Properties

Label 1449.2.bp
Level $1449$
Weight $2$
Character orbit 1449.bp
Rep. character $\chi_{1449}(181,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $780$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1449.bp (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1449, [\chi])\).

Total New Old
Modular forms 2000 820 1180
Cusp forms 1840 780 1060
Eisenstein series 160 40 120

Trace form

\( 780 q + 16 q^{2} - 92 q^{4} - 11 q^{7} + 4 q^{8} + 22 q^{11} + 11 q^{14} - 98 q^{16} - 8 q^{23} - 58 q^{25} + 33 q^{28} + 42 q^{29} - 18 q^{32} - 15 q^{35} - 66 q^{37} - 66 q^{43} + 55 q^{44} - 30 q^{46}+ \cdots + 53 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1449, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1449, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1449, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(483, [\chi])\)\(^{\oplus 2}\)