Properties

Label 1440.4.a.bd.1.2
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1440,4,Mod(1,1440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1440.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,10,0,0,0,0,0,0,0,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +7.21110 q^{7} -43.2666 q^{11} +34.0000 q^{13} -114.000 q^{17} +209.122 q^{23} +25.0000 q^{25} +26.0000 q^{29} +100.955 q^{31} +36.0555 q^{35} -150.000 q^{37} -342.000 q^{41} -454.299 q^{43} -584.099 q^{47} -291.000 q^{49} +262.000 q^{53} -216.333 q^{55} +490.355 q^{59} -262.000 q^{61} +170.000 q^{65} -497.566 q^{67} +1052.82 q^{71} +682.000 q^{73} -312.000 q^{77} -201.911 q^{79} -151.433 q^{83} -570.000 q^{85} +630.000 q^{89} +245.177 q^{91} -966.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} + 68 q^{13} - 228 q^{17} + 50 q^{25} + 52 q^{29} - 300 q^{37} - 684 q^{41} - 582 q^{49} + 524 q^{53} - 524 q^{61} + 340 q^{65} + 1364 q^{73} - 624 q^{77} - 1140 q^{85} + 1260 q^{89} - 1932 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.21110 0.389363 0.194681 0.980867i \(-0.437633\pi\)
0.194681 + 0.980867i \(0.437633\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −43.2666 −1.18594 −0.592972 0.805223i \(-0.702045\pi\)
−0.592972 + 0.805223i \(0.702045\pi\)
\(12\) 0 0
\(13\) 34.0000 0.725377 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −114.000 −1.62642 −0.813208 0.581974i \(-0.802281\pi\)
−0.813208 + 0.581974i \(0.802281\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 209.122 1.89587 0.947934 0.318468i \(-0.103168\pi\)
0.947934 + 0.318468i \(0.103168\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 26.0000 0.166485 0.0832427 0.996529i \(-0.473472\pi\)
0.0832427 + 0.996529i \(0.473472\pi\)
\(30\) 0 0
\(31\) 100.955 0.584907 0.292454 0.956280i \(-0.405528\pi\)
0.292454 + 0.956280i \(0.405528\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 36.0555 0.174128
\(36\) 0 0
\(37\) −150.000 −0.666482 −0.333241 0.942842i \(-0.608142\pi\)
−0.333241 + 0.942842i \(0.608142\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −342.000 −1.30272 −0.651359 0.758770i \(-0.725801\pi\)
−0.651359 + 0.758770i \(0.725801\pi\)
\(42\) 0 0
\(43\) −454.299 −1.61116 −0.805582 0.592485i \(-0.798147\pi\)
−0.805582 + 0.592485i \(0.798147\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −584.099 −1.81276 −0.906379 0.422465i \(-0.861165\pi\)
−0.906379 + 0.422465i \(0.861165\pi\)
\(48\) 0 0
\(49\) −291.000 −0.848397
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 262.000 0.679028 0.339514 0.940601i \(-0.389737\pi\)
0.339514 + 0.940601i \(0.389737\pi\)
\(54\) 0 0
\(55\) −216.333 −0.530370
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 490.355 1.08201 0.541007 0.841018i \(-0.318043\pi\)
0.541007 + 0.841018i \(0.318043\pi\)
\(60\) 0 0
\(61\) −262.000 −0.549929 −0.274964 0.961454i \(-0.588666\pi\)
−0.274964 + 0.961454i \(0.588666\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 170.000 0.324399
\(66\) 0 0
\(67\) −497.566 −0.907274 −0.453637 0.891187i \(-0.649874\pi\)
−0.453637 + 0.891187i \(0.649874\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1052.82 1.75981 0.879907 0.475145i \(-0.157604\pi\)
0.879907 + 0.475145i \(0.157604\pi\)
\(72\) 0 0
\(73\) 682.000 1.09345 0.546726 0.837311i \(-0.315874\pi\)
0.546726 + 0.837311i \(0.315874\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −312.000 −0.461762
\(78\) 0 0
\(79\) −201.911 −0.287554 −0.143777 0.989610i \(-0.545925\pi\)
−0.143777 + 0.989610i \(0.545925\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −151.433 −0.200264 −0.100132 0.994974i \(-0.531927\pi\)
−0.100132 + 0.994974i \(0.531927\pi\)
\(84\) 0 0
\(85\) −570.000 −0.727355
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 630.000 0.750336 0.375168 0.926957i \(-0.377585\pi\)
0.375168 + 0.926957i \(0.377585\pi\)
\(90\) 0 0
\(91\) 245.177 0.282435
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −966.000 −1.01116 −0.505580 0.862780i \(-0.668721\pi\)
−0.505580 + 0.862780i \(0.668721\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1638.00 −1.61373 −0.806867 0.590733i \(-0.798838\pi\)
−0.806867 + 0.590733i \(0.798838\pi\)
\(102\) 0 0
\(103\) 685.055 0.655344 0.327672 0.944792i \(-0.393736\pi\)
0.327672 + 0.944792i \(0.393736\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 612.944 0.553790 0.276895 0.960900i \(-0.410695\pi\)
0.276895 + 0.960900i \(0.410695\pi\)
\(108\) 0 0
\(109\) −342.000 −0.300529 −0.150264 0.988646i \(-0.548013\pi\)
−0.150264 + 0.988646i \(0.548013\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2106.00 −1.75324 −0.876619 0.481186i \(-0.840206\pi\)
−0.876619 + 0.481186i \(0.840206\pi\)
\(114\) 0 0
\(115\) 1045.61 0.847858
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −822.066 −0.633266
\(120\) 0 0
\(121\) 541.000 0.406461
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 439.877 0.307345 0.153672 0.988122i \(-0.450890\pi\)
0.153672 + 0.988122i \(0.450890\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1773.93 1.18312 0.591561 0.806260i \(-0.298512\pi\)
0.591561 + 0.806260i \(0.298512\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1618.00 −1.00902 −0.504508 0.863407i \(-0.668326\pi\)
−0.504508 + 0.863407i \(0.668326\pi\)
\(138\) 0 0
\(139\) −2509.46 −1.53129 −0.765647 0.643261i \(-0.777581\pi\)
−0.765647 + 0.643261i \(0.777581\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1471.06 −0.860256
\(144\) 0 0
\(145\) 130.000 0.0744546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1010.00 −0.555318 −0.277659 0.960680i \(-0.589559\pi\)
−0.277659 + 0.960680i \(0.589559\pi\)
\(150\) 0 0
\(151\) −14.4222 −0.00777260 −0.00388630 0.999992i \(-0.501237\pi\)
−0.00388630 + 0.999992i \(0.501237\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 504.777 0.261579
\(156\) 0 0
\(157\) 1794.00 0.911954 0.455977 0.889992i \(-0.349290\pi\)
0.455977 + 0.889992i \(0.349290\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1508.00 0.738180
\(162\) 0 0
\(163\) −1983.05 −0.952912 −0.476456 0.879198i \(-0.658079\pi\)
−0.476456 + 0.879198i \(0.658079\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −757.166 −0.350846 −0.175423 0.984493i \(-0.556129\pi\)
−0.175423 + 0.984493i \(0.556129\pi\)
\(168\) 0 0
\(169\) −1041.00 −0.473828
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2834.00 −1.24546 −0.622731 0.782436i \(-0.713977\pi\)
−0.622731 + 0.782436i \(0.713977\pi\)
\(174\) 0 0
\(175\) 180.278 0.0778726
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −951.866 −0.397462 −0.198731 0.980054i \(-0.563682\pi\)
−0.198731 + 0.980054i \(0.563682\pi\)
\(180\) 0 0
\(181\) −1466.00 −0.602027 −0.301014 0.953620i \(-0.597325\pi\)
−0.301014 + 0.953620i \(0.597325\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −750.000 −0.298060
\(186\) 0 0
\(187\) 4932.39 1.92884
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3475.75 −1.31674 −0.658368 0.752696i \(-0.728753\pi\)
−0.658368 + 0.752696i \(0.728753\pi\)
\(192\) 0 0
\(193\) −46.0000 −0.0171562 −0.00857812 0.999963i \(-0.502731\pi\)
−0.00857812 + 0.999963i \(0.502731\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1122.00 −0.405783 −0.202891 0.979201i \(-0.565034\pi\)
−0.202891 + 0.979201i \(0.565034\pi\)
\(198\) 0 0
\(199\) 2999.82 1.06860 0.534300 0.845295i \(-0.320575\pi\)
0.534300 + 0.845295i \(0.320575\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 187.489 0.0648233
\(204\) 0 0
\(205\) −1710.00 −0.582593
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 418.244 0.136460 0.0682301 0.997670i \(-0.478265\pi\)
0.0682301 + 0.997670i \(0.478265\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2271.50 −0.720534
\(216\) 0 0
\(217\) 728.000 0.227741
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3876.00 −1.17976
\(222\) 0 0
\(223\) −2545.52 −0.764397 −0.382199 0.924080i \(-0.624833\pi\)
−0.382199 + 0.924080i \(0.624833\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5069.41 −1.48224 −0.741119 0.671373i \(-0.765705\pi\)
−0.741119 + 0.671373i \(0.765705\pi\)
\(228\) 0 0
\(229\) −6194.00 −1.78738 −0.893692 0.448681i \(-0.851894\pi\)
−0.893692 + 0.448681i \(0.851894\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4290.00 −1.20621 −0.603106 0.797661i \(-0.706070\pi\)
−0.603106 + 0.797661i \(0.706070\pi\)
\(234\) 0 0
\(235\) −2920.50 −0.810690
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5278.53 1.42862 0.714309 0.699831i \(-0.246741\pi\)
0.714309 + 0.699831i \(0.246741\pi\)
\(240\) 0 0
\(241\) −3074.00 −0.821634 −0.410817 0.911718i \(-0.634756\pi\)
−0.410817 + 0.911718i \(0.634756\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1455.00 −0.379414
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2062.38 −0.518629 −0.259315 0.965793i \(-0.583497\pi\)
−0.259315 + 0.965793i \(0.583497\pi\)
\(252\) 0 0
\(253\) −9048.00 −2.24839
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3718.00 0.902422 0.451211 0.892417i \(-0.350992\pi\)
0.451211 + 0.892417i \(0.350992\pi\)
\(258\) 0 0
\(259\) −1081.67 −0.259504
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7045.25 1.65182 0.825910 0.563802i \(-0.190662\pi\)
0.825910 + 0.563802i \(0.190662\pi\)
\(264\) 0 0
\(265\) 1310.00 0.303670
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6058.00 −1.37310 −0.686548 0.727085i \(-0.740875\pi\)
−0.686548 + 0.727085i \(0.740875\pi\)
\(270\) 0 0
\(271\) 5206.42 1.16704 0.583519 0.812100i \(-0.301675\pi\)
0.583519 + 0.812100i \(0.301675\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1081.67 −0.237189
\(276\) 0 0
\(277\) −2990.00 −0.648562 −0.324281 0.945961i \(-0.605122\pi\)
−0.324281 + 0.945961i \(0.605122\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2710.00 −0.575320 −0.287660 0.957733i \(-0.592877\pi\)
−0.287660 + 0.957733i \(0.592877\pi\)
\(282\) 0 0
\(283\) 4593.47 0.964854 0.482427 0.875936i \(-0.339755\pi\)
0.482427 + 0.875936i \(0.339755\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2466.20 −0.507230
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3750.00 0.747704 0.373852 0.927488i \(-0.378037\pi\)
0.373852 + 0.927488i \(0.378037\pi\)
\(294\) 0 0
\(295\) 2451.77 0.483891
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7110.15 1.37522
\(300\) 0 0
\(301\) −3276.00 −0.627327
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1310.00 −0.245936
\(306\) 0 0
\(307\) 4405.98 0.819097 0.409548 0.912288i \(-0.365686\pi\)
0.409548 + 0.912288i \(0.365686\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2956.55 −0.539070 −0.269535 0.962991i \(-0.586870\pi\)
−0.269535 + 0.962991i \(0.586870\pi\)
\(312\) 0 0
\(313\) 5642.00 1.01886 0.509432 0.860511i \(-0.329855\pi\)
0.509432 + 0.860511i \(0.329855\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4650.00 −0.823880 −0.411940 0.911211i \(-0.635149\pi\)
−0.411940 + 0.911211i \(0.635149\pi\)
\(318\) 0 0
\(319\) −1124.93 −0.197442
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 850.000 0.145075
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4212.00 −0.705821
\(330\) 0 0
\(331\) −5523.70 −0.917252 −0.458626 0.888630i \(-0.651658\pi\)
−0.458626 + 0.888630i \(0.651658\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2487.83 −0.405745
\(336\) 0 0
\(337\) 9266.00 1.49778 0.748889 0.662695i \(-0.230588\pi\)
0.748889 + 0.662695i \(0.230588\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4368.00 −0.693667
\(342\) 0 0
\(343\) −4571.84 −0.719697
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 814.855 0.126062 0.0630312 0.998012i \(-0.479923\pi\)
0.0630312 + 0.998012i \(0.479923\pi\)
\(348\) 0 0
\(349\) 7494.00 1.14941 0.574706 0.818360i \(-0.305117\pi\)
0.574706 + 0.818360i \(0.305117\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6270.00 0.945378 0.472689 0.881229i \(-0.343283\pi\)
0.472689 + 0.881229i \(0.343283\pi\)
\(354\) 0 0
\(355\) 5264.10 0.787013
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 692.266 0.101773 0.0508863 0.998704i \(-0.483795\pi\)
0.0508863 + 0.998704i \(0.483795\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3410.00 0.489007
\(366\) 0 0
\(367\) 2141.70 0.304620 0.152310 0.988333i \(-0.451329\pi\)
0.152310 + 0.988333i \(0.451329\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1889.31 0.264388
\(372\) 0 0
\(373\) −2574.00 −0.357310 −0.178655 0.983912i \(-0.557175\pi\)
−0.178655 + 0.983912i \(0.557175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 884.000 0.120765
\(378\) 0 0
\(379\) −13729.9 −1.86084 −0.930422 0.366491i \(-0.880559\pi\)
−0.930422 + 0.366491i \(0.880559\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4204.07 −0.560883 −0.280441 0.959871i \(-0.590481\pi\)
−0.280441 + 0.959871i \(0.590481\pi\)
\(384\) 0 0
\(385\) −1560.00 −0.206506
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5314.00 −0.692623 −0.346312 0.938120i \(-0.612566\pi\)
−0.346312 + 0.938120i \(0.612566\pi\)
\(390\) 0 0
\(391\) −23839.9 −3.08347
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1009.55 −0.128598
\(396\) 0 0
\(397\) −8638.00 −1.09201 −0.546006 0.837781i \(-0.683852\pi\)
−0.546006 + 0.837781i \(0.683852\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2802.00 −0.348941 −0.174470 0.984662i \(-0.555821\pi\)
−0.174470 + 0.984662i \(0.555821\pi\)
\(402\) 0 0
\(403\) 3432.48 0.424279
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6489.99 0.790410
\(408\) 0 0
\(409\) −82.0000 −0.00991354 −0.00495677 0.999988i \(-0.501578\pi\)
−0.00495677 + 0.999988i \(0.501578\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3536.00 0.421296
\(414\) 0 0
\(415\) −757.166 −0.0895610
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1067.24 −0.124435 −0.0622175 0.998063i \(-0.519817\pi\)
−0.0622175 + 0.998063i \(0.519817\pi\)
\(420\) 0 0
\(421\) −5742.00 −0.664722 −0.332361 0.943152i \(-0.607845\pi\)
−0.332361 + 0.943152i \(0.607845\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2850.00 −0.325283
\(426\) 0 0
\(427\) −1889.31 −0.214122
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14234.7 1.59086 0.795432 0.606043i \(-0.207244\pi\)
0.795432 + 0.606043i \(0.207244\pi\)
\(432\) 0 0
\(433\) 7098.00 0.787779 0.393889 0.919158i \(-0.371129\pi\)
0.393889 + 0.919158i \(0.371129\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 461.511 0.0501747 0.0250874 0.999685i \(-0.492014\pi\)
0.0250874 + 0.999685i \(0.492014\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6064.54 −0.650417 −0.325209 0.945642i \(-0.605435\pi\)
−0.325209 + 0.945642i \(0.605435\pi\)
\(444\) 0 0
\(445\) 3150.00 0.335560
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11706.0 1.23038 0.615190 0.788379i \(-0.289079\pi\)
0.615190 + 0.788379i \(0.289079\pi\)
\(450\) 0 0
\(451\) 14797.2 1.54495
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1225.89 0.126309
\(456\) 0 0
\(457\) 5066.00 0.518550 0.259275 0.965803i \(-0.416516\pi\)
0.259275 + 0.965803i \(0.416516\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 594.000 0.0600116 0.0300058 0.999550i \(-0.490447\pi\)
0.0300058 + 0.999550i \(0.490447\pi\)
\(462\) 0 0
\(463\) 483.144 0.0484959 0.0242479 0.999706i \(-0.492281\pi\)
0.0242479 + 0.999706i \(0.492281\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2271.50 −0.225080 −0.112540 0.993647i \(-0.535899\pi\)
−0.112540 + 0.993647i \(0.535899\pi\)
\(468\) 0 0
\(469\) −3588.00 −0.353259
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19656.0 1.91075
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4067.06 −0.387952 −0.193976 0.981006i \(-0.562138\pi\)
−0.193976 + 0.981006i \(0.562138\pi\)
\(480\) 0 0
\(481\) −5100.00 −0.483451
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4830.00 −0.452204
\(486\) 0 0
\(487\) 11170.0 1.03934 0.519672 0.854366i \(-0.326054\pi\)
0.519672 + 0.854366i \(0.326054\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4600.68 −0.422863 −0.211432 0.977393i \(-0.567813\pi\)
−0.211432 + 0.977393i \(0.567813\pi\)
\(492\) 0 0
\(493\) −2964.00 −0.270775
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7592.00 0.685207
\(498\) 0 0
\(499\) 288.444 0.0258768 0.0129384 0.999916i \(-0.495881\pi\)
0.0129384 + 0.999916i \(0.495881\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18409.9 1.63193 0.815963 0.578104i \(-0.196207\pi\)
0.815963 + 0.578104i \(0.196207\pi\)
\(504\) 0 0
\(505\) −8190.00 −0.721684
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8714.00 0.758824 0.379412 0.925228i \(-0.376126\pi\)
0.379412 + 0.925228i \(0.376126\pi\)
\(510\) 0 0
\(511\) 4917.97 0.425750
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3425.27 0.293079
\(516\) 0 0
\(517\) 25272.0 2.14983
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11830.0 0.994783 0.497391 0.867526i \(-0.334291\pi\)
0.497391 + 0.867526i \(0.334291\pi\)
\(522\) 0 0
\(523\) −8963.40 −0.749411 −0.374706 0.927144i \(-0.622256\pi\)
−0.374706 + 0.927144i \(0.622256\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11508.9 −0.951302
\(528\) 0 0
\(529\) 31565.0 2.59431
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11628.0 −0.944962
\(534\) 0 0
\(535\) 3064.72 0.247662
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12590.6 1.00615
\(540\) 0 0
\(541\) −15490.0 −1.23099 −0.615496 0.788140i \(-0.711044\pi\)
−0.615496 + 0.788140i \(0.711044\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1710.00 −0.134401
\(546\) 0 0
\(547\) −11429.6 −0.893408 −0.446704 0.894682i \(-0.647402\pi\)
−0.446704 + 0.894682i \(0.647402\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −1456.00 −0.111963
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23862.0 1.81520 0.907599 0.419838i \(-0.137913\pi\)
0.907599 + 0.419838i \(0.137913\pi\)
\(558\) 0 0
\(559\) −15446.2 −1.16870
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7261.58 0.543586 0.271793 0.962356i \(-0.412383\pi\)
0.271793 + 0.962356i \(0.412383\pi\)
\(564\) 0 0
\(565\) −10530.0 −0.784072
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9074.00 0.668545 0.334272 0.942477i \(-0.391509\pi\)
0.334272 + 0.942477i \(0.391509\pi\)
\(570\) 0 0
\(571\) 7860.10 0.576068 0.288034 0.957620i \(-0.406998\pi\)
0.288034 + 0.957620i \(0.406998\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5228.05 0.379173
\(576\) 0 0
\(577\) 4762.00 0.343578 0.171789 0.985134i \(-0.445045\pi\)
0.171789 + 0.985134i \(0.445045\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1092.00 −0.0779755
\(582\) 0 0
\(583\) −11335.9 −0.805288
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21481.9 −1.51048 −0.755240 0.655448i \(-0.772480\pi\)
−0.755240 + 0.655448i \(0.772480\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11954.0 −0.827811 −0.413906 0.910320i \(-0.635836\pi\)
−0.413906 + 0.910320i \(0.635836\pi\)
\(594\) 0 0
\(595\) −4110.33 −0.283205
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10759.0 −0.733889 −0.366944 0.930243i \(-0.619596\pi\)
−0.366944 + 0.930243i \(0.619596\pi\)
\(600\) 0 0
\(601\) 17862.0 1.21232 0.606162 0.795342i \(-0.292708\pi\)
0.606162 + 0.795342i \(0.292708\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2705.00 0.181775
\(606\) 0 0
\(607\) 7506.76 0.501960 0.250980 0.967992i \(-0.419247\pi\)
0.250980 + 0.967992i \(0.419247\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −19859.4 −1.31493
\(612\) 0 0
\(613\) 11522.0 0.759167 0.379583 0.925158i \(-0.376067\pi\)
0.379583 + 0.925158i \(0.376067\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8290.00 −0.540912 −0.270456 0.962732i \(-0.587174\pi\)
−0.270456 + 0.962732i \(0.587174\pi\)
\(618\) 0 0
\(619\) 24171.6 1.56953 0.784765 0.619793i \(-0.212784\pi\)
0.784765 + 0.619793i \(0.212784\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4542.99 0.292153
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17100.0 1.08398
\(630\) 0 0
\(631\) 12388.7 0.781593 0.390797 0.920477i \(-0.372200\pi\)
0.390797 + 0.920477i \(0.372200\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2199.39 0.137449
\(636\) 0 0
\(637\) −9894.00 −0.615407
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6750.00 −0.415927 −0.207963 0.978137i \(-0.566683\pi\)
−0.207963 + 0.978137i \(0.566683\pi\)
\(642\) 0 0
\(643\) 23428.9 1.43693 0.718464 0.695564i \(-0.244846\pi\)
0.718464 + 0.695564i \(0.244846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8689.38 −0.527998 −0.263999 0.964523i \(-0.585042\pi\)
−0.263999 + 0.964523i \(0.585042\pi\)
\(648\) 0 0
\(649\) −21216.0 −1.28321
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22282.0 −1.33532 −0.667659 0.744468i \(-0.732703\pi\)
−0.667659 + 0.744468i \(0.732703\pi\)
\(654\) 0 0
\(655\) 8869.66 0.529109
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15835.6 0.936065 0.468032 0.883711i \(-0.344963\pi\)
0.468032 + 0.883711i \(0.344963\pi\)
\(660\) 0 0
\(661\) −11758.0 −0.691881 −0.345940 0.938256i \(-0.612440\pi\)
−0.345940 + 0.938256i \(0.612440\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5437.17 0.315634
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11335.9 0.652184
\(672\) 0 0
\(673\) 11866.0 0.679644 0.339822 0.940490i \(-0.389633\pi\)
0.339822 + 0.940490i \(0.389633\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26574.0 1.50860 0.754300 0.656530i \(-0.227977\pi\)
0.754300 + 0.656530i \(0.227977\pi\)
\(678\) 0 0
\(679\) −6965.93 −0.393708
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13737.2 −0.769601 −0.384800 0.923000i \(-0.625730\pi\)
−0.384800 + 0.923000i \(0.625730\pi\)
\(684\) 0 0
\(685\) −8090.00 −0.451245
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8908.00 0.492551
\(690\) 0 0
\(691\) −22570.8 −1.24259 −0.621297 0.783576i \(-0.713394\pi\)
−0.621297 + 0.783576i \(0.713394\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12547.3 −0.684816
\(696\) 0 0
\(697\) 38988.0 2.11876
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7062.00 0.380497 0.190248 0.981736i \(-0.439071\pi\)
0.190248 + 0.981736i \(0.439071\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11811.8 −0.628328
\(708\) 0 0
\(709\) −1554.00 −0.0823155 −0.0411578 0.999153i \(-0.513105\pi\)
−0.0411578 + 0.999153i \(0.513105\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21112.0 1.10891
\(714\) 0 0
\(715\) −7355.32 −0.384718
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31065.4 −1.61133 −0.805664 0.592373i \(-0.798191\pi\)
−0.805664 + 0.592373i \(0.798191\pi\)
\(720\) 0 0
\(721\) 4940.00 0.255167
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 650.000 0.0332971
\(726\) 0 0
\(727\) −24452.8 −1.24746 −0.623732 0.781638i \(-0.714384\pi\)
−0.623732 + 0.781638i \(0.714384\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 51790.1 2.62042
\(732\) 0 0
\(733\) 15058.0 0.758772 0.379386 0.925238i \(-0.376135\pi\)
0.379386 + 0.925238i \(0.376135\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21528.0 1.07598
\(738\) 0 0
\(739\) −11912.7 −0.592987 −0.296493 0.955035i \(-0.595817\pi\)
−0.296493 + 0.955035i \(0.595817\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17270.6 −0.852754 −0.426377 0.904545i \(-0.640210\pi\)
−0.426377 + 0.904545i \(0.640210\pi\)
\(744\) 0 0
\(745\) −5050.00 −0.248346
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4420.00 0.215625
\(750\) 0 0
\(751\) 17869.1 0.868247 0.434123 0.900853i \(-0.357058\pi\)
0.434123 + 0.900853i \(0.357058\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −72.1110 −0.00347601
\(756\) 0 0
\(757\) 35410.0 1.70013 0.850065 0.526678i \(-0.176563\pi\)
0.850065 + 0.526678i \(0.176563\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3386.00 −0.161291 −0.0806455 0.996743i \(-0.525698\pi\)
−0.0806455 + 0.996743i \(0.525698\pi\)
\(762\) 0 0
\(763\) −2466.20 −0.117015
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16672.1 0.784868
\(768\) 0 0
\(769\) 11522.0 0.540304 0.270152 0.962818i \(-0.412926\pi\)
0.270152 + 0.962818i \(0.412926\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14382.0 0.669191 0.334595 0.942362i \(-0.391400\pi\)
0.334595 + 0.942362i \(0.391400\pi\)
\(774\) 0 0
\(775\) 2523.89 0.116981
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −45552.0 −2.08704
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8970.00 0.407838
\(786\) 0 0
\(787\) −814.855 −0.0369078 −0.0184539 0.999830i \(-0.505874\pi\)
−0.0184539 + 0.999830i \(0.505874\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15186.6 −0.682646
\(792\) 0 0
\(793\) −8908.00 −0.398906
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14550.0 0.646659 0.323330 0.946286i \(-0.395198\pi\)
0.323330 + 0.946286i \(0.395198\pi\)
\(798\) 0 0
\(799\) 66587.3 2.94830
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −29507.8 −1.29677
\(804\) 0 0
\(805\) 7540.00 0.330124
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37622.0 1.63501 0.817503 0.575925i \(-0.195358\pi\)
0.817503 + 0.575925i \(0.195358\pi\)
\(810\) 0 0
\(811\) 331.711 0.0143624 0.00718122 0.999974i \(-0.497714\pi\)
0.00718122 + 0.999974i \(0.497714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9915.27 −0.426155
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18690.0 −0.794501 −0.397251 0.917710i \(-0.630036\pi\)
−0.397251 + 0.917710i \(0.630036\pi\)
\(822\) 0 0
\(823\) 16866.8 0.714385 0.357192 0.934031i \(-0.383734\pi\)
0.357192 + 0.934031i \(0.383734\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39235.6 1.64977 0.824883 0.565304i \(-0.191241\pi\)
0.824883 + 0.565304i \(0.191241\pi\)
\(828\) 0 0
\(829\) −3718.00 −0.155768 −0.0778839 0.996962i \(-0.524816\pi\)
−0.0778839 + 0.996962i \(0.524816\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33174.0 1.37985
\(834\) 0 0
\(835\) −3785.83 −0.156903
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14335.7 0.589896 0.294948 0.955513i \(-0.404698\pi\)
0.294948 + 0.955513i \(0.404698\pi\)
\(840\) 0 0
\(841\) −23713.0 −0.972283
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5205.00 −0.211902
\(846\) 0 0
\(847\) 3901.21 0.158261
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −31368.3 −1.26356
\(852\) 0 0
\(853\) 26786.0 1.07519 0.537594 0.843204i \(-0.319333\pi\)
0.537594 + 0.843204i \(0.319333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19682.0 −0.784509 −0.392255 0.919857i \(-0.628305\pi\)
−0.392255 + 0.919857i \(0.628305\pi\)
\(858\) 0 0
\(859\) −33199.9 −1.31870 −0.659352 0.751834i \(-0.729169\pi\)
−0.659352 + 0.751834i \(0.729169\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10203.7 −0.402478 −0.201239 0.979542i \(-0.564497\pi\)
−0.201239 + 0.979542i \(0.564497\pi\)
\(864\) 0 0
\(865\) −14170.0 −0.556988
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8736.00 0.341022
\(870\) 0 0
\(871\) −16917.2 −0.658116
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 901.388 0.0348257
\(876\) 0 0
\(877\) 41986.0 1.61661 0.808305 0.588764i \(-0.200385\pi\)
0.808305 + 0.588764i \(0.200385\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −38142.0 −1.45861 −0.729306 0.684188i \(-0.760157\pi\)
−0.729306 + 0.684188i \(0.760157\pi\)
\(882\) 0 0
\(883\) 39235.6 1.49534 0.747669 0.664072i \(-0.231173\pi\)
0.747669 + 0.664072i \(0.231173\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41528.7 1.57204 0.786020 0.618202i \(-0.212139\pi\)
0.786020 + 0.618202i \(0.212139\pi\)
\(888\) 0 0
\(889\) 3172.00 0.119669
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −4759.33 −0.177751
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2624.84 0.0973786
\(900\) 0 0
\(901\) −29868.0 −1.10438
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7330.00 −0.269235
\(906\) 0 0
\(907\) 4319.45 0.158131 0.0790656 0.996869i \(-0.474806\pi\)
0.0790656 + 0.996869i \(0.474806\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −49713.3 −1.80799 −0.903994 0.427546i \(-0.859378\pi\)
−0.903994 + 0.427546i \(0.859378\pi\)
\(912\) 0 0
\(913\) 6552.00 0.237502
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12792.0 0.460664
\(918\) 0 0
\(919\) −5220.84 −0.187399 −0.0936994 0.995601i \(-0.529869\pi\)
−0.0936994 + 0.995601i \(0.529869\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 35795.9 1.27653
\(924\) 0 0
\(925\) −3750.00 −0.133296
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17546.0 0.619662 0.309831 0.950792i \(-0.399728\pi\)
0.309831 + 0.950792i \(0.399728\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 24662.0 0.862602
\(936\) 0 0
\(937\) −11390.0 −0.397113 −0.198557 0.980089i \(-0.563625\pi\)
−0.198557 + 0.980089i \(0.563625\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −41838.0 −1.44939 −0.724697 0.689068i \(-0.758020\pi\)
−0.724697 + 0.689068i \(0.758020\pi\)
\(942\) 0 0
\(943\) −71519.7 −2.46978
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35226.2 1.20876 0.604382 0.796695i \(-0.293420\pi\)
0.604382 + 0.796695i \(0.293420\pi\)
\(948\) 0 0
\(949\) 23188.0 0.793166
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −28522.0 −0.969484 −0.484742 0.874657i \(-0.661086\pi\)
−0.484742 + 0.874657i \(0.661086\pi\)
\(954\) 0 0
\(955\) −17378.8 −0.588862
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11667.6 −0.392873
\(960\) 0 0
\(961\) −19599.0 −0.657883
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −230.000 −0.00767250
\(966\) 0 0
\(967\) −4579.05 −0.152277 −0.0761387 0.997097i \(-0.524259\pi\)
−0.0761387 + 0.997097i \(0.524259\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22282.3 −0.736430 −0.368215 0.929741i \(-0.620031\pi\)
−0.368215 + 0.929741i \(0.620031\pi\)
\(972\) 0 0
\(973\) −18096.0 −0.596229
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2214.00 0.0724996 0.0362498 0.999343i \(-0.488459\pi\)
0.0362498 + 0.999343i \(0.488459\pi\)
\(978\) 0 0
\(979\) −27258.0 −0.889855
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24871.1 0.806983 0.403492 0.914983i \(-0.367796\pi\)
0.403492 + 0.914983i \(0.367796\pi\)
\(984\) 0 0
\(985\) −5610.00 −0.181472
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −95004.0 −3.05455
\(990\) 0 0
\(991\) −46453.9 −1.48906 −0.744530 0.667590i \(-0.767326\pi\)
−0.744530 + 0.667590i \(0.767326\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14999.1 0.477893
\(996\) 0 0
\(997\) 57930.0 1.84018 0.920091 0.391705i \(-0.128114\pi\)
0.920091 + 0.391705i \(0.128114\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.bd.1.2 2
3.2 odd 2 160.4.a.e.1.2 yes 2
4.3 odd 2 inner 1440.4.a.bd.1.1 2
12.11 even 2 160.4.a.e.1.1 2
15.2 even 4 800.4.c.h.449.2 4
15.8 even 4 800.4.c.h.449.4 4
15.14 odd 2 800.4.a.q.1.1 2
24.5 odd 2 320.4.a.r.1.1 2
24.11 even 2 320.4.a.r.1.2 2
48.5 odd 4 1280.4.d.t.641.1 4
48.11 even 4 1280.4.d.t.641.3 4
48.29 odd 4 1280.4.d.t.641.4 4
48.35 even 4 1280.4.d.t.641.2 4
60.23 odd 4 800.4.c.h.449.1 4
60.47 odd 4 800.4.c.h.449.3 4
60.59 even 2 800.4.a.q.1.2 2
120.29 odd 2 1600.4.a.ci.1.2 2
120.59 even 2 1600.4.a.ci.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.e.1.1 2 12.11 even 2
160.4.a.e.1.2 yes 2 3.2 odd 2
320.4.a.r.1.1 2 24.5 odd 2
320.4.a.r.1.2 2 24.11 even 2
800.4.a.q.1.1 2 15.14 odd 2
800.4.a.q.1.2 2 60.59 even 2
800.4.c.h.449.1 4 60.23 odd 4
800.4.c.h.449.2 4 15.2 even 4
800.4.c.h.449.3 4 60.47 odd 4
800.4.c.h.449.4 4 15.8 even 4
1280.4.d.t.641.1 4 48.5 odd 4
1280.4.d.t.641.2 4 48.35 even 4
1280.4.d.t.641.3 4 48.11 even 4
1280.4.d.t.641.4 4 48.29 odd 4
1440.4.a.bd.1.1 2 4.3 odd 2 inner
1440.4.a.bd.1.2 2 1.1 even 1 trivial
1600.4.a.ci.1.1 2 120.59 even 2
1600.4.a.ci.1.2 2 120.29 odd 2