(-0.617974\pi\)
−0.362199 + 0.932101i \(0.617974\pi\)
\(720\) 1.33849e7 0.962242
\(721\) 1.08417e6 0.0776707
\(722\) 1.29951e7 0.927761
\(723\) 9.31654e6 0.662840
\(724\) −1.03755e6 −0.0735632
\(725\) 525625. 0.0371391
\(726\) −3.29717e6 −0.232166
\(727\) −2.23153e7 −1.56591 −0.782955 0.622079i \(-0.786288\pi\)
−0.782955 + 0.622079i \(0.786288\pi\)
\(728\) −3.29012e7 −2.30082
\(729\) 3.27994e6 0.228585
\(730\) −1.72155e7 −1.19567
\(731\) −1.66219e6 −0.115050
\(732\) 5.98501e6 0.412845
\(733\) 1.12459e7 0.773101 0.386550 0.922268i \(-0.373667\pi\)
0.386550 + 0.922268i \(0.373667\pi\)
\(734\) −3.70540e7 −2.53860
\(735\) −2.46423e6 −0.168253
\(736\) 5.33514e7 3.63037
\(737\) −2.52232e7 −1.71053
\(738\) 3.43015e7 2.31831
\(739\) −2.50044e7 −1.68424 −0.842122 0.539288i \(-0.818694\pi\)
−0.842122 + 0.539288i \(0.818694\pi\)
\(740\) 4.68192e6 0.314300
\(741\) 5.58746e6 0.373826
\(742\) −9.21989e6 −0.614774
\(743\) −2.10485e7 −1.39878 −0.699388 0.714742i \(-0.746544\pi\)
−0.699388 + 0.714742i \(0.746544\pi\)
\(744\) −3.19607e6 −0.211682
\(745\) 172995. 0.0114194
\(746\) −1.15865e7 −0.762261
\(747\) −1.33874e7 −0.877797
\(748\) −2.24648e6 −0.146808
\(749\) 2.83539e6 0.184675
\(750\) −1.31339e6 −0.0852590
\(751\) 8.36257e6 0.541053 0.270527 0.962712i \(-0.412802\pi\)
0.270527 + 0.962712i \(0.412802\pi\)
\(752\) −7.49126e7 −4.83070
\(753\) −6.80895e6 −0.437615
\(754\) −3.28961e6 −0.210725
\(755\) 644174. 0.0411278
\(756\) −4.64793e7 −2.95771
\(757\) 7.51817e6 0.476840 0.238420 0.971162i \(-0.423371\pi\)
0.238420 + 0.971162i \(0.423371\pi\)
\(758\) −6.86522e6 −0.433992
\(759\) 9.93566e6 0.626026
\(760\) 2.51372e7 1.57864
\(761\) 2.73916e6 0.171457 0.0857287 0.996319i \(-0.472678\pi\)
0.0857287 + 0.996319i \(0.472678\pi\)
\(762\) −1.96295e7 −1.22468
\(763\) −1.44891e6 −0.0901013
\(764\) 5.35215e7 3.31738
\(765\) −357993. −0.0221167
\(766\) 2.20963e7 1.36065
\(767\) 6.02317e6 0.369689
\(768\) 342652. 0.0209628
\(769\) −1.27116e7 −0.775150 −0.387575 0.921838i \(-0.626687\pi\)
−0.387575 + 0.921838i \(0.626687\pi\)
\(770\) −1.58833e7 −0.965412
\(771\) −1.79486e6 −0.108741
\(772\) 5.29947e7 3.20029
\(773\) 1.13751e7 0.684712 0.342356 0.939570i \(-0.388775\pi\)
0.342356 + 0.939570i \(0.388775\pi\)
\(774\) −4.02552e7 −2.41529
\(775\) −483451. −0.0289133
\(776\) 8.64058e7 5.15096
\(777\) −3.12029e6 −0.185414
\(778\) −9.35348e6 −0.554019
\(779\) 3.43420e7 2.02760
\(780\) 5.89527e6 0.346950
\(781\) −1.19428e7 −0.700612
\(782\) −3.03910e6 −0.177717
\(783\) −2.81479e6 −0.164075
\(784\) 3.69880e7 2.14917
\(785\) 2.95996e6 0.171440
\(786\) 7.05366e6 0.407247
\(787\) 7.85917e6 0.452314 0.226157 0.974091i \(-0.427384\pi\)
0.226157 + 0.974091i \(0.427384\pi\)
\(788\) 4.04925e7 2.32305
\(789\) 1.24151e7 0.709998
\(790\) 9.44797e6 0.538606
\(791\) 1.52603e7 0.867207
\(792\) −3.29531e7 −1.86674
\(793\) −3.43180e6 −0.193794
\(794\) −3.25454e7 −1.83205
\(795\) 1.00062e6 0.0561505
\(796\) 4.48066e7 2.50645
\(797\) 2.28740e7 1.27555 0.637774 0.770223i \(-0.279855\pi\)
0.637774 + 0.770223i \(0.279855\pi\)
\(798\) −2.76588e7 −1.53754
\(799\) 2.00361e6 0.111032
\(800\) 9.25624e6 0.511340
\(801\) 6.05067e6 0.333213
\(802\) 5.39604e7 2.96237
\(803\) 2.25950e7 1.23658
\(804\) −4.63429e7 −2.52839
\(805\) −1.54108e7 −0.838174
\(806\) 3.02566e6 0.164053
\(807\) 1.54455e7 0.834868
\(808\) −5.79048e7 −3.12023
\(809\) 3.37257e7 1.81171 0.905856 0.423585i \(-0.139229\pi\)
0.905856 + 0.423585i \(0.139229\pi\)
\(810\) −4.63479e6 −0.248209
\(811\) −5.02984e6 −0.268536 −0.134268 0.990945i \(-0.542868\pi\)
−0.134268 + 0.990945i \(0.542868\pi\)
\(812\) 1.16790e7 0.621607
\(813\) −1.60687e7 −0.852618
\(814\) −8.56789e6 −0.453224
\(815\) −6.75190e6 −0.356067
\(816\) −1.85827e6 −0.0976976
\(817\) −4.03026e7 −2.11241
\(818\) 3.47254e7 1.81453
\(819\) 1.13611e7 0.591850
\(820\) 3.62339e7 1.88183
\(821\) 9.57604e6 0.495824 0.247912 0.968783i \(-0.420256\pi\)
0.247912 + 0.968783i \(0.420256\pi\)
\(822\) 2.66436e7 1.37535
\(823\) 8.52616e6 0.438787 0.219394 0.975636i \(-0.429592\pi\)
0.219394 + 0.975636i \(0.429592\pi\)
\(824\) 3.31292e6 0.169978
\(825\) 1.72379e6 0.0881760
\(826\) −2.98157e7 −1.52053
\(827\) −3.34200e7 −1.69919 −0.849597 0.527432i \(-0.823155\pi\)
−0.849597 + 0.527432i \(0.823155\pi\)
\(828\) −5.27870e7 −2.67578
\(829\) −9.56877e6 −0.483582 −0.241791 0.970328i \(-0.577735\pi\)
−0.241791 + 0.970328i \(0.577735\pi\)
\(830\) −1.97176e7 −0.993481
\(831\) 8.40802e6 0.422368
\(832\) −2.30385e7 −1.15384
\(833\) −989283. −0.0493979
\(834\) 3.38465e6 0.168499
\(835\) −1.17793e7 −0.584657
\(836\) −5.44696e7 −2.69550
\(837\) 2.58894e6 0.127735
\(838\) −6.33068e7 −3.11416
\(839\) 2.43662e7 1.19504 0.597520 0.801854i \(-0.296153\pi\)
0.597520 + 0.801854i \(0.296153\pi\)
\(840\) −1.76757e7 −0.864329
\(841\) 707281. 0.0344828
\(842\) 1.74247e7 0.847005
\(843\) −5.66569e6 −0.274589
\(844\) 5.31563e7 2.56861
\(845\) 5.90198e6 0.284352
\(846\) 4.85237e7 2.33092
\(847\) −6.71212e6 −0.321478
\(848\) −1.50194e7 −0.717237
\(849\) −1.28582e7 −0.612226
\(850\) −527271. −0.0250315
\(851\) −8.31301e6 −0.393491
\(852\) −2.19427e7 −1.03560
\(853\) −4.13664e6 −0.194659 −0.0973296 0.995252i \(-0.531030\pi\)
−0.0973296 + 0.995252i \(0.531030\pi\)
\(854\) 1.69880e7 0.797072
\(855\) −8.68013e6 −0.406079
\(856\) 8.66419e6 0.404151
\(857\) −3.90275e7 −1.81518 −0.907588 0.419861i \(-0.862079\pi\)
−0.907588 + 0.419861i \(0.862079\pi\)
\(858\) −1.07883e7 −0.500306
\(859\) 1.49365e7 0.690664 0.345332 0.938481i \(-0.387766\pi\)
0.345332 + 0.938481i \(0.387766\pi\)
\(860\) −4.25229e7 −1.96054
\(861\) −2.41483e7 −1.11014
\(862\) −2.08339e7 −0.954999
\(863\) 3.17777e7 1.45243 0.726217 0.687466i \(-0.241277\pi\)
0.726217 + 0.687466i \(0.241277\pi\)
\(864\) −4.95683e7 −2.25902
\(865\) −1.05116e7 −0.477670
\(866\) −6.20793e7 −2.81288
\(867\) −1.11700e7 −0.504667
\(868\) −1.07419e7 −0.483931
\(869\) −1.24002e7 −0.557033
\(870\) −1.76730e6 −0.0791610
\(871\) 2.65730e7 1.18685
\(872\) −4.42749e6 −0.197182
\(873\) −2.98368e7 −1.32500
\(874\) −7.36880e7 −3.26301
\(875\) −2.67370e6 −0.118057
\(876\) 4.15141e7 1.82783
\(877\) 2.98135e7 1.30892 0.654462 0.756095i \(-0.272895\pi\)
0.654462 + 0.756095i \(0.272895\pi\)
\(878\) −1.21549e7 −0.532126
\(879\) −1.70331e7 −0.743569
\(880\) −2.58742e7 −1.12631
\(881\) −6.93236e6 −0.300913 −0.150457 0.988617i \(-0.548074\pi\)
−0.150457 + 0.988617i \(0.548074\pi\)
\(882\) −2.39585e7 −1.03702
\(883\) 4.25865e6 0.183810 0.0919052 0.995768i \(-0.470704\pi\)
0.0919052 + 0.995768i \(0.470704\pi\)
\(884\) 2.36670e6 0.101862
\(885\) 3.23587e6 0.138878
\(886\) −6.39522e7 −2.73698
\(887\) 3.61329e7 1.54203 0.771017 0.636815i \(-0.219749\pi\)
0.771017 + 0.636815i \(0.219749\pi\)
\(888\) −9.53479e6 −0.405769
\(889\) −3.99602e7 −1.69579
\(890\) 8.91174e6 0.377127
\(891\) 6.08306e6 0.256701
\(892\) −3.03868e7 −1.27871
\(893\) 4.85809e7 2.03862
\(894\) −581657. −0.0243401
\(895\) 1.79586e7 0.749403
\(896\) 3.29490e7 1.37111
\(897\) −1.04674e7 −0.434367
\(898\) −2.11730e7 −0.876175
\(899\) −650532. −0.0268454
\(900\) −9.15832e6 −0.376885
\(901\) 401709. 0.0164854
\(902\) −6.63077e7 −2.71361
\(903\) 2.83396e7 1.15658
\(904\) 4.66316e7 1.89784
\(905\) 319617. 0.0129720
\(906\) −2.16589e6 −0.0876630
\(907\) −4.55741e7 −1.83950 −0.919751 0.392503i \(-0.871609\pi\)
−0.919751 + 0.392503i \(0.871609\pi\)
\(908\) 4.93662e7 1.98708
\(909\) 1.99952e7 0.802630
\(910\) 1.67333e7 0.669850
\(911\) −4.41937e7 −1.76427 −0.882135 0.470997i \(-0.843894\pi\)
−0.882135 + 0.470997i \(0.843894\pi\)
\(912\) −4.50568e7 −1.79380
\(913\) 2.58790e7 1.02747
\(914\) −8.48092e6 −0.335798
\(915\) −1.84369e6 −0.0728006
\(916\) 6.88494e7 2.71120
\(917\) 1.43593e7 0.563911
\(918\) 2.82360e6 0.110585
\(919\) 2.96916e7 1.15970 0.579849 0.814724i \(-0.303112\pi\)
0.579849 + 0.814724i \(0.303112\pi\)
\(920\) −4.70912e7 −1.83430
\(921\) −2.17521e7 −0.844991
\(922\) 4.42481e7 1.71422
\(923\) 1.25819e7 0.486119
\(924\) 3.83014e7 1.47583
\(925\) −1.44227e6 −0.0554233
\(926\) −8.14299e7 −3.12073
\(927\) −1.14399e6 −0.0437242
\(928\) 1.24552e7 0.474767
\(929\) 6.64036e6 0.252437 0.126218 0.992002i \(-0.459716\pi\)
0.126218 + 0.992002i \(0.459716\pi\)
\(930\) 1.62550e6 0.0616281
\(931\) −2.39868e7 −0.906981
\(932\) 6.02724e7 2.27289
\(933\) 1.13277e7 0.426028
\(934\) 8.22943e7 3.08676
\(935\) 692031. 0.0258879
\(936\) 3.47166e7 1.29523
\(937\) −1.51548e7 −0.563899 −0.281950 0.959429i \(-0.590981\pi\)
−0.281950 + 0.959429i \(0.590981\pi\)
\(938\) −1.31541e8 −4.88150
\(939\) −7.80623e6 −0.288920
\(940\) 5.12572e7 1.89206
\(941\) 8.67923e6 0.319527 0.159763 0.987155i \(-0.448927\pi\)
0.159763 + 0.987155i \(0.448927\pi\)
\(942\) −9.95221e6 −0.365420
\(943\) −6.43352e7 −2.35597
\(944\) −4.85704e7 −1.77395
\(945\) 1.43180e7 0.521558
\(946\) 7.78166e7 2.82712
\(947\) 2.91427e7 1.05598 0.527989 0.849251i \(-0.322946\pi\)
0.527989 + 0.849251i \(0.322946\pi\)
\(948\) −2.27832e7 −0.823367
\(949\) −2.38042e7 −0.858001
\(950\) −1.27845e7 −0.459596
\(951\) −1.27526e7 −0.457244
\(952\) −7.09606e6 −0.253761
\(953\) −1.95808e6 −0.0698390 −0.0349195 0.999390i \(-0.511117\pi\)
−0.0349195 + 0.999390i \(0.511117\pi\)
\(954\) 9.72862e6 0.346083
\(955\) −1.64874e7 −0.584982
\(956\) 1.12451e8 3.97942
\(957\) 2.31954e6 0.0818694
\(958\) 9.58711e7 3.37500
\(959\) 5.42390e7 1.90443
\(960\) −1.23771e7 −0.433453
\(961\) −2.80308e7 −0.979100
\(962\) 9.02641e6 0.314469
\(963\) −2.99184e6 −0.103961
\(964\) 9.56832e7 3.31622
\(965\) −1.63251e7 −0.564335
\(966\) 5.18153e7 1.78655
\(967\) 1.07841e7 0.370867 0.185434 0.982657i \(-0.440631\pi\)
0.185434 + 0.982657i \(0.440631\pi\)
\(968\) −2.05105e7 −0.703537
\(969\) 1.20509e6 0.0412297
\(970\) −4.39452e7 −1.49962
\(971\) 3.44324e7 1.17198 0.585989 0.810319i \(-0.300706\pi\)
0.585989 + 0.810319i \(0.300706\pi\)
\(972\) 7.71809e7 2.62026
\(973\) 6.89021e6 0.233319
\(974\) −2.47963e7 −0.837510
\(975\) −1.81605e6 −0.0611808
\(976\) 2.76738e7 0.929917
\(977\) 3.72128e7 1.24726 0.623628 0.781721i \(-0.285658\pi\)
0.623628 + 0.781721i \(0.285658\pi\)
\(978\) 2.27018e7 0.758949
\(979\) −1.16965e7 −0.390030
\(980\) −2.53082e7 −0.841776
\(981\) 1.52886e6 0.0507219
\(982\) −5.53005e7 −1.83000
\(983\) −6.16022e6 −0.203335 −0.101668 0.994818i \(-0.532418\pi\)
−0.101668 + 0.994818i \(0.532418\pi\)
\(984\) −7.37907e7 −2.42948
\(985\) −1.24737e7 −0.409644
\(986\) −709496. −0.0232411
\(987\) −3.41607e7 −1.11618
\(988\) 5.73846e7 1.87027
\(989\) 7.55017e7 2.45452
\(990\) 1.67597e7 0.543472
\(991\) −2.58975e7 −0.837671 −0.418835 0.908062i \(-0.637562\pi\)
−0.418835 + 0.908062i \(0.637562\pi\)
\(992\) −1.14558e7 −0.369613
\(993\) 1.45713e7 0.468949
\(994\) −6.22825e7 −1.99940
\(995\) −1.38027e7 −0.441985
\(996\) 4.75478e7 1.51874
\(997\) 5.78618e6 0.184355 0.0921773 0.995743i \(-0.470617\pi\)
0.0921773 + 0.995743i \(0.470617\pi\)
\(998\) 4.99873e7 1.58867
\(999\) 7.72354e6 0.244851
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.6.a.c.1.13 13
5.4 even 2 725.6.a.f.1.1 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.6.a.c.1.13 13 1.1 even 1 trivial
725.6.a.f.1.1 13 5.4 even 2