Properties

Label 1440.5.y
Level $1440$
Weight $5$
Character orbit 1440.y
Rep. character $\chi_{1440}(433,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $236$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1440.y (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(1440, [\chi])\).

Total New Old
Modular forms 2368 244 2124
Cusp forms 2240 236 2004
Eisenstein series 128 8 120

Trace form

\( 236 q + 4 q^{7} + 244 q^{17} - 4 q^{23} + 332 q^{25} - 248 q^{31} + 8 q^{41} + 5756 q^{47} - 2496 q^{55} - 3692 q^{65} + 19960 q^{71} + 13196 q^{73} + 22840 q^{95} + 15436 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{5}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(1440, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)