Properties

Label 1445.2.a.q.1.2
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,8,12,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.63994\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.63994 q^{2} +2.12055 q^{3} +4.96928 q^{4} -1.00000 q^{5} -5.59814 q^{6} +4.06194 q^{7} -7.83873 q^{8} +1.49675 q^{9} +2.63994 q^{10} -1.74901 q^{11} +10.5376 q^{12} +1.67715 q^{13} -10.7233 q^{14} -2.12055 q^{15} +10.7552 q^{16} -3.95133 q^{18} +0.249037 q^{19} -4.96928 q^{20} +8.61356 q^{21} +4.61727 q^{22} +0.519715 q^{23} -16.6224 q^{24} +1.00000 q^{25} -4.42758 q^{26} -3.18772 q^{27} +20.1849 q^{28} +0.486878 q^{29} +5.59814 q^{30} +9.53040 q^{31} -12.7156 q^{32} -3.70886 q^{33} -4.06194 q^{35} +7.43778 q^{36} -4.26971 q^{37} -0.657443 q^{38} +3.55649 q^{39} +7.83873 q^{40} +5.28883 q^{41} -22.7393 q^{42} +3.17951 q^{43} -8.69131 q^{44} -1.49675 q^{45} -1.37202 q^{46} +6.26212 q^{47} +22.8070 q^{48} +9.49933 q^{49} -2.63994 q^{50} +8.33425 q^{52} +10.2436 q^{53} +8.41540 q^{54} +1.74901 q^{55} -31.8404 q^{56} +0.528097 q^{57} -1.28533 q^{58} +11.5986 q^{59} -10.5376 q^{60} -4.35334 q^{61} -25.1597 q^{62} +6.07971 q^{63} +12.0581 q^{64} -1.67715 q^{65} +9.79117 q^{66} -9.73489 q^{67} +1.10208 q^{69} +10.7233 q^{70} +1.00602 q^{71} -11.7326 q^{72} -2.91508 q^{73} +11.2718 q^{74} +2.12055 q^{75} +1.23754 q^{76} -7.10435 q^{77} -9.38893 q^{78} +6.81821 q^{79} -10.7552 q^{80} -11.2500 q^{81} -13.9622 q^{82} -3.19678 q^{83} +42.8032 q^{84} -8.39371 q^{86} +1.03245 q^{87} +13.7100 q^{88} +3.30525 q^{89} +3.95133 q^{90} +6.81249 q^{91} +2.58261 q^{92} +20.2097 q^{93} -16.5316 q^{94} -0.249037 q^{95} -26.9642 q^{96} +1.70094 q^{97} -25.0777 q^{98} -2.61783 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.63994 −1.86672 −0.933360 0.358942i \(-0.883137\pi\)
−0.933360 + 0.358942i \(0.883137\pi\)
\(3\) 2.12055 1.22430 0.612151 0.790741i \(-0.290304\pi\)
0.612151 + 0.790741i \(0.290304\pi\)
\(4\) 4.96928 2.48464
\(5\) −1.00000 −0.447214
\(6\) −5.59814 −2.28543
\(7\) 4.06194 1.53527 0.767634 0.640889i \(-0.221434\pi\)
0.767634 + 0.640889i \(0.221434\pi\)
\(8\) −7.83873 −2.77141
\(9\) 1.49675 0.498917
\(10\) 2.63994 0.834822
\(11\) −1.74901 −0.527345 −0.263673 0.964612i \(-0.584934\pi\)
−0.263673 + 0.964612i \(0.584934\pi\)
\(12\) 10.5376 3.04195
\(13\) 1.67715 0.465159 0.232579 0.972577i \(-0.425283\pi\)
0.232579 + 0.972577i \(0.425283\pi\)
\(14\) −10.7233 −2.86591
\(15\) −2.12055 −0.547525
\(16\) 10.7552 2.68880
\(17\) 0 0
\(18\) −3.95133 −0.931338
\(19\) 0.249037 0.0571330 0.0285665 0.999592i \(-0.490906\pi\)
0.0285665 + 0.999592i \(0.490906\pi\)
\(20\) −4.96928 −1.11117
\(21\) 8.61356 1.87963
\(22\) 4.61727 0.984405
\(23\) 0.519715 0.108368 0.0541841 0.998531i \(-0.482744\pi\)
0.0541841 + 0.998531i \(0.482744\pi\)
\(24\) −16.6224 −3.39304
\(25\) 1.00000 0.200000
\(26\) −4.42758 −0.868320
\(27\) −3.18772 −0.613477
\(28\) 20.1849 3.81459
\(29\) 0.486878 0.0904109 0.0452055 0.998978i \(-0.485606\pi\)
0.0452055 + 0.998978i \(0.485606\pi\)
\(30\) 5.59814 1.02208
\(31\) 9.53040 1.71171 0.855856 0.517215i \(-0.173031\pi\)
0.855856 + 0.517215i \(0.173031\pi\)
\(32\) −12.7156 −2.24783
\(33\) −3.70886 −0.645630
\(34\) 0 0
\(35\) −4.06194 −0.686593
\(36\) 7.43778 1.23963
\(37\) −4.26971 −0.701937 −0.350968 0.936387i \(-0.614148\pi\)
−0.350968 + 0.936387i \(0.614148\pi\)
\(38\) −0.657443 −0.106651
\(39\) 3.55649 0.569495
\(40\) 7.83873 1.23941
\(41\) 5.28883 0.825976 0.412988 0.910736i \(-0.364485\pi\)
0.412988 + 0.910736i \(0.364485\pi\)
\(42\) −22.7393 −3.50875
\(43\) 3.17951 0.484871 0.242435 0.970168i \(-0.422054\pi\)
0.242435 + 0.970168i \(0.422054\pi\)
\(44\) −8.69131 −1.31026
\(45\) −1.49675 −0.223122
\(46\) −1.37202 −0.202293
\(47\) 6.26212 0.913423 0.456712 0.889615i \(-0.349027\pi\)
0.456712 + 0.889615i \(0.349027\pi\)
\(48\) 22.8070 3.29191
\(49\) 9.49933 1.35705
\(50\) −2.63994 −0.373344
\(51\) 0 0
\(52\) 8.33425 1.15575
\(53\) 10.2436 1.40707 0.703535 0.710661i \(-0.251604\pi\)
0.703535 + 0.710661i \(0.251604\pi\)
\(54\) 8.41540 1.14519
\(55\) 1.74901 0.235836
\(56\) −31.8404 −4.25485
\(57\) 0.528097 0.0699481
\(58\) −1.28533 −0.168772
\(59\) 11.5986 1.51001 0.755003 0.655722i \(-0.227636\pi\)
0.755003 + 0.655722i \(0.227636\pi\)
\(60\) −10.5376 −1.36040
\(61\) −4.35334 −0.557388 −0.278694 0.960380i \(-0.589901\pi\)
−0.278694 + 0.960380i \(0.589901\pi\)
\(62\) −25.1597 −3.19528
\(63\) 6.07971 0.765971
\(64\) 12.0581 1.50726
\(65\) −1.67715 −0.208025
\(66\) 9.79117 1.20521
\(67\) −9.73489 −1.18931 −0.594653 0.803982i \(-0.702711\pi\)
−0.594653 + 0.803982i \(0.702711\pi\)
\(68\) 0 0
\(69\) 1.10208 0.132675
\(70\) 10.7233 1.28168
\(71\) 1.00602 0.119392 0.0596960 0.998217i \(-0.480987\pi\)
0.0596960 + 0.998217i \(0.480987\pi\)
\(72\) −11.7326 −1.38270
\(73\) −2.91508 −0.341184 −0.170592 0.985342i \(-0.554568\pi\)
−0.170592 + 0.985342i \(0.554568\pi\)
\(74\) 11.2718 1.31032
\(75\) 2.12055 0.244861
\(76\) 1.23754 0.141955
\(77\) −7.10435 −0.809616
\(78\) −9.38893 −1.06309
\(79\) 6.81821 0.767108 0.383554 0.923518i \(-0.374700\pi\)
0.383554 + 0.923518i \(0.374700\pi\)
\(80\) −10.7552 −1.20247
\(81\) −11.2500 −1.25000
\(82\) −13.9622 −1.54187
\(83\) −3.19678 −0.350892 −0.175446 0.984489i \(-0.556137\pi\)
−0.175446 + 0.984489i \(0.556137\pi\)
\(84\) 42.8032 4.67021
\(85\) 0 0
\(86\) −8.39371 −0.905118
\(87\) 1.03245 0.110690
\(88\) 13.7100 1.46149
\(89\) 3.30525 0.350356 0.175178 0.984537i \(-0.443950\pi\)
0.175178 + 0.984537i \(0.443950\pi\)
\(90\) 3.95133 0.416507
\(91\) 6.81249 0.714143
\(92\) 2.58261 0.269256
\(93\) 20.2097 2.09565
\(94\) −16.5316 −1.70511
\(95\) −0.249037 −0.0255507
\(96\) −26.9642 −2.75202
\(97\) 1.70094 0.172705 0.0863523 0.996265i \(-0.472479\pi\)
0.0863523 + 0.996265i \(0.472479\pi\)
\(98\) −25.0777 −2.53323
\(99\) −2.61783 −0.263101
\(100\) 4.96928 0.496928
\(101\) 9.86464 0.981569 0.490784 0.871281i \(-0.336710\pi\)
0.490784 + 0.871281i \(0.336710\pi\)
\(102\) 0 0
\(103\) −14.0029 −1.37975 −0.689875 0.723928i \(-0.742335\pi\)
−0.689875 + 0.723928i \(0.742335\pi\)
\(104\) −13.1467 −1.28914
\(105\) −8.61356 −0.840597
\(106\) −27.0425 −2.62660
\(107\) −13.5272 −1.30773 −0.653863 0.756613i \(-0.726853\pi\)
−0.653863 + 0.756613i \(0.726853\pi\)
\(108\) −15.8407 −1.52427
\(109\) 6.36995 0.610131 0.305065 0.952331i \(-0.401322\pi\)
0.305065 + 0.952331i \(0.401322\pi\)
\(110\) −4.61727 −0.440239
\(111\) −9.05416 −0.859383
\(112\) 43.6870 4.12803
\(113\) −13.0583 −1.22843 −0.614213 0.789141i \(-0.710526\pi\)
−0.614213 + 0.789141i \(0.710526\pi\)
\(114\) −1.39414 −0.130574
\(115\) −0.519715 −0.0484637
\(116\) 2.41943 0.224639
\(117\) 2.51028 0.232075
\(118\) −30.6195 −2.81876
\(119\) 0 0
\(120\) 16.6224 1.51741
\(121\) −7.94098 −0.721907
\(122\) 11.4925 1.04049
\(123\) 11.2152 1.01124
\(124\) 47.3593 4.25299
\(125\) −1.00000 −0.0894427
\(126\) −16.0501 −1.42985
\(127\) −16.1404 −1.43223 −0.716114 0.697983i \(-0.754081\pi\)
−0.716114 + 0.697983i \(0.754081\pi\)
\(128\) −6.40141 −0.565810
\(129\) 6.74232 0.593628
\(130\) 4.42758 0.388325
\(131\) 15.7448 1.37563 0.687813 0.725888i \(-0.258571\pi\)
0.687813 + 0.725888i \(0.258571\pi\)
\(132\) −18.4304 −1.60416
\(133\) 1.01157 0.0877145
\(134\) 25.6995 2.22010
\(135\) 3.18772 0.274355
\(136\) 0 0
\(137\) −15.5752 −1.33068 −0.665339 0.746541i \(-0.731713\pi\)
−0.665339 + 0.746541i \(0.731713\pi\)
\(138\) −2.90944 −0.247668
\(139\) 10.5208 0.892365 0.446183 0.894942i \(-0.352783\pi\)
0.446183 + 0.894942i \(0.352783\pi\)
\(140\) −20.1849 −1.70594
\(141\) 13.2792 1.11831
\(142\) −2.65582 −0.222871
\(143\) −2.93335 −0.245299
\(144\) 16.0979 1.34149
\(145\) −0.486878 −0.0404330
\(146\) 7.69563 0.636895
\(147\) 20.1439 1.66144
\(148\) −21.2174 −1.74406
\(149\) 7.79902 0.638920 0.319460 0.947600i \(-0.396498\pi\)
0.319460 + 0.947600i \(0.396498\pi\)
\(150\) −5.59814 −0.457086
\(151\) −3.76216 −0.306161 −0.153080 0.988214i \(-0.548919\pi\)
−0.153080 + 0.988214i \(0.548919\pi\)
\(152\) −1.95213 −0.158339
\(153\) 0 0
\(154\) 18.7551 1.51133
\(155\) −9.53040 −0.765500
\(156\) 17.6732 1.41499
\(157\) 17.5226 1.39846 0.699229 0.714898i \(-0.253527\pi\)
0.699229 + 0.714898i \(0.253527\pi\)
\(158\) −17.9997 −1.43198
\(159\) 21.7221 1.72268
\(160\) 12.7156 1.00526
\(161\) 2.11105 0.166374
\(162\) 29.6993 2.33340
\(163\) 16.1671 1.26630 0.633152 0.774027i \(-0.281761\pi\)
0.633152 + 0.774027i \(0.281761\pi\)
\(164\) 26.2817 2.05225
\(165\) 3.70886 0.288735
\(166\) 8.43930 0.655017
\(167\) 14.3560 1.11090 0.555452 0.831549i \(-0.312545\pi\)
0.555452 + 0.831549i \(0.312545\pi\)
\(168\) −67.5193 −5.20923
\(169\) −10.1872 −0.783628
\(170\) 0 0
\(171\) 0.372746 0.0285046
\(172\) 15.7999 1.20473
\(173\) 18.0796 1.37457 0.687283 0.726390i \(-0.258803\pi\)
0.687283 + 0.726390i \(0.258803\pi\)
\(174\) −2.72561 −0.206628
\(175\) 4.06194 0.307054
\(176\) −18.8109 −1.41793
\(177\) 24.5954 1.84870
\(178\) −8.72567 −0.654017
\(179\) 7.51774 0.561902 0.280951 0.959722i \(-0.409350\pi\)
0.280951 + 0.959722i \(0.409350\pi\)
\(180\) −7.43778 −0.554379
\(181\) 4.39392 0.326597 0.163299 0.986577i \(-0.447787\pi\)
0.163299 + 0.986577i \(0.447787\pi\)
\(182\) −17.9846 −1.33310
\(183\) −9.23149 −0.682411
\(184\) −4.07391 −0.300332
\(185\) 4.26971 0.313916
\(186\) −53.3525 −3.91199
\(187\) 0 0
\(188\) 31.1182 2.26953
\(189\) −12.9483 −0.941852
\(190\) 0.657443 0.0476959
\(191\) −5.03076 −0.364013 −0.182007 0.983297i \(-0.558259\pi\)
−0.182007 + 0.983297i \(0.558259\pi\)
\(192\) 25.5699 1.84535
\(193\) 26.8878 1.93543 0.967713 0.252053i \(-0.0811057\pi\)
0.967713 + 0.252053i \(0.0811057\pi\)
\(194\) −4.49039 −0.322391
\(195\) −3.55649 −0.254686
\(196\) 47.2049 3.37178
\(197\) 8.51380 0.606583 0.303292 0.952898i \(-0.401914\pi\)
0.303292 + 0.952898i \(0.401914\pi\)
\(198\) 6.91090 0.491136
\(199\) −16.7681 −1.18866 −0.594330 0.804221i \(-0.702583\pi\)
−0.594330 + 0.804221i \(0.702583\pi\)
\(200\) −7.83873 −0.554282
\(201\) −20.6434 −1.45607
\(202\) −26.0421 −1.83231
\(203\) 1.97767 0.138805
\(204\) 0 0
\(205\) −5.28883 −0.369388
\(206\) 36.9669 2.57561
\(207\) 0.777884 0.0540667
\(208\) 18.0381 1.25072
\(209\) −0.435567 −0.0301288
\(210\) 22.7393 1.56916
\(211\) −4.75316 −0.327221 −0.163611 0.986525i \(-0.552314\pi\)
−0.163611 + 0.986525i \(0.552314\pi\)
\(212\) 50.9034 3.49606
\(213\) 2.13331 0.146172
\(214\) 35.7111 2.44116
\(215\) −3.17951 −0.216841
\(216\) 24.9877 1.70020
\(217\) 38.7119 2.62794
\(218\) −16.8163 −1.13894
\(219\) −6.18158 −0.417712
\(220\) 8.69131 0.585968
\(221\) 0 0
\(222\) 23.9024 1.60423
\(223\) −21.7349 −1.45548 −0.727738 0.685855i \(-0.759429\pi\)
−0.727738 + 0.685855i \(0.759429\pi\)
\(224\) −51.6501 −3.45102
\(225\) 1.49675 0.0997834
\(226\) 34.4732 2.29313
\(227\) −2.81906 −0.187108 −0.0935539 0.995614i \(-0.529823\pi\)
−0.0935539 + 0.995614i \(0.529823\pi\)
\(228\) 2.62426 0.173796
\(229\) 23.2096 1.53373 0.766867 0.641806i \(-0.221814\pi\)
0.766867 + 0.641806i \(0.221814\pi\)
\(230\) 1.37202 0.0904681
\(231\) −15.0652 −0.991215
\(232\) −3.81650 −0.250566
\(233\) 9.69742 0.635299 0.317650 0.948208i \(-0.397106\pi\)
0.317650 + 0.948208i \(0.397106\pi\)
\(234\) −6.62699 −0.433220
\(235\) −6.26212 −0.408495
\(236\) 57.6366 3.75182
\(237\) 14.4584 0.939173
\(238\) 0 0
\(239\) 6.98497 0.451820 0.225910 0.974148i \(-0.427464\pi\)
0.225910 + 0.974148i \(0.427464\pi\)
\(240\) −22.8070 −1.47219
\(241\) 3.83215 0.246850 0.123425 0.992354i \(-0.460612\pi\)
0.123425 + 0.992354i \(0.460612\pi\)
\(242\) 20.9637 1.34760
\(243\) −14.2930 −0.916899
\(244\) −21.6330 −1.38491
\(245\) −9.49933 −0.606890
\(246\) −29.6076 −1.88771
\(247\) 0.417673 0.0265759
\(248\) −74.7062 −4.74385
\(249\) −6.77894 −0.429598
\(250\) 2.63994 0.166964
\(251\) −12.5111 −0.789693 −0.394846 0.918747i \(-0.629202\pi\)
−0.394846 + 0.918747i \(0.629202\pi\)
\(252\) 30.2118 1.90316
\(253\) −0.908985 −0.0571474
\(254\) 42.6097 2.67357
\(255\) 0 0
\(256\) −7.21688 −0.451055
\(257\) −13.8873 −0.866263 −0.433132 0.901331i \(-0.642591\pi\)
−0.433132 + 0.901331i \(0.642591\pi\)
\(258\) −17.7993 −1.10814
\(259\) −17.3433 −1.07766
\(260\) −8.33425 −0.516868
\(261\) 0.728735 0.0451075
\(262\) −41.5652 −2.56791
\(263\) −30.0042 −1.85014 −0.925069 0.379798i \(-0.875993\pi\)
−0.925069 + 0.379798i \(0.875993\pi\)
\(264\) 29.0728 1.78930
\(265\) −10.2436 −0.629260
\(266\) −2.67049 −0.163738
\(267\) 7.00897 0.428942
\(268\) −48.3754 −2.95500
\(269\) −7.27599 −0.443625 −0.221812 0.975089i \(-0.571197\pi\)
−0.221812 + 0.975089i \(0.571197\pi\)
\(270\) −8.41540 −0.512145
\(271\) −6.39386 −0.388399 −0.194200 0.980962i \(-0.562211\pi\)
−0.194200 + 0.980962i \(0.562211\pi\)
\(272\) 0 0
\(273\) 14.4463 0.874327
\(274\) 41.1176 2.48400
\(275\) −1.74901 −0.105469
\(276\) 5.47657 0.329651
\(277\) −7.78887 −0.467988 −0.233994 0.972238i \(-0.575180\pi\)
−0.233994 + 0.972238i \(0.575180\pi\)
\(278\) −27.7744 −1.66580
\(279\) 14.2646 0.854001
\(280\) 31.8404 1.90283
\(281\) −21.4059 −1.27697 −0.638485 0.769634i \(-0.720439\pi\)
−0.638485 + 0.769634i \(0.720439\pi\)
\(282\) −35.0562 −2.08756
\(283\) 4.42397 0.262978 0.131489 0.991318i \(-0.458024\pi\)
0.131489 + 0.991318i \(0.458024\pi\)
\(284\) 4.99917 0.296646
\(285\) −0.528097 −0.0312817
\(286\) 7.74387 0.457905
\(287\) 21.4829 1.26809
\(288\) −19.0321 −1.12148
\(289\) 0 0
\(290\) 1.28533 0.0754771
\(291\) 3.60694 0.211443
\(292\) −14.4858 −0.847720
\(293\) −19.6200 −1.14621 −0.573107 0.819481i \(-0.694262\pi\)
−0.573107 + 0.819481i \(0.694262\pi\)
\(294\) −53.1786 −3.10144
\(295\) −11.5986 −0.675295
\(296\) 33.4691 1.94535
\(297\) 5.57535 0.323514
\(298\) −20.5889 −1.19268
\(299\) 0.871642 0.0504084
\(300\) 10.5376 0.608391
\(301\) 12.9150 0.744406
\(302\) 9.93189 0.571516
\(303\) 20.9185 1.20174
\(304\) 2.67844 0.153619
\(305\) 4.35334 0.249271
\(306\) 0 0
\(307\) −13.3437 −0.761567 −0.380784 0.924664i \(-0.624346\pi\)
−0.380784 + 0.924664i \(0.624346\pi\)
\(308\) −35.3035 −2.01161
\(309\) −29.6940 −1.68923
\(310\) 25.1597 1.42897
\(311\) −5.35095 −0.303424 −0.151712 0.988425i \(-0.548479\pi\)
−0.151712 + 0.988425i \(0.548479\pi\)
\(312\) −27.8784 −1.57830
\(313\) 15.9154 0.899589 0.449794 0.893132i \(-0.351497\pi\)
0.449794 + 0.893132i \(0.351497\pi\)
\(314\) −46.2587 −2.61053
\(315\) −6.07971 −0.342553
\(316\) 33.8816 1.90599
\(317\) −2.37447 −0.133363 −0.0666817 0.997774i \(-0.521241\pi\)
−0.0666817 + 0.997774i \(0.521241\pi\)
\(318\) −57.3452 −3.21576
\(319\) −0.851552 −0.0476778
\(320\) −12.0581 −0.674069
\(321\) −28.6852 −1.60105
\(322\) −5.57305 −0.310574
\(323\) 0 0
\(324\) −55.9044 −3.10580
\(325\) 1.67715 0.0930317
\(326\) −42.6802 −2.36384
\(327\) 13.5078 0.746985
\(328\) −41.4577 −2.28912
\(329\) 25.4363 1.40235
\(330\) −9.79117 −0.538986
\(331\) 2.75697 0.151537 0.0757683 0.997125i \(-0.475859\pi\)
0.0757683 + 0.997125i \(0.475859\pi\)
\(332\) −15.8857 −0.871840
\(333\) −6.39070 −0.350208
\(334\) −37.8991 −2.07374
\(335\) 9.73489 0.531874
\(336\) 92.6406 5.05396
\(337\) −25.2323 −1.37449 −0.687246 0.726425i \(-0.741180\pi\)
−0.687246 + 0.726425i \(0.741180\pi\)
\(338\) 26.8935 1.46281
\(339\) −27.6909 −1.50396
\(340\) 0 0
\(341\) −16.6687 −0.902663
\(342\) −0.984028 −0.0532101
\(343\) 10.1521 0.548164
\(344\) −24.9233 −1.34377
\(345\) −1.10208 −0.0593342
\(346\) −47.7290 −2.56593
\(347\) −9.61842 −0.516344 −0.258172 0.966099i \(-0.583120\pi\)
−0.258172 + 0.966099i \(0.583120\pi\)
\(348\) 5.13054 0.275026
\(349\) 23.1581 1.23962 0.619812 0.784750i \(-0.287209\pi\)
0.619812 + 0.784750i \(0.287209\pi\)
\(350\) −10.7233 −0.573183
\(351\) −5.34630 −0.285364
\(352\) 22.2397 1.18538
\(353\) 15.4317 0.821349 0.410674 0.911782i \(-0.365293\pi\)
0.410674 + 0.911782i \(0.365293\pi\)
\(354\) −64.9304 −3.45101
\(355\) −1.00602 −0.0533938
\(356\) 16.4247 0.870510
\(357\) 0 0
\(358\) −19.8464 −1.04891
\(359\) 8.02467 0.423526 0.211763 0.977321i \(-0.432080\pi\)
0.211763 + 0.977321i \(0.432080\pi\)
\(360\) 11.7326 0.618363
\(361\) −18.9380 −0.996736
\(362\) −11.5997 −0.609666
\(363\) −16.8393 −0.883833
\(364\) 33.8532 1.77439
\(365\) 2.91508 0.152582
\(366\) 24.3706 1.27387
\(367\) −20.7792 −1.08466 −0.542332 0.840164i \(-0.682459\pi\)
−0.542332 + 0.840164i \(0.682459\pi\)
\(368\) 5.58964 0.291380
\(369\) 7.91606 0.412093
\(370\) −11.2718 −0.585992
\(371\) 41.6089 2.16023
\(372\) 100.428 5.20694
\(373\) 12.6951 0.657330 0.328665 0.944447i \(-0.393401\pi\)
0.328665 + 0.944447i \(0.393401\pi\)
\(374\) 0 0
\(375\) −2.12055 −0.109505
\(376\) −49.0870 −2.53147
\(377\) 0.816569 0.0420554
\(378\) 34.1828 1.75817
\(379\) 17.6102 0.904577 0.452288 0.891872i \(-0.350608\pi\)
0.452288 + 0.891872i \(0.350608\pi\)
\(380\) −1.23754 −0.0634842
\(381\) −34.2266 −1.75348
\(382\) 13.2809 0.679510
\(383\) −36.7734 −1.87903 −0.939516 0.342505i \(-0.888725\pi\)
−0.939516 + 0.342505i \(0.888725\pi\)
\(384\) −13.5745 −0.692723
\(385\) 7.10435 0.362071
\(386\) −70.9822 −3.61290
\(387\) 4.75893 0.241910
\(388\) 8.45247 0.429109
\(389\) −9.34410 −0.473764 −0.236882 0.971538i \(-0.576126\pi\)
−0.236882 + 0.971538i \(0.576126\pi\)
\(390\) 9.38893 0.475427
\(391\) 0 0
\(392\) −74.4627 −3.76093
\(393\) 33.3876 1.68418
\(394\) −22.4759 −1.13232
\(395\) −6.81821 −0.343061
\(396\) −13.0087 −0.653712
\(397\) 3.99973 0.200740 0.100370 0.994950i \(-0.467997\pi\)
0.100370 + 0.994950i \(0.467997\pi\)
\(398\) 44.2668 2.21890
\(399\) 2.14510 0.107389
\(400\) 10.7552 0.537760
\(401\) 21.4879 1.07305 0.536526 0.843884i \(-0.319736\pi\)
0.536526 + 0.843884i \(0.319736\pi\)
\(402\) 54.4972 2.71808
\(403\) 15.9839 0.796217
\(404\) 49.0202 2.43885
\(405\) 11.2500 0.559016
\(406\) −5.22092 −0.259110
\(407\) 7.46776 0.370163
\(408\) 0 0
\(409\) 18.4461 0.912103 0.456051 0.889954i \(-0.349263\pi\)
0.456051 + 0.889954i \(0.349263\pi\)
\(410\) 13.9622 0.689543
\(411\) −33.0280 −1.62915
\(412\) −69.5846 −3.42819
\(413\) 47.1127 2.31826
\(414\) −2.05357 −0.100927
\(415\) 3.19678 0.156924
\(416\) −21.3261 −1.04560
\(417\) 22.3100 1.09253
\(418\) 1.14987 0.0562421
\(419\) −16.6584 −0.813817 −0.406908 0.913469i \(-0.633393\pi\)
−0.406908 + 0.913469i \(0.633393\pi\)
\(420\) −42.8032 −2.08858
\(421\) −34.9909 −1.70535 −0.852676 0.522440i \(-0.825022\pi\)
−0.852676 + 0.522440i \(0.825022\pi\)
\(422\) 12.5481 0.610830
\(423\) 9.37282 0.455722
\(424\) −80.2969 −3.89956
\(425\) 0 0
\(426\) −5.63181 −0.272862
\(427\) −17.6830 −0.855739
\(428\) −67.2206 −3.24923
\(429\) −6.22033 −0.300320
\(430\) 8.39371 0.404781
\(431\) −4.19331 −0.201985 −0.100992 0.994887i \(-0.532202\pi\)
−0.100992 + 0.994887i \(0.532202\pi\)
\(432\) −34.2846 −1.64952
\(433\) −3.66597 −0.176175 −0.0880877 0.996113i \(-0.528076\pi\)
−0.0880877 + 0.996113i \(0.528076\pi\)
\(434\) −102.197 −4.90562
\(435\) −1.03245 −0.0495022
\(436\) 31.6541 1.51596
\(437\) 0.129428 0.00619140
\(438\) 16.3190 0.779752
\(439\) 25.1999 1.20273 0.601363 0.798976i \(-0.294625\pi\)
0.601363 + 0.798976i \(0.294625\pi\)
\(440\) −13.7100 −0.653598
\(441\) 14.2181 0.677054
\(442\) 0 0
\(443\) 35.8208 1.70190 0.850949 0.525248i \(-0.176027\pi\)
0.850949 + 0.525248i \(0.176027\pi\)
\(444\) −44.9927 −2.13526
\(445\) −3.30525 −0.156684
\(446\) 57.3788 2.71697
\(447\) 16.5382 0.782232
\(448\) 48.9793 2.31405
\(449\) −4.85930 −0.229325 −0.114662 0.993405i \(-0.536579\pi\)
−0.114662 + 0.993405i \(0.536579\pi\)
\(450\) −3.95133 −0.186268
\(451\) −9.25019 −0.435575
\(452\) −64.8906 −3.05220
\(453\) −7.97787 −0.374833
\(454\) 7.44216 0.349278
\(455\) −6.81249 −0.319374
\(456\) −4.13961 −0.193855
\(457\) −8.16176 −0.381791 −0.190895 0.981610i \(-0.561139\pi\)
−0.190895 + 0.981610i \(0.561139\pi\)
\(458\) −61.2720 −2.86305
\(459\) 0 0
\(460\) −2.58261 −0.120415
\(461\) 25.8811 1.20540 0.602702 0.797967i \(-0.294091\pi\)
0.602702 + 0.797967i \(0.294091\pi\)
\(462\) 39.7711 1.85032
\(463\) −2.13987 −0.0994481 −0.0497240 0.998763i \(-0.515834\pi\)
−0.0497240 + 0.998763i \(0.515834\pi\)
\(464\) 5.23647 0.243097
\(465\) −20.2097 −0.937204
\(466\) −25.6006 −1.18593
\(467\) −13.2163 −0.611578 −0.305789 0.952099i \(-0.598920\pi\)
−0.305789 + 0.952099i \(0.598920\pi\)
\(468\) 12.4743 0.576624
\(469\) −39.5425 −1.82590
\(470\) 16.5316 0.762546
\(471\) 37.1577 1.71214
\(472\) −90.9180 −4.18484
\(473\) −5.56098 −0.255694
\(474\) −38.1693 −1.75317
\(475\) 0.249037 0.0114266
\(476\) 0 0
\(477\) 15.3321 0.702010
\(478\) −18.4399 −0.843421
\(479\) 23.5864 1.07769 0.538845 0.842405i \(-0.318861\pi\)
0.538845 + 0.842405i \(0.318861\pi\)
\(480\) 26.9642 1.23074
\(481\) −7.16096 −0.326512
\(482\) −10.1166 −0.460800
\(483\) 4.47660 0.203692
\(484\) −39.4610 −1.79368
\(485\) −1.70094 −0.0772358
\(486\) 37.7328 1.71159
\(487\) −28.9667 −1.31261 −0.656304 0.754497i \(-0.727881\pi\)
−0.656304 + 0.754497i \(0.727881\pi\)
\(488\) 34.1246 1.54475
\(489\) 34.2832 1.55034
\(490\) 25.0777 1.13289
\(491\) −35.5262 −1.60328 −0.801638 0.597810i \(-0.796038\pi\)
−0.801638 + 0.597810i \(0.796038\pi\)
\(492\) 55.7317 2.51258
\(493\) 0 0
\(494\) −1.10263 −0.0496098
\(495\) 2.61783 0.117663
\(496\) 102.501 4.60245
\(497\) 4.08637 0.183299
\(498\) 17.8960 0.801939
\(499\) −33.9551 −1.52004 −0.760019 0.649901i \(-0.774810\pi\)
−0.760019 + 0.649901i \(0.774810\pi\)
\(500\) −4.96928 −0.222233
\(501\) 30.4428 1.36008
\(502\) 33.0285 1.47413
\(503\) −19.6084 −0.874295 −0.437147 0.899390i \(-0.644011\pi\)
−0.437147 + 0.899390i \(0.644011\pi\)
\(504\) −47.6572 −2.12282
\(505\) −9.86464 −0.438971
\(506\) 2.39967 0.106678
\(507\) −21.6024 −0.959397
\(508\) −80.2062 −3.55857
\(509\) −1.06322 −0.0471265 −0.0235632 0.999722i \(-0.507501\pi\)
−0.0235632 + 0.999722i \(0.507501\pi\)
\(510\) 0 0
\(511\) −11.8409 −0.523809
\(512\) 31.8550 1.40780
\(513\) −0.793861 −0.0350498
\(514\) 36.6615 1.61707
\(515\) 14.0029 0.617043
\(516\) 33.5045 1.47495
\(517\) −10.9525 −0.481689
\(518\) 45.7853 2.01169
\(519\) 38.3387 1.68288
\(520\) 13.1467 0.576523
\(521\) −20.3011 −0.889409 −0.444705 0.895677i \(-0.646691\pi\)
−0.444705 + 0.895677i \(0.646691\pi\)
\(522\) −1.92382 −0.0842031
\(523\) 27.3245 1.19482 0.597408 0.801937i \(-0.296197\pi\)
0.597408 + 0.801937i \(0.296197\pi\)
\(524\) 78.2402 3.41794
\(525\) 8.61356 0.375926
\(526\) 79.2093 3.45369
\(527\) 0 0
\(528\) −39.8896 −1.73597
\(529\) −22.7299 −0.988256
\(530\) 27.0425 1.17465
\(531\) 17.3602 0.753367
\(532\) 5.02679 0.217939
\(533\) 8.87017 0.384210
\(534\) −18.5033 −0.800715
\(535\) 13.5272 0.584833
\(536\) 76.3092 3.29605
\(537\) 15.9418 0.687938
\(538\) 19.2082 0.828123
\(539\) −16.6144 −0.715632
\(540\) 15.8407 0.681675
\(541\) −25.8819 −1.11275 −0.556375 0.830931i \(-0.687808\pi\)
−0.556375 + 0.830931i \(0.687808\pi\)
\(542\) 16.8794 0.725033
\(543\) 9.31754 0.399854
\(544\) 0 0
\(545\) −6.36995 −0.272859
\(546\) −38.1372 −1.63212
\(547\) 35.5746 1.52106 0.760531 0.649302i \(-0.224939\pi\)
0.760531 + 0.649302i \(0.224939\pi\)
\(548\) −77.3975 −3.30626
\(549\) −6.51586 −0.278090
\(550\) 4.61727 0.196881
\(551\) 0.121251 0.00516545
\(552\) −8.63894 −0.367698
\(553\) 27.6951 1.17772
\(554\) 20.5622 0.873602
\(555\) 9.05416 0.384328
\(556\) 52.2810 2.21721
\(557\) −13.1772 −0.558337 −0.279168 0.960242i \(-0.590059\pi\)
−0.279168 + 0.960242i \(0.590059\pi\)
\(558\) −37.6578 −1.59418
\(559\) 5.33252 0.225542
\(560\) −43.6870 −1.84611
\(561\) 0 0
\(562\) 56.5103 2.38374
\(563\) −4.35207 −0.183418 −0.0917089 0.995786i \(-0.529233\pi\)
−0.0917089 + 0.995786i \(0.529233\pi\)
\(564\) 65.9879 2.77859
\(565\) 13.0583 0.549369
\(566\) −11.6790 −0.490906
\(567\) −45.6967 −1.91908
\(568\) −7.88588 −0.330884
\(569\) −19.4637 −0.815960 −0.407980 0.912991i \(-0.633767\pi\)
−0.407980 + 0.912991i \(0.633767\pi\)
\(570\) 1.39414 0.0583942
\(571\) −18.3772 −0.769060 −0.384530 0.923112i \(-0.625637\pi\)
−0.384530 + 0.923112i \(0.625637\pi\)
\(572\) −14.5766 −0.609480
\(573\) −10.6680 −0.445662
\(574\) −56.7135 −2.36718
\(575\) 0.519715 0.0216736
\(576\) 18.0480 0.751999
\(577\) −23.8985 −0.994906 −0.497453 0.867491i \(-0.665731\pi\)
−0.497453 + 0.867491i \(0.665731\pi\)
\(578\) 0 0
\(579\) 57.0171 2.36955
\(580\) −2.41943 −0.100462
\(581\) −12.9851 −0.538713
\(582\) −9.52211 −0.394704
\(583\) −17.9161 −0.742011
\(584\) 22.8505 0.945560
\(585\) −2.51028 −0.103787
\(586\) 51.7957 2.13966
\(587\) −0.749317 −0.0309276 −0.0154638 0.999880i \(-0.504922\pi\)
−0.0154638 + 0.999880i \(0.504922\pi\)
\(588\) 100.100 4.12807
\(589\) 2.37342 0.0977952
\(590\) 30.6195 1.26059
\(591\) 18.0540 0.742642
\(592\) −45.9216 −1.88737
\(593\) −20.0311 −0.822579 −0.411289 0.911505i \(-0.634921\pi\)
−0.411289 + 0.911505i \(0.634921\pi\)
\(594\) −14.7186 −0.603911
\(595\) 0 0
\(596\) 38.7555 1.58749
\(597\) −35.5577 −1.45528
\(598\) −2.30108 −0.0940983
\(599\) −12.9934 −0.530897 −0.265449 0.964125i \(-0.585520\pi\)
−0.265449 + 0.964125i \(0.585520\pi\)
\(600\) −16.6224 −0.678609
\(601\) 7.62279 0.310940 0.155470 0.987841i \(-0.450311\pi\)
0.155470 + 0.987841i \(0.450311\pi\)
\(602\) −34.0947 −1.38960
\(603\) −14.5707 −0.593365
\(604\) −18.6953 −0.760699
\(605\) 7.94098 0.322847
\(606\) −55.2236 −2.24331
\(607\) −48.5958 −1.97244 −0.986222 0.165426i \(-0.947100\pi\)
−0.986222 + 0.165426i \(0.947100\pi\)
\(608\) −3.16667 −0.128425
\(609\) 4.19375 0.169939
\(610\) −11.4925 −0.465320
\(611\) 10.5025 0.424887
\(612\) 0 0
\(613\) 5.92605 0.239351 0.119675 0.992813i \(-0.461815\pi\)
0.119675 + 0.992813i \(0.461815\pi\)
\(614\) 35.2267 1.42163
\(615\) −11.2152 −0.452242
\(616\) 55.6891 2.24378
\(617\) −39.5840 −1.59359 −0.796796 0.604249i \(-0.793473\pi\)
−0.796796 + 0.604249i \(0.793473\pi\)
\(618\) 78.3904 3.15332
\(619\) 44.1102 1.77294 0.886470 0.462787i \(-0.153150\pi\)
0.886470 + 0.462787i \(0.153150\pi\)
\(620\) −47.3593 −1.90199
\(621\) −1.65671 −0.0664814
\(622\) 14.1262 0.566408
\(623\) 13.4257 0.537891
\(624\) 38.2508 1.53126
\(625\) 1.00000 0.0400000
\(626\) −42.0156 −1.67928
\(627\) −0.923644 −0.0368868
\(628\) 87.0749 3.47467
\(629\) 0 0
\(630\) 16.0501 0.639450
\(631\) 2.25974 0.0899590 0.0449795 0.998988i \(-0.485678\pi\)
0.0449795 + 0.998988i \(0.485678\pi\)
\(632\) −53.4461 −2.12597
\(633\) −10.0793 −0.400618
\(634\) 6.26845 0.248952
\(635\) 16.1404 0.640512
\(636\) 107.943 4.28024
\(637\) 15.9318 0.631242
\(638\) 2.24805 0.0890010
\(639\) 1.50575 0.0595667
\(640\) 6.40141 0.253038
\(641\) −36.7897 −1.45311 −0.726553 0.687110i \(-0.758879\pi\)
−0.726553 + 0.687110i \(0.758879\pi\)
\(642\) 75.7272 2.98872
\(643\) 24.5736 0.969090 0.484545 0.874766i \(-0.338985\pi\)
0.484545 + 0.874766i \(0.338985\pi\)
\(644\) 10.4904 0.413380
\(645\) −6.74232 −0.265479
\(646\) 0 0
\(647\) 39.0064 1.53350 0.766750 0.641946i \(-0.221873\pi\)
0.766750 + 0.641946i \(0.221873\pi\)
\(648\) 88.1856 3.46426
\(649\) −20.2860 −0.796294
\(650\) −4.42758 −0.173664
\(651\) 82.0907 3.21739
\(652\) 80.3389 3.14631
\(653\) −27.9254 −1.09281 −0.546403 0.837522i \(-0.684003\pi\)
−0.546403 + 0.837522i \(0.684003\pi\)
\(654\) −35.6598 −1.39441
\(655\) −15.7448 −0.615199
\(656\) 56.8824 2.22089
\(657\) −4.36314 −0.170222
\(658\) −67.1504 −2.61779
\(659\) −19.5830 −0.762847 −0.381423 0.924400i \(-0.624566\pi\)
−0.381423 + 0.924400i \(0.624566\pi\)
\(660\) 18.4304 0.717402
\(661\) 27.0356 1.05156 0.525782 0.850620i \(-0.323773\pi\)
0.525782 + 0.850620i \(0.323773\pi\)
\(662\) −7.27823 −0.282876
\(663\) 0 0
\(664\) 25.0587 0.972465
\(665\) −1.01157 −0.0392271
\(666\) 16.8711 0.653740
\(667\) 0.253038 0.00979766
\(668\) 71.3392 2.76020
\(669\) −46.0900 −1.78194
\(670\) −25.6995 −0.992859
\(671\) 7.61401 0.293936
\(672\) −109.527 −4.22509
\(673\) 50.1210 1.93202 0.966011 0.258499i \(-0.0832280\pi\)
0.966011 + 0.258499i \(0.0832280\pi\)
\(674\) 66.6118 2.56579
\(675\) −3.18772 −0.122695
\(676\) −50.6229 −1.94703
\(677\) −2.14778 −0.0825458 −0.0412729 0.999148i \(-0.513141\pi\)
−0.0412729 + 0.999148i \(0.513141\pi\)
\(678\) 73.1024 2.80748
\(679\) 6.90912 0.265148
\(680\) 0 0
\(681\) −5.97798 −0.229077
\(682\) 44.0045 1.68502
\(683\) 3.40533 0.130301 0.0651507 0.997875i \(-0.479247\pi\)
0.0651507 + 0.997875i \(0.479247\pi\)
\(684\) 1.85228 0.0708238
\(685\) 15.5752 0.595097
\(686\) −26.8010 −1.02327
\(687\) 49.2172 1.87776
\(688\) 34.1963 1.30372
\(689\) 17.1801 0.654510
\(690\) 2.90944 0.110760
\(691\) −1.51390 −0.0575916 −0.0287958 0.999585i \(-0.509167\pi\)
−0.0287958 + 0.999585i \(0.509167\pi\)
\(692\) 89.8426 3.41530
\(693\) −10.6334 −0.403931
\(694\) 25.3920 0.963869
\(695\) −10.5208 −0.399078
\(696\) −8.09310 −0.306768
\(697\) 0 0
\(698\) −61.1360 −2.31403
\(699\) 20.5639 0.777798
\(700\) 20.1849 0.762918
\(701\) −46.4213 −1.75331 −0.876654 0.481121i \(-0.840230\pi\)
−0.876654 + 0.481121i \(0.840230\pi\)
\(702\) 14.1139 0.532695
\(703\) −1.06332 −0.0401038
\(704\) −21.0897 −0.794848
\(705\) −13.2792 −0.500122
\(706\) −40.7389 −1.53323
\(707\) 40.0696 1.50697
\(708\) 122.221 4.59336
\(709\) 13.4799 0.506248 0.253124 0.967434i \(-0.418542\pi\)
0.253124 + 0.967434i \(0.418542\pi\)
\(710\) 2.65582 0.0996712
\(711\) 10.2052 0.382723
\(712\) −25.9090 −0.970981
\(713\) 4.95310 0.185495
\(714\) 0 0
\(715\) 2.93335 0.109701
\(716\) 37.3578 1.39612
\(717\) 14.8120 0.553165
\(718\) −21.1846 −0.790604
\(719\) −35.0421 −1.30685 −0.653426 0.756991i \(-0.726669\pi\)
−0.653426 + 0.756991i \(0.726669\pi\)
\(720\) −16.0979 −0.599932
\(721\) −56.8791 −2.11829
\(722\) 49.9951 1.86063
\(723\) 8.12628 0.302219
\(724\) 21.8346 0.811477
\(725\) 0.486878 0.0180822
\(726\) 44.4547 1.64987
\(727\) −15.6299 −0.579682 −0.289841 0.957075i \(-0.593602\pi\)
−0.289841 + 0.957075i \(0.593602\pi\)
\(728\) −53.4012 −1.97918
\(729\) 3.44079 0.127437
\(730\) −7.69563 −0.284828
\(731\) 0 0
\(732\) −45.8739 −1.69555
\(733\) −9.63543 −0.355893 −0.177946 0.984040i \(-0.556945\pi\)
−0.177946 + 0.984040i \(0.556945\pi\)
\(734\) 54.8558 2.02476
\(735\) −20.1439 −0.743017
\(736\) −6.60851 −0.243593
\(737\) 17.0264 0.627175
\(738\) −20.8979 −0.769263
\(739\) −0.106025 −0.00390019 −0.00195010 0.999998i \(-0.500621\pi\)
−0.00195010 + 0.999998i \(0.500621\pi\)
\(740\) 21.2174 0.779968
\(741\) 0.885699 0.0325370
\(742\) −109.845 −4.03254
\(743\) −3.59689 −0.131957 −0.0659786 0.997821i \(-0.521017\pi\)
−0.0659786 + 0.997821i \(0.521017\pi\)
\(744\) −158.419 −5.80791
\(745\) −7.79902 −0.285734
\(746\) −33.5144 −1.22705
\(747\) −4.78478 −0.175066
\(748\) 0 0
\(749\) −54.9467 −2.00771
\(750\) 5.59814 0.204415
\(751\) −17.0397 −0.621788 −0.310894 0.950445i \(-0.600628\pi\)
−0.310894 + 0.950445i \(0.600628\pi\)
\(752\) 67.3503 2.45601
\(753\) −26.5304 −0.966823
\(754\) −2.15569 −0.0785057
\(755\) 3.76216 0.136919
\(756\) −64.3439 −2.34017
\(757\) −45.5016 −1.65378 −0.826891 0.562362i \(-0.809893\pi\)
−0.826891 + 0.562362i \(0.809893\pi\)
\(758\) −46.4899 −1.68859
\(759\) −1.92755 −0.0699657
\(760\) 1.95213 0.0708113
\(761\) −11.3019 −0.409693 −0.204846 0.978794i \(-0.565670\pi\)
−0.204846 + 0.978794i \(0.565670\pi\)
\(762\) 90.3561 3.27326
\(763\) 25.8743 0.936714
\(764\) −24.9993 −0.904442
\(765\) 0 0
\(766\) 97.0795 3.50763
\(767\) 19.4526 0.702392
\(768\) −15.3038 −0.552228
\(769\) 9.75206 0.351668 0.175834 0.984420i \(-0.443738\pi\)
0.175834 + 0.984420i \(0.443738\pi\)
\(770\) −18.7551 −0.675886
\(771\) −29.4487 −1.06057
\(772\) 133.613 4.80884
\(773\) −2.26624 −0.0815111 −0.0407555 0.999169i \(-0.512976\pi\)
−0.0407555 + 0.999169i \(0.512976\pi\)
\(774\) −12.5633 −0.451578
\(775\) 9.53040 0.342342
\(776\) −13.3332 −0.478635
\(777\) −36.7774 −1.31938
\(778\) 24.6679 0.884385
\(779\) 1.31711 0.0471905
\(780\) −17.6732 −0.632803
\(781\) −1.75953 −0.0629608
\(782\) 0 0
\(783\) −1.55203 −0.0554651
\(784\) 102.167 3.64883
\(785\) −17.5226 −0.625409
\(786\) −88.1413 −3.14390
\(787\) −19.6778 −0.701437 −0.350718 0.936481i \(-0.614063\pi\)
−0.350718 + 0.936481i \(0.614063\pi\)
\(788\) 42.3075 1.50714
\(789\) −63.6255 −2.26513
\(790\) 17.9997 0.640399
\(791\) −53.0422 −1.88596
\(792\) 20.5204 0.729161
\(793\) −7.30121 −0.259274
\(794\) −10.5590 −0.374726
\(795\) −21.7221 −0.770405
\(796\) −83.3255 −2.95340
\(797\) −46.7746 −1.65684 −0.828422 0.560105i \(-0.810761\pi\)
−0.828422 + 0.560105i \(0.810761\pi\)
\(798\) −5.66292 −0.200465
\(799\) 0 0
\(800\) −12.7156 −0.449566
\(801\) 4.94714 0.174799
\(802\) −56.7266 −2.00309
\(803\) 5.09849 0.179922
\(804\) −102.583 −3.61781
\(805\) −2.11105 −0.0744048
\(806\) −42.1967 −1.48631
\(807\) −15.4291 −0.543131
\(808\) −77.3263 −2.72033
\(809\) −6.87875 −0.241844 −0.120922 0.992662i \(-0.538585\pi\)
−0.120922 + 0.992662i \(0.538585\pi\)
\(810\) −29.6993 −1.04353
\(811\) 9.88871 0.347240 0.173620 0.984813i \(-0.444454\pi\)
0.173620 + 0.984813i \(0.444454\pi\)
\(812\) 9.82759 0.344881
\(813\) −13.5585 −0.475518
\(814\) −19.7144 −0.690990
\(815\) −16.1671 −0.566309
\(816\) 0 0
\(817\) 0.791816 0.0277021
\(818\) −48.6967 −1.70264
\(819\) 10.1966 0.356298
\(820\) −26.2817 −0.917796
\(821\) −3.99072 −0.139277 −0.0696386 0.997572i \(-0.522185\pi\)
−0.0696386 + 0.997572i \(0.522185\pi\)
\(822\) 87.1920 3.04117
\(823\) −34.4402 −1.20051 −0.600254 0.799809i \(-0.704934\pi\)
−0.600254 + 0.799809i \(0.704934\pi\)
\(824\) 109.765 3.82385
\(825\) −3.70886 −0.129126
\(826\) −124.375 −4.32755
\(827\) 42.8760 1.49095 0.745473 0.666536i \(-0.232224\pi\)
0.745473 + 0.666536i \(0.232224\pi\)
\(828\) 3.86553 0.134336
\(829\) 26.1065 0.906716 0.453358 0.891328i \(-0.350226\pi\)
0.453358 + 0.891328i \(0.350226\pi\)
\(830\) −8.43930 −0.292932
\(831\) −16.5167 −0.572959
\(832\) 20.2233 0.701117
\(833\) 0 0
\(834\) −58.8970 −2.03944
\(835\) −14.3560 −0.496811
\(836\) −2.16446 −0.0748593
\(837\) −30.3803 −1.05010
\(838\) 43.9772 1.51917
\(839\) −11.1671 −0.385530 −0.192765 0.981245i \(-0.561746\pi\)
−0.192765 + 0.981245i \(0.561746\pi\)
\(840\) 67.5193 2.32964
\(841\) −28.7629 −0.991826
\(842\) 92.3739 3.18341
\(843\) −45.3924 −1.56340
\(844\) −23.6198 −0.813027
\(845\) 10.1872 0.350449
\(846\) −24.7437 −0.850706
\(847\) −32.2558 −1.10832
\(848\) 110.172 3.78333
\(849\) 9.38128 0.321965
\(850\) 0 0
\(851\) −2.21904 −0.0760676
\(852\) 10.6010 0.363185
\(853\) −21.1150 −0.722965 −0.361483 0.932379i \(-0.617729\pi\)
−0.361483 + 0.932379i \(0.617729\pi\)
\(854\) 46.6820 1.59743
\(855\) −0.372746 −0.0127477
\(856\) 106.036 3.62424
\(857\) 55.5913 1.89896 0.949481 0.313826i \(-0.101611\pi\)
0.949481 + 0.313826i \(0.101611\pi\)
\(858\) 16.4213 0.560614
\(859\) 1.84599 0.0629843 0.0314921 0.999504i \(-0.489974\pi\)
0.0314921 + 0.999504i \(0.489974\pi\)
\(860\) −15.7999 −0.538772
\(861\) 45.5556 1.55253
\(862\) 11.0701 0.377049
\(863\) 13.2346 0.450512 0.225256 0.974300i \(-0.427678\pi\)
0.225256 + 0.974300i \(0.427678\pi\)
\(864\) 40.5339 1.37899
\(865\) −18.0796 −0.614724
\(866\) 9.67794 0.328870
\(867\) 0 0
\(868\) 192.370 6.52948
\(869\) −11.9251 −0.404531
\(870\) 2.72561 0.0924068
\(871\) −16.3269 −0.553216
\(872\) −49.9323 −1.69092
\(873\) 2.54589 0.0861652
\(874\) −0.341683 −0.0115576
\(875\) −4.06194 −0.137319
\(876\) −30.7180 −1.03787
\(877\) 36.5039 1.23265 0.616325 0.787492i \(-0.288621\pi\)
0.616325 + 0.787492i \(0.288621\pi\)
\(878\) −66.5262 −2.24515
\(879\) −41.6053 −1.40331
\(880\) 18.8109 0.634116
\(881\) 24.0208 0.809282 0.404641 0.914476i \(-0.367397\pi\)
0.404641 + 0.914476i \(0.367397\pi\)
\(882\) −37.5350 −1.26387
\(883\) 42.2659 1.42236 0.711181 0.703009i \(-0.248161\pi\)
0.711181 + 0.703009i \(0.248161\pi\)
\(884\) 0 0
\(885\) −24.5954 −0.826765
\(886\) −94.5648 −3.17697
\(887\) 7.41066 0.248826 0.124413 0.992231i \(-0.460295\pi\)
0.124413 + 0.992231i \(0.460295\pi\)
\(888\) 70.9731 2.38170
\(889\) −65.5613 −2.19885
\(890\) 8.72567 0.292485
\(891\) 19.6763 0.659181
\(892\) −108.007 −3.61634
\(893\) 1.55950 0.0521866
\(894\) −43.6600 −1.46021
\(895\) −7.51774 −0.251290
\(896\) −26.0021 −0.868670
\(897\) 1.84836 0.0617151
\(898\) 12.8283 0.428085
\(899\) 4.64014 0.154757
\(900\) 7.43778 0.247926
\(901\) 0 0
\(902\) 24.4200 0.813096
\(903\) 27.3869 0.911379
\(904\) 102.361 3.40447
\(905\) −4.39392 −0.146059
\(906\) 21.0611 0.699708
\(907\) −10.6440 −0.353429 −0.176714 0.984262i \(-0.556547\pi\)
−0.176714 + 0.984262i \(0.556547\pi\)
\(908\) −14.0087 −0.464896
\(909\) 14.7649 0.489721
\(910\) 17.9846 0.596182
\(911\) 6.49745 0.215270 0.107635 0.994190i \(-0.465672\pi\)
0.107635 + 0.994190i \(0.465672\pi\)
\(912\) 5.67979 0.188077
\(913\) 5.59118 0.185041
\(914\) 21.5466 0.712697
\(915\) 9.23149 0.305184
\(916\) 115.335 3.81078
\(917\) 63.9542 2.11195
\(918\) 0 0
\(919\) −9.77664 −0.322502 −0.161251 0.986913i \(-0.551553\pi\)
−0.161251 + 0.986913i \(0.551553\pi\)
\(920\) 4.07391 0.134313
\(921\) −28.2961 −0.932388
\(922\) −68.3246 −2.25015
\(923\) 1.68724 0.0555362
\(924\) −74.8631 −2.46281
\(925\) −4.26971 −0.140387
\(926\) 5.64912 0.185642
\(927\) −20.9589 −0.688381
\(928\) −6.19096 −0.203228
\(929\) −22.6724 −0.743857 −0.371929 0.928261i \(-0.621303\pi\)
−0.371929 + 0.928261i \(0.621303\pi\)
\(930\) 53.3525 1.74950
\(931\) 2.36569 0.0775322
\(932\) 48.1892 1.57849
\(933\) −11.3470 −0.371483
\(934\) 34.8903 1.14164
\(935\) 0 0
\(936\) −19.6774 −0.643176
\(937\) −22.7132 −0.742007 −0.371003 0.928632i \(-0.620986\pi\)
−0.371003 + 0.928632i \(0.620986\pi\)
\(938\) 104.390 3.40845
\(939\) 33.7494 1.10137
\(940\) −31.1182 −1.01496
\(941\) 37.4675 1.22141 0.610703 0.791860i \(-0.290887\pi\)
0.610703 + 0.791860i \(0.290887\pi\)
\(942\) −98.0940 −3.19608
\(943\) 2.74869 0.0895095
\(944\) 124.745 4.06010
\(945\) 12.9483 0.421209
\(946\) 14.6807 0.477309
\(947\) −27.1585 −0.882533 −0.441267 0.897376i \(-0.645471\pi\)
−0.441267 + 0.897376i \(0.645471\pi\)
\(948\) 71.8478 2.33351
\(949\) −4.88903 −0.158705
\(950\) −0.657443 −0.0213303
\(951\) −5.03519 −0.163277
\(952\) 0 0
\(953\) −0.783845 −0.0253912 −0.0126956 0.999919i \(-0.504041\pi\)
−0.0126956 + 0.999919i \(0.504041\pi\)
\(954\) −40.4759 −1.31046
\(955\) 5.03076 0.162792
\(956\) 34.7103 1.12261
\(957\) −1.80576 −0.0583720
\(958\) −62.2667 −2.01175
\(959\) −63.2654 −2.04295
\(960\) −25.5699 −0.825264
\(961\) 59.8286 1.92995
\(962\) 18.9045 0.609506
\(963\) −20.2469 −0.652446
\(964\) 19.0430 0.613335
\(965\) −26.8878 −0.865549
\(966\) −11.8179 −0.380236
\(967\) 52.9690 1.70337 0.851684 0.524056i \(-0.175582\pi\)
0.851684 + 0.524056i \(0.175582\pi\)
\(968\) 62.2472 2.00070
\(969\) 0 0
\(970\) 4.49039 0.144178
\(971\) −7.21188 −0.231440 −0.115720 0.993282i \(-0.536918\pi\)
−0.115720 + 0.993282i \(0.536918\pi\)
\(972\) −71.0262 −2.27817
\(973\) 42.7350 1.37002
\(974\) 76.4704 2.45027
\(975\) 3.55649 0.113899
\(976\) −46.8210 −1.49870
\(977\) 10.0232 0.320669 0.160335 0.987063i \(-0.448743\pi\)
0.160335 + 0.987063i \(0.448743\pi\)
\(978\) −90.5056 −2.89405
\(979\) −5.78091 −0.184759
\(980\) −47.2049 −1.50790
\(981\) 9.53423 0.304404
\(982\) 93.7871 2.99287
\(983\) −2.65289 −0.0846141 −0.0423071 0.999105i \(-0.513471\pi\)
−0.0423071 + 0.999105i \(0.513471\pi\)
\(984\) −87.9133 −2.80257
\(985\) −8.51380 −0.271272
\(986\) 0 0
\(987\) 53.9391 1.71690
\(988\) 2.07554 0.0660316
\(989\) 1.65244 0.0525445
\(990\) −6.91090 −0.219643
\(991\) 27.9374 0.887460 0.443730 0.896160i \(-0.353655\pi\)
0.443730 + 0.896160i \(0.353655\pi\)
\(992\) −121.185 −3.84763
\(993\) 5.84630 0.185527
\(994\) −10.7878 −0.342167
\(995\) 16.7681 0.531585
\(996\) −33.6865 −1.06740
\(997\) −25.9891 −0.823082 −0.411541 0.911391i \(-0.635009\pi\)
−0.411541 + 0.911391i \(0.635009\pi\)
\(998\) 89.6394 2.83748
\(999\) 13.6107 0.430622
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.2 12
5.4 even 2 7225.2.a.bq.1.11 12
17.4 even 4 1445.2.d.j.866.21 24
17.5 odd 16 85.2.l.a.76.6 yes 24
17.7 odd 16 85.2.l.a.66.6 24
17.13 even 4 1445.2.d.j.866.22 24
17.16 even 2 1445.2.a.p.1.2 12
51.5 even 16 765.2.be.b.586.1 24
51.41 even 16 765.2.be.b.406.1 24
85.7 even 16 425.2.n.c.49.1 24
85.22 even 16 425.2.n.f.399.6 24
85.24 odd 16 425.2.m.b.151.1 24
85.39 odd 16 425.2.m.b.76.1 24
85.58 even 16 425.2.n.f.49.6 24
85.73 even 16 425.2.n.c.399.1 24
85.84 even 2 7225.2.a.bs.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.6 24 17.7 odd 16
85.2.l.a.76.6 yes 24 17.5 odd 16
425.2.m.b.76.1 24 85.39 odd 16
425.2.m.b.151.1 24 85.24 odd 16
425.2.n.c.49.1 24 85.7 even 16
425.2.n.c.399.1 24 85.73 even 16
425.2.n.f.49.6 24 85.58 even 16
425.2.n.f.399.6 24 85.22 even 16
765.2.be.b.406.1 24 51.41 even 16
765.2.be.b.586.1 24 51.5 even 16
1445.2.a.p.1.2 12 17.16 even 2
1445.2.a.q.1.2 12 1.1 even 1 trivial
1445.2.d.j.866.21 24 17.4 even 4
1445.2.d.j.866.22 24 17.13 even 4
7225.2.a.bq.1.11 12 5.4 even 2
7225.2.a.bs.1.11 12 85.84 even 2