Properties

Label 1440.2.q.m.961.4
Level $1440$
Weight $2$
Character 1440.961
Analytic conductor $11.498$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1440,2,Mod(481,1440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1440.481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1440, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.4
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1440.961
Dual form 1440.2.q.m.481.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67303 + 0.448288i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-0.258819 + 0.448288i) q^{7} +(2.59808 + 1.50000i) q^{9} +(0.189469 - 0.328169i) q^{11} +(0.366025 + 0.633975i) q^{13} +(0.448288 + 1.67303i) q^{15} +2.73205 q^{17} +2.44949 q^{19} +(-0.633975 + 0.633975i) q^{21} +(-0.258819 - 0.448288i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(3.67423 + 3.67423i) q^{27} +(-1.50000 + 2.59808i) q^{29} +(0.189469 + 0.328169i) q^{31} +(0.464102 - 0.464102i) q^{33} -0.517638 q^{35} +0.732051 q^{37} +(0.328169 + 1.22474i) q^{39} +(2.33013 + 4.03590i) q^{41} +(2.12132 - 3.67423i) q^{43} +3.00000i q^{45} +(-3.41542 + 5.91567i) q^{47} +(3.36603 + 5.83013i) q^{49} +(4.57081 + 1.22474i) q^{51} +2.53590 q^{53} +0.378937 q^{55} +(4.09808 + 1.09808i) q^{57} +(-6.17449 - 10.6945i) q^{59} +(-3.33013 + 5.76795i) q^{61} +(-1.34486 + 0.776457i) q^{63} +(-0.366025 + 0.633975i) q^{65} +(1.86250 + 3.22595i) q^{67} +(-0.232051 - 0.866025i) q^{69} -9.89949 q^{71} +4.39230 q^{73} +(-1.22474 + 1.22474i) q^{75} +(0.0980762 + 0.169873i) q^{77} +(5.27792 - 9.14162i) q^{79} +(4.50000 + 7.79423i) q^{81} +(0.637756 - 1.10463i) q^{83} +(1.36603 + 2.36603i) q^{85} +(-3.67423 + 3.67423i) q^{87} +9.39230 q^{89} -0.378937 q^{91} +(0.169873 + 0.633975i) q^{93} +(1.22474 + 2.12132i) q^{95} +(5.46410 - 9.46410i) q^{97} +(0.984508 - 0.568406i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 4 q^{13} + 8 q^{17} - 12 q^{21} - 4 q^{25} - 12 q^{29} - 24 q^{33} - 8 q^{37} - 16 q^{41} + 20 q^{49} + 48 q^{53} + 12 q^{57} + 8 q^{61} + 4 q^{65} + 12 q^{69} - 48 q^{73} - 20 q^{77} + 36 q^{81}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.67303 + 0.448288i 0.965926 + 0.258819i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.258819 + 0.448288i −0.0978244 + 0.169437i −0.910784 0.412883i \(-0.864522\pi\)
0.812959 + 0.582320i \(0.197855\pi\)
\(8\) 0 0
\(9\) 2.59808 + 1.50000i 0.866025 + 0.500000i
\(10\) 0 0
\(11\) 0.189469 0.328169i 0.0571270 0.0989468i −0.836048 0.548657i \(-0.815139\pi\)
0.893175 + 0.449710i \(0.148473\pi\)
\(12\) 0 0
\(13\) 0.366025 + 0.633975i 0.101517 + 0.175833i 0.912310 0.409500i \(-0.134297\pi\)
−0.810793 + 0.585333i \(0.800964\pi\)
\(14\) 0 0
\(15\) 0.448288 + 1.67303i 0.115747 + 0.431975i
\(16\) 0 0
\(17\) 2.73205 0.662620 0.331310 0.943522i \(-0.392509\pi\)
0.331310 + 0.943522i \(0.392509\pi\)
\(18\) 0 0
\(19\) 2.44949 0.561951 0.280976 0.959715i \(-0.409342\pi\)
0.280976 + 0.959715i \(0.409342\pi\)
\(20\) 0 0
\(21\) −0.633975 + 0.633975i −0.138345 + 0.138345i
\(22\) 0 0
\(23\) −0.258819 0.448288i −0.0539675 0.0934745i 0.837780 0.546009i \(-0.183853\pi\)
−0.891747 + 0.452534i \(0.850520\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 3.67423 + 3.67423i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 0.189469 + 0.328169i 0.0340296 + 0.0589410i 0.882539 0.470240i \(-0.155833\pi\)
−0.848509 + 0.529181i \(0.822499\pi\)
\(32\) 0 0
\(33\) 0.464102 0.464102i 0.0807897 0.0807897i
\(34\) 0 0
\(35\) −0.517638 −0.0874968
\(36\) 0 0
\(37\) 0.732051 0.120348 0.0601742 0.998188i \(-0.480834\pi\)
0.0601742 + 0.998188i \(0.480834\pi\)
\(38\) 0 0
\(39\) 0.328169 + 1.22474i 0.0525492 + 0.196116i
\(40\) 0 0
\(41\) 2.33013 + 4.03590i 0.363905 + 0.630301i 0.988600 0.150567i \(-0.0481100\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 2.12132 3.67423i 0.323498 0.560316i −0.657709 0.753272i \(-0.728474\pi\)
0.981207 + 0.192957i \(0.0618077\pi\)
\(44\) 0 0
\(45\) 3.00000i 0.447214i
\(46\) 0 0
\(47\) −3.41542 + 5.91567i −0.498190 + 0.862890i −0.999998 0.00208925i \(-0.999335\pi\)
0.501808 + 0.864979i \(0.332668\pi\)
\(48\) 0 0
\(49\) 3.36603 + 5.83013i 0.480861 + 0.832875i
\(50\) 0 0
\(51\) 4.57081 + 1.22474i 0.640041 + 0.171499i
\(52\) 0 0
\(53\) 2.53590 0.348332 0.174166 0.984716i \(-0.444277\pi\)
0.174166 + 0.984716i \(0.444277\pi\)
\(54\) 0 0
\(55\) 0.378937 0.0510959
\(56\) 0 0
\(57\) 4.09808 + 1.09808i 0.542803 + 0.145444i
\(58\) 0 0
\(59\) −6.17449 10.6945i −0.803850 1.39231i −0.917064 0.398739i \(-0.869448\pi\)
0.113214 0.993571i \(-0.463885\pi\)
\(60\) 0 0
\(61\) −3.33013 + 5.76795i −0.426379 + 0.738510i −0.996548 0.0830172i \(-0.973544\pi\)
0.570169 + 0.821527i \(0.306878\pi\)
\(62\) 0 0
\(63\) −1.34486 + 0.776457i −0.169437 + 0.0978244i
\(64\) 0 0
\(65\) −0.366025 + 0.633975i −0.0453999 + 0.0786349i
\(66\) 0 0
\(67\) 1.86250 + 3.22595i 0.227541 + 0.394112i 0.957079 0.289828i \(-0.0935982\pi\)
−0.729538 + 0.683940i \(0.760265\pi\)
\(68\) 0 0
\(69\) −0.232051 0.866025i −0.0279356 0.104257i
\(70\) 0 0
\(71\) −9.89949 −1.17485 −0.587427 0.809277i \(-0.699859\pi\)
−0.587427 + 0.809277i \(0.699859\pi\)
\(72\) 0 0
\(73\) 4.39230 0.514080 0.257040 0.966401i \(-0.417253\pi\)
0.257040 + 0.966401i \(0.417253\pi\)
\(74\) 0 0
\(75\) −1.22474 + 1.22474i −0.141421 + 0.141421i
\(76\) 0 0
\(77\) 0.0980762 + 0.169873i 0.0111768 + 0.0193588i
\(78\) 0 0
\(79\) 5.27792 9.14162i 0.593812 1.02851i −0.399901 0.916558i \(-0.630956\pi\)
0.993713 0.111954i \(-0.0357111\pi\)
\(80\) 0 0
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0.637756 1.10463i 0.0700029 0.121249i −0.828899 0.559398i \(-0.811032\pi\)
0.898902 + 0.438149i \(0.144366\pi\)
\(84\) 0 0
\(85\) 1.36603 + 2.36603i 0.148166 + 0.256631i
\(86\) 0 0
\(87\) −3.67423 + 3.67423i −0.393919 + 0.393919i
\(88\) 0 0
\(89\) 9.39230 0.995582 0.497791 0.867297i \(-0.334145\pi\)
0.497791 + 0.867297i \(0.334145\pi\)
\(90\) 0 0
\(91\) −0.378937 −0.0397234
\(92\) 0 0
\(93\) 0.169873 + 0.633975i 0.0176150 + 0.0657401i
\(94\) 0 0
\(95\) 1.22474 + 2.12132i 0.125656 + 0.217643i
\(96\) 0 0
\(97\) 5.46410 9.46410i 0.554795 0.960934i −0.443124 0.896460i \(-0.646130\pi\)
0.997919 0.0644736i \(-0.0205368\pi\)
\(98\) 0 0
\(99\) 0.984508 0.568406i 0.0989468 0.0571270i
\(100\) 0 0
\(101\) −6.19615 + 10.7321i −0.616540 + 1.06788i 0.373572 + 0.927601i \(0.378133\pi\)
−0.990112 + 0.140278i \(0.955200\pi\)
\(102\) 0 0
\(103\) −8.05558 13.9527i −0.793739 1.37480i −0.923637 0.383270i \(-0.874798\pi\)
0.129897 0.991527i \(-0.458535\pi\)
\(104\) 0 0
\(105\) −0.866025 0.232051i −0.0845154 0.0226458i
\(106\) 0 0
\(107\) −14.1793 −1.37076 −0.685382 0.728183i \(-0.740365\pi\)
−0.685382 + 0.728183i \(0.740365\pi\)
\(108\) 0 0
\(109\) −1.73205 −0.165900 −0.0829502 0.996554i \(-0.526434\pi\)
−0.0829502 + 0.996554i \(0.526434\pi\)
\(110\) 0 0
\(111\) 1.22474 + 0.328169i 0.116248 + 0.0311485i
\(112\) 0 0
\(113\) 1.00000 + 1.73205i 0.0940721 + 0.162938i 0.909221 0.416314i \(-0.136678\pi\)
−0.815149 + 0.579252i \(0.803345\pi\)
\(114\) 0 0
\(115\) 0.258819 0.448288i 0.0241350 0.0418030i
\(116\) 0 0
\(117\) 2.19615i 0.203034i
\(118\) 0 0
\(119\) −0.707107 + 1.22474i −0.0648204 + 0.112272i
\(120\) 0 0
\(121\) 5.42820 + 9.40192i 0.493473 + 0.854720i
\(122\) 0 0
\(123\) 2.08913 + 7.79676i 0.188371 + 0.703010i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.34658 0.740639 0.370320 0.928904i \(-0.379248\pi\)
0.370320 + 0.928904i \(0.379248\pi\)
\(128\) 0 0
\(129\) 5.19615 5.19615i 0.457496 0.457496i
\(130\) 0 0
\(131\) −5.65685 9.79796i −0.494242 0.856052i 0.505736 0.862688i \(-0.331221\pi\)
−0.999978 + 0.00663646i \(0.997888\pi\)
\(132\) 0 0
\(133\) −0.633975 + 1.09808i −0.0549726 + 0.0952153i
\(134\) 0 0
\(135\) −1.34486 + 5.01910i −0.115747 + 0.431975i
\(136\) 0 0
\(137\) 3.92820 6.80385i 0.335609 0.581292i −0.647993 0.761647i \(-0.724391\pi\)
0.983602 + 0.180355i \(0.0577246\pi\)
\(138\) 0 0
\(139\) −6.31319 10.9348i −0.535478 0.927475i −0.999140 0.0414630i \(-0.986798\pi\)
0.463662 0.886012i \(-0.346535\pi\)
\(140\) 0 0
\(141\) −8.36603 + 8.36603i −0.704546 + 0.704546i
\(142\) 0 0
\(143\) 0.277401 0.0231975
\(144\) 0 0
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) 3.01790 + 11.2629i 0.248912 + 0.928952i
\(148\) 0 0
\(149\) −9.33013 16.1603i −0.764354 1.32390i −0.940588 0.339551i \(-0.889725\pi\)
0.176234 0.984348i \(-0.443609\pi\)
\(150\) 0 0
\(151\) 8.57321 14.8492i 0.697678 1.20841i −0.271591 0.962413i \(-0.587550\pi\)
0.969269 0.246001i \(-0.0791168\pi\)
\(152\) 0 0
\(153\) 7.09808 + 4.09808i 0.573845 + 0.331310i
\(154\) 0 0
\(155\) −0.189469 + 0.328169i −0.0152185 + 0.0263592i
\(156\) 0 0
\(157\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) 0 0
\(159\) 4.24264 + 1.13681i 0.336463 + 0.0901551i
\(160\) 0 0
\(161\) 0.267949 0.0211174
\(162\) 0 0
\(163\) 5.00052 0.391671 0.195835 0.980637i \(-0.437258\pi\)
0.195835 + 0.980637i \(0.437258\pi\)
\(164\) 0 0
\(165\) 0.633975 + 0.169873i 0.0493549 + 0.0132246i
\(166\) 0 0
\(167\) 0.965926 + 1.67303i 0.0747456 + 0.129463i 0.900976 0.433870i \(-0.142852\pi\)
−0.826230 + 0.563333i \(0.809519\pi\)
\(168\) 0 0
\(169\) 6.23205 10.7942i 0.479389 0.830325i
\(170\) 0 0
\(171\) 6.36396 + 3.67423i 0.486664 + 0.280976i
\(172\) 0 0
\(173\) −4.00000 + 6.92820i −0.304114 + 0.526742i −0.977064 0.212947i \(-0.931694\pi\)
0.672949 + 0.739689i \(0.265027\pi\)
\(174\) 0 0
\(175\) −0.258819 0.448288i −0.0195649 0.0338874i
\(176\) 0 0
\(177\) −5.53590 20.6603i −0.416104 1.55292i
\(178\) 0 0
\(179\) −16.8690 −1.26085 −0.630425 0.776250i \(-0.717119\pi\)
−0.630425 + 0.776250i \(0.717119\pi\)
\(180\) 0 0
\(181\) −8.85641 −0.658292 −0.329146 0.944279i \(-0.606761\pi\)
−0.329146 + 0.944279i \(0.606761\pi\)
\(182\) 0 0
\(183\) −8.15711 + 8.15711i −0.602991 + 0.602991i
\(184\) 0 0
\(185\) 0.366025 + 0.633975i 0.0269107 + 0.0466107i
\(186\) 0 0
\(187\) 0.517638 0.896575i 0.0378534 0.0655641i
\(188\) 0 0
\(189\) −2.59808 + 0.696152i −0.188982 + 0.0506376i
\(190\) 0 0
\(191\) −7.67664 + 13.2963i −0.555462 + 0.962089i 0.442405 + 0.896815i \(0.354125\pi\)
−0.997867 + 0.0652733i \(0.979208\pi\)
\(192\) 0 0
\(193\) −1.09808 1.90192i −0.0790413 0.136903i 0.823795 0.566887i \(-0.191853\pi\)
−0.902837 + 0.429984i \(0.858519\pi\)
\(194\) 0 0
\(195\) −0.896575 + 0.896575i −0.0642051 + 0.0642051i
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 13.7632 0.975647 0.487824 0.872942i \(-0.337791\pi\)
0.487824 + 0.872942i \(0.337791\pi\)
\(200\) 0 0
\(201\) 1.66987 + 6.23205i 0.117784 + 0.439575i
\(202\) 0 0
\(203\) −0.776457 1.34486i −0.0544966 0.0943909i
\(204\) 0 0
\(205\) −2.33013 + 4.03590i −0.162743 + 0.281879i
\(206\) 0 0
\(207\) 1.55291i 0.107935i
\(208\) 0 0
\(209\) 0.464102 0.803848i 0.0321026 0.0556033i
\(210\) 0 0
\(211\) 7.91688 + 13.7124i 0.545020 + 0.944003i 0.998606 + 0.0527898i \(0.0168113\pi\)
−0.453585 + 0.891213i \(0.649855\pi\)
\(212\) 0 0
\(213\) −16.5622 4.43782i −1.13482 0.304075i
\(214\) 0 0
\(215\) 4.24264 0.289346
\(216\) 0 0
\(217\) −0.196152 −0.0133157
\(218\) 0 0
\(219\) 7.34847 + 1.96902i 0.496564 + 0.133054i
\(220\) 0 0
\(221\) 1.00000 + 1.73205i 0.0672673 + 0.116510i
\(222\) 0 0
\(223\) 13.8325 23.9587i 0.926296 1.60439i 0.136832 0.990594i \(-0.456308\pi\)
0.789464 0.613797i \(-0.210359\pi\)
\(224\) 0 0
\(225\) −2.59808 + 1.50000i −0.173205 + 0.100000i
\(226\) 0 0
\(227\) −2.91636 + 5.05128i −0.193566 + 0.335265i −0.946429 0.322911i \(-0.895339\pi\)
0.752864 + 0.658176i \(0.228672\pi\)
\(228\) 0 0
\(229\) −9.89230 17.1340i −0.653702 1.13224i −0.982218 0.187746i \(-0.939882\pi\)
0.328516 0.944499i \(-0.393452\pi\)
\(230\) 0 0
\(231\) 0.0879327 + 0.328169i 0.00578555 + 0.0215920i
\(232\) 0 0
\(233\) 12.7321 0.834104 0.417052 0.908883i \(-0.363063\pi\)
0.417052 + 0.908883i \(0.363063\pi\)
\(234\) 0 0
\(235\) −6.83083 −0.445594
\(236\) 0 0
\(237\) 12.9282 12.9282i 0.839777 0.839777i
\(238\) 0 0
\(239\) 7.48717 + 12.9682i 0.484305 + 0.838840i 0.999837 0.0180295i \(-0.00573926\pi\)
−0.515533 + 0.856870i \(0.672406\pi\)
\(240\) 0 0
\(241\) −3.59808 + 6.23205i −0.231772 + 0.401442i −0.958330 0.285664i \(-0.907786\pi\)
0.726557 + 0.687106i \(0.241119\pi\)
\(242\) 0 0
\(243\) 4.03459 + 15.0573i 0.258819 + 0.965926i
\(244\) 0 0
\(245\) −3.36603 + 5.83013i −0.215047 + 0.372473i
\(246\) 0 0
\(247\) 0.896575 + 1.55291i 0.0570477 + 0.0988096i
\(248\) 0 0
\(249\) 1.56218 1.56218i 0.0989990 0.0989990i
\(250\) 0 0
\(251\) −13.2827 −0.838398 −0.419199 0.907894i \(-0.637689\pi\)
−0.419199 + 0.907894i \(0.637689\pi\)
\(252\) 0 0
\(253\) −0.196152 −0.0123320
\(254\) 0 0
\(255\) 1.22474 + 4.57081i 0.0766965 + 0.286235i
\(256\) 0 0
\(257\) −14.8564 25.7321i −0.926717 1.60512i −0.788776 0.614681i \(-0.789285\pi\)
−0.137941 0.990440i \(-0.544049\pi\)
\(258\) 0 0
\(259\) −0.189469 + 0.328169i −0.0117730 + 0.0203915i
\(260\) 0 0
\(261\) −7.79423 + 4.50000i −0.482451 + 0.278543i
\(262\) 0 0
\(263\) 1.36345 2.36156i 0.0840737 0.145620i −0.820922 0.571040i \(-0.806540\pi\)
0.904996 + 0.425420i \(0.139874\pi\)
\(264\) 0 0
\(265\) 1.26795 + 2.19615i 0.0778895 + 0.134909i
\(266\) 0 0
\(267\) 15.7136 + 4.21046i 0.961659 + 0.257676i
\(268\) 0 0
\(269\) 3.33975 0.203628 0.101814 0.994803i \(-0.467535\pi\)
0.101814 + 0.994803i \(0.467535\pi\)
\(270\) 0 0
\(271\) 23.0064 1.39754 0.698768 0.715348i \(-0.253732\pi\)
0.698768 + 0.715348i \(0.253732\pi\)
\(272\) 0 0
\(273\) −0.633975 0.169873i −0.0383699 0.0102812i
\(274\) 0 0
\(275\) 0.189469 + 0.328169i 0.0114254 + 0.0197894i
\(276\) 0 0
\(277\) 2.29423 3.97372i 0.137847 0.238758i −0.788835 0.614606i \(-0.789315\pi\)
0.926681 + 0.375848i \(0.122648\pi\)
\(278\) 0 0
\(279\) 1.13681i 0.0680592i
\(280\) 0 0
\(281\) −12.5263 + 21.6962i −0.747255 + 1.29428i 0.201879 + 0.979411i \(0.435295\pi\)
−0.949134 + 0.314873i \(0.898038\pi\)
\(282\) 0 0
\(283\) −5.91567 10.2462i −0.351650 0.609076i 0.634888 0.772604i \(-0.281046\pi\)
−0.986539 + 0.163528i \(0.947713\pi\)
\(284\) 0 0
\(285\) 1.09808 + 4.09808i 0.0650444 + 0.242749i
\(286\) 0 0
\(287\) −2.41233 −0.142395
\(288\) 0 0
\(289\) −9.53590 −0.560935
\(290\) 0 0
\(291\) 13.3843 13.3843i 0.784599 0.784599i
\(292\) 0 0
\(293\) −15.5622 26.9545i −0.909152 1.57470i −0.815245 0.579117i \(-0.803398\pi\)
−0.0939075 0.995581i \(-0.529936\pi\)
\(294\) 0 0
\(295\) 6.17449 10.6945i 0.359493 0.622660i
\(296\) 0 0
\(297\) 1.90192 0.509619i 0.110361 0.0295711i
\(298\) 0 0
\(299\) 0.189469 0.328169i 0.0109573 0.0189785i
\(300\) 0 0
\(301\) 1.09808 + 1.90192i 0.0632921 + 0.109625i
\(302\) 0 0
\(303\) −15.1774 + 15.1774i −0.871920 + 0.871920i
\(304\) 0 0
\(305\) −6.66025 −0.381365
\(306\) 0 0
\(307\) 7.20977 0.411483 0.205742 0.978606i \(-0.434039\pi\)
0.205742 + 0.978606i \(0.434039\pi\)
\(308\) 0 0
\(309\) −7.22243 26.9545i −0.410870 1.53339i
\(310\) 0 0
\(311\) −7.77817 13.4722i −0.441060 0.763938i 0.556709 0.830708i \(-0.312064\pi\)
−0.997768 + 0.0667698i \(0.978731\pi\)
\(312\) 0 0
\(313\) 0.633975 1.09808i 0.0358344 0.0620669i −0.847552 0.530712i \(-0.821924\pi\)
0.883386 + 0.468645i \(0.155258\pi\)
\(314\) 0 0
\(315\) −1.34486 0.776457i −0.0757745 0.0437484i
\(316\) 0 0
\(317\) 2.83013 4.90192i 0.158956 0.275319i −0.775537 0.631303i \(-0.782521\pi\)
0.934492 + 0.355983i \(0.115854\pi\)
\(318\) 0 0
\(319\) 0.568406 + 0.984508i 0.0318246 + 0.0551219i
\(320\) 0 0
\(321\) −23.7224 6.35641i −1.32406 0.354780i
\(322\) 0 0
\(323\) 6.69213 0.372360
\(324\) 0 0
\(325\) −0.732051 −0.0406069
\(326\) 0 0
\(327\) −2.89778 0.776457i −0.160247 0.0429382i
\(328\) 0 0
\(329\) −1.76795 3.06218i −0.0974702 0.168823i
\(330\) 0 0
\(331\) −13.5230 + 23.4225i −0.743289 + 1.28741i 0.207701 + 0.978192i \(0.433402\pi\)
−0.950990 + 0.309222i \(0.899931\pi\)
\(332\) 0 0
\(333\) 1.90192 + 1.09808i 0.104225 + 0.0601742i
\(334\) 0 0
\(335\) −1.86250 + 3.22595i −0.101759 + 0.176252i
\(336\) 0 0
\(337\) −15.5885 27.0000i −0.849157 1.47078i −0.881961 0.471322i \(-0.843777\pi\)
0.0328039 0.999462i \(-0.489556\pi\)
\(338\) 0 0
\(339\) 0.896575 + 3.34607i 0.0486953 + 0.181733i
\(340\) 0 0
\(341\) 0.143594 0.00777603
\(342\) 0 0
\(343\) −7.10823 −0.383808
\(344\) 0 0
\(345\) 0.633975 0.633975i 0.0341320 0.0341320i
\(346\) 0 0
\(347\) −14.8492 25.7196i −0.797149 1.38070i −0.921466 0.388460i \(-0.873007\pi\)
0.124316 0.992243i \(-0.460326\pi\)
\(348\) 0 0
\(349\) 2.42820 4.20577i 0.129979 0.225130i −0.793689 0.608323i \(-0.791842\pi\)
0.923668 + 0.383194i \(0.125176\pi\)
\(350\) 0 0
\(351\) −0.984508 + 3.67423i −0.0525492 + 0.196116i
\(352\) 0 0
\(353\) −3.46410 + 6.00000i −0.184376 + 0.319348i −0.943366 0.331754i \(-0.892360\pi\)
0.758990 + 0.651102i \(0.225693\pi\)
\(354\) 0 0
\(355\) −4.94975 8.57321i −0.262705 0.455019i
\(356\) 0 0
\(357\) −1.73205 + 1.73205i −0.0916698 + 0.0916698i
\(358\) 0 0
\(359\) 0.859411 0.0453580 0.0226790 0.999743i \(-0.492780\pi\)
0.0226790 + 0.999743i \(0.492780\pi\)
\(360\) 0 0
\(361\) −13.0000 −0.684211
\(362\) 0 0
\(363\) 4.86679 + 18.1631i 0.255440 + 0.953317i
\(364\) 0 0
\(365\) 2.19615 + 3.80385i 0.114952 + 0.199102i
\(366\) 0 0
\(367\) 5.88349 10.1905i 0.307116 0.531940i −0.670615 0.741806i \(-0.733970\pi\)
0.977730 + 0.209866i \(0.0673029\pi\)
\(368\) 0 0
\(369\) 13.9808i 0.727809i
\(370\) 0 0
\(371\) −0.656339 + 1.13681i −0.0340754 + 0.0590203i
\(372\) 0 0
\(373\) −16.1962 28.0526i −0.838605 1.45251i −0.891061 0.453883i \(-0.850038\pi\)
0.0524562 0.998623i \(-0.483295\pi\)
\(374\) 0 0
\(375\) −1.67303 0.448288i −0.0863950 0.0231495i
\(376\) 0 0
\(377\) −2.19615 −0.113108
\(378\) 0 0
\(379\) −14.1421 −0.726433 −0.363216 0.931705i \(-0.618321\pi\)
−0.363216 + 0.931705i \(0.618321\pi\)
\(380\) 0 0
\(381\) 13.9641 + 3.74167i 0.715403 + 0.191692i
\(382\) 0 0
\(383\) 9.57133 + 16.5780i 0.489072 + 0.847097i 0.999921 0.0125731i \(-0.00400223\pi\)
−0.510849 + 0.859670i \(0.670669\pi\)
\(384\) 0 0
\(385\) −0.0980762 + 0.169873i −0.00499843 + 0.00865753i
\(386\) 0 0
\(387\) 11.0227 6.36396i 0.560316 0.323498i
\(388\) 0 0
\(389\) 3.52628 6.10770i 0.178789 0.309672i −0.762677 0.646780i \(-0.776115\pi\)
0.941466 + 0.337107i \(0.109449\pi\)
\(390\) 0 0
\(391\) −0.707107 1.22474i −0.0357599 0.0619380i
\(392\) 0 0
\(393\) −5.07180 18.9282i −0.255838 0.954802i
\(394\) 0 0
\(395\) 10.5558 0.531122
\(396\) 0 0
\(397\) 22.7846 1.14353 0.571763 0.820419i \(-0.306260\pi\)
0.571763 + 0.820419i \(0.306260\pi\)
\(398\) 0 0
\(399\) −1.55291 + 1.55291i −0.0777430 + 0.0777430i
\(400\) 0 0
\(401\) −8.00000 13.8564i −0.399501 0.691956i 0.594163 0.804344i \(-0.297483\pi\)
−0.993664 + 0.112388i \(0.964150\pi\)
\(402\) 0 0
\(403\) −0.138701 + 0.240237i −0.00690917 + 0.0119670i
\(404\) 0 0
\(405\) −4.50000 + 7.79423i −0.223607 + 0.387298i
\(406\) 0 0
\(407\) 0.138701 0.240237i 0.00687514 0.0119081i
\(408\) 0 0
\(409\) 13.1962 + 22.8564i 0.652508 + 1.13018i 0.982512 + 0.186197i \(0.0596163\pi\)
−0.330005 + 0.943979i \(0.607050\pi\)
\(410\) 0 0
\(411\) 9.62209 9.62209i 0.474623 0.474623i
\(412\) 0 0
\(413\) 6.39230 0.314545
\(414\) 0 0
\(415\) 1.27551 0.0626125
\(416\) 0 0
\(417\) −5.66025 21.1244i −0.277184 1.03446i
\(418\) 0 0
\(419\) −9.33109 16.1619i −0.455854 0.789561i 0.542883 0.839808i \(-0.317333\pi\)
−0.998737 + 0.0502467i \(0.983999\pi\)
\(420\) 0 0
\(421\) −11.7321 + 20.3205i −0.571785 + 0.990361i 0.424598 + 0.905382i \(0.360416\pi\)
−0.996383 + 0.0849788i \(0.972918\pi\)
\(422\) 0 0
\(423\) −17.7470 + 10.2462i −0.862890 + 0.498190i
\(424\) 0 0
\(425\) −1.36603 + 2.36603i −0.0662620 + 0.114769i
\(426\) 0 0
\(427\) −1.72380 2.98571i −0.0834206 0.144489i
\(428\) 0 0
\(429\) 0.464102 + 0.124356i 0.0224070 + 0.00600395i
\(430\) 0 0
\(431\) −39.3949 −1.89759 −0.948793 0.315899i \(-0.897694\pi\)
−0.948793 + 0.315899i \(0.897694\pi\)
\(432\) 0 0
\(433\) 3.41154 0.163948 0.0819741 0.996634i \(-0.473878\pi\)
0.0819741 + 0.996634i \(0.473878\pi\)
\(434\) 0 0
\(435\) −5.01910 1.34486i −0.240647 0.0644813i
\(436\) 0 0
\(437\) −0.633975 1.09808i −0.0303271 0.0525281i
\(438\) 0 0
\(439\) −6.83083 + 11.8313i −0.326018 + 0.564679i −0.981718 0.190342i \(-0.939040\pi\)
0.655700 + 0.755022i \(0.272374\pi\)
\(440\) 0 0
\(441\) 20.1962i 0.961722i
\(442\) 0 0
\(443\) 11.0041 19.0597i 0.522822 0.905554i −0.476826 0.878998i \(-0.658213\pi\)
0.999647 0.0265557i \(-0.00845394\pi\)
\(444\) 0 0
\(445\) 4.69615 + 8.13397i 0.222619 + 0.385587i
\(446\) 0 0
\(447\) −8.36516 31.2192i −0.395659 1.47662i
\(448\) 0 0
\(449\) 9.07180 0.428125 0.214062 0.976820i \(-0.431330\pi\)
0.214062 + 0.976820i \(0.431330\pi\)
\(450\) 0 0
\(451\) 1.76594 0.0831551
\(452\) 0 0
\(453\) 21.0000 21.0000i 0.986666 0.986666i
\(454\) 0 0
\(455\) −0.189469 0.328169i −0.00888243 0.0153848i
\(456\) 0 0
\(457\) 6.56218 11.3660i 0.306966 0.531680i −0.670731 0.741700i \(-0.734020\pi\)
0.977697 + 0.210020i \(0.0673530\pi\)
\(458\) 0 0
\(459\) 10.0382 + 10.0382i 0.468543 + 0.468543i
\(460\) 0 0
\(461\) −7.96410 + 13.7942i −0.370925 + 0.642461i −0.989708 0.143101i \(-0.954293\pi\)
0.618783 + 0.785562i \(0.287626\pi\)
\(462\) 0 0
\(463\) −9.22955 15.9861i −0.428934 0.742935i 0.567845 0.823135i \(-0.307777\pi\)
−0.996779 + 0.0802005i \(0.974444\pi\)
\(464\) 0 0
\(465\) −0.464102 + 0.464102i −0.0215222 + 0.0215222i
\(466\) 0 0
\(467\) −25.3543 −1.17326 −0.586629 0.809856i \(-0.699545\pi\)
−0.586629 + 0.809856i \(0.699545\pi\)
\(468\) 0 0
\(469\) −1.92820 −0.0890362
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.803848 1.39230i −0.0369610 0.0640182i
\(474\) 0 0
\(475\) −1.22474 + 2.12132i −0.0561951 + 0.0973329i
\(476\) 0 0
\(477\) 6.58846 + 3.80385i 0.301665 + 0.174166i
\(478\) 0 0
\(479\) −7.82894 + 13.5601i −0.357714 + 0.619578i −0.987578 0.157127i \(-0.949777\pi\)
0.629865 + 0.776705i \(0.283110\pi\)
\(480\) 0 0
\(481\) 0.267949 + 0.464102i 0.0122174 + 0.0211612i
\(482\) 0 0
\(483\) 0.448288 + 0.120118i 0.0203978 + 0.00546557i
\(484\) 0 0
\(485\) 10.9282 0.496224
\(486\) 0 0
\(487\) −12.4505 −0.564187 −0.282093 0.959387i \(-0.591029\pi\)
−0.282093 + 0.959387i \(0.591029\pi\)
\(488\) 0 0
\(489\) 8.36603 + 2.24167i 0.378325 + 0.101372i
\(490\) 0 0
\(491\) 1.27551 + 2.20925i 0.0575631 + 0.0997022i 0.893371 0.449320i \(-0.148334\pi\)
−0.835808 + 0.549022i \(0.815000\pi\)
\(492\) 0 0
\(493\) −4.09808 + 7.09808i −0.184568 + 0.319681i
\(494\) 0 0
\(495\) 0.984508 + 0.568406i 0.0442504 + 0.0255480i
\(496\) 0 0
\(497\) 2.56218 4.43782i 0.114929 0.199064i
\(498\) 0 0
\(499\) 14.2808 + 24.7351i 0.639298 + 1.10730i 0.985587 + 0.169169i \(0.0541083\pi\)
−0.346289 + 0.938128i \(0.612558\pi\)
\(500\) 0 0
\(501\) 0.866025 + 3.23205i 0.0386912 + 0.144397i
\(502\) 0 0
\(503\) 35.6699 1.59044 0.795221 0.606319i \(-0.207355\pi\)
0.795221 + 0.606319i \(0.207355\pi\)
\(504\) 0 0
\(505\) −12.3923 −0.551450
\(506\) 0 0
\(507\) 15.2653 15.2653i 0.677958 0.677958i
\(508\) 0 0
\(509\) −4.69615 8.13397i −0.208153 0.360532i 0.742980 0.669314i \(-0.233412\pi\)
−0.951133 + 0.308782i \(0.900079\pi\)
\(510\) 0 0
\(511\) −1.13681 + 1.96902i −0.0502896 + 0.0871042i
\(512\) 0 0
\(513\) 9.00000 + 9.00000i 0.397360 + 0.397360i
\(514\) 0 0
\(515\) 8.05558 13.9527i 0.354971 0.614828i
\(516\) 0 0
\(517\) 1.29423 + 2.24167i 0.0569201 + 0.0985885i
\(518\) 0 0
\(519\) −9.79796 + 9.79796i −0.430083 + 0.430083i
\(520\) 0 0
\(521\) 12.6077 0.552353 0.276177 0.961107i \(-0.410933\pi\)
0.276177 + 0.961107i \(0.410933\pi\)
\(522\) 0 0
\(523\) −28.4973 −1.24610 −0.623050 0.782182i \(-0.714107\pi\)
−0.623050 + 0.782182i \(0.714107\pi\)
\(524\) 0 0
\(525\) −0.232051 0.866025i −0.0101275 0.0377964i
\(526\) 0 0
\(527\) 0.517638 + 0.896575i 0.0225487 + 0.0390554i
\(528\) 0 0
\(529\) 11.3660 19.6865i 0.494175 0.855936i
\(530\) 0 0
\(531\) 37.0470i 1.60770i
\(532\) 0 0
\(533\) −1.70577 + 2.95448i −0.0738852 + 0.127973i
\(534\) 0 0
\(535\) −7.08965 12.2796i −0.306512 0.530895i
\(536\) 0 0
\(537\) −28.2224 7.56218i −1.21789 0.326332i
\(538\) 0 0
\(539\) 2.55103 0.109880
\(540\) 0 0
\(541\) 27.3923 1.17769 0.588844 0.808247i \(-0.299583\pi\)
0.588844 + 0.808247i \(0.299583\pi\)
\(542\) 0 0
\(543\) −14.8171 3.97022i −0.635861 0.170378i
\(544\) 0 0
\(545\) −0.866025 1.50000i −0.0370965 0.0642529i
\(546\) 0 0
\(547\) 2.32937 4.03459i 0.0995967 0.172507i −0.811921 0.583767i \(-0.801578\pi\)
0.911518 + 0.411261i \(0.134911\pi\)
\(548\) 0 0
\(549\) −17.3038 + 9.99038i −0.738510 + 0.426379i
\(550\) 0 0
\(551\) −3.67423 + 6.36396i −0.156528 + 0.271114i
\(552\) 0 0
\(553\) 2.73205 + 4.73205i 0.116179 + 0.201227i
\(554\) 0 0
\(555\) 0.328169 + 1.22474i 0.0139300 + 0.0519875i
\(556\) 0 0
\(557\) 40.2487 1.70539 0.852696 0.522407i \(-0.174966\pi\)
0.852696 + 0.522407i \(0.174966\pi\)
\(558\) 0 0
\(559\) 3.10583 0.131363
\(560\) 0 0
\(561\) 1.26795 1.26795i 0.0535329 0.0535329i
\(562\) 0 0
\(563\) 9.31251 + 16.1297i 0.392475 + 0.679787i 0.992775 0.119988i \(-0.0382855\pi\)
−0.600300 + 0.799775i \(0.704952\pi\)
\(564\) 0 0
\(565\) −1.00000 + 1.73205i −0.0420703 + 0.0728679i
\(566\) 0 0
\(567\) −4.65874 −0.195649
\(568\) 0 0
\(569\) −13.9282 + 24.1244i −0.583901 + 1.01135i 0.411111 + 0.911585i \(0.365141\pi\)
−0.995012 + 0.0997602i \(0.968192\pi\)
\(570\) 0 0
\(571\) 19.9749 + 34.5975i 0.835922 + 1.44786i 0.893278 + 0.449505i \(0.148400\pi\)
−0.0573561 + 0.998354i \(0.518267\pi\)
\(572\) 0 0
\(573\) −18.8038 + 18.8038i −0.785542 + 0.785542i
\(574\) 0 0
\(575\) 0.517638 0.0215870
\(576\) 0 0
\(577\) −26.9282 −1.12104 −0.560518 0.828142i \(-0.689398\pi\)
−0.560518 + 0.828142i \(0.689398\pi\)
\(578\) 0 0
\(579\) −0.984508 3.67423i −0.0409148 0.152696i
\(580\) 0 0
\(581\) 0.330127 + 0.571797i 0.0136960 + 0.0237221i
\(582\) 0 0
\(583\) 0.480473 0.832204i 0.0198992 0.0344664i
\(584\) 0 0
\(585\) −1.90192 + 1.09808i −0.0786349 + 0.0453999i
\(586\) 0 0
\(587\) 10.8147 18.7315i 0.446368 0.773133i −0.551778 0.833991i \(-0.686050\pi\)
0.998146 + 0.0608582i \(0.0193837\pi\)
\(588\) 0 0
\(589\) 0.464102 + 0.803848i 0.0191230 + 0.0331220i
\(590\) 0 0
\(591\) 10.0382 + 2.68973i 0.412916 + 0.110641i
\(592\) 0 0
\(593\) −9.80385 −0.402596 −0.201298 0.979530i \(-0.564516\pi\)
−0.201298 + 0.979530i \(0.564516\pi\)
\(594\) 0 0
\(595\) −1.41421 −0.0579771
\(596\) 0 0
\(597\) 23.0263 + 6.16987i 0.942403 + 0.252516i
\(598\) 0 0
\(599\) 5.65685 + 9.79796i 0.231133 + 0.400334i 0.958142 0.286294i \(-0.0924235\pi\)
−0.727009 + 0.686628i \(0.759090\pi\)
\(600\) 0 0
\(601\) −12.3205 + 21.3397i −0.502564 + 0.870466i 0.497432 + 0.867503i \(0.334277\pi\)
−0.999996 + 0.00296319i \(0.999057\pi\)
\(602\) 0 0
\(603\) 11.1750i 0.455081i
\(604\) 0 0
\(605\) −5.42820 + 9.40192i −0.220688 + 0.382243i
\(606\) 0 0
\(607\) 8.07416 + 13.9849i 0.327720 + 0.567628i 0.982059 0.188574i \(-0.0603864\pi\)
−0.654339 + 0.756201i \(0.727053\pi\)
\(608\) 0 0
\(609\) −0.696152 2.59808i −0.0282095 0.105279i
\(610\) 0 0
\(611\) −5.00052 −0.202299
\(612\) 0 0
\(613\) 36.1962 1.46195 0.730974 0.682405i \(-0.239066\pi\)
0.730974 + 0.682405i \(0.239066\pi\)
\(614\) 0 0
\(615\) −5.70762 + 5.70762i −0.230154 + 0.230154i
\(616\) 0 0
\(617\) −10.4641 18.1244i −0.421269 0.729659i 0.574795 0.818297i \(-0.305082\pi\)
−0.996064 + 0.0886384i \(0.971748\pi\)
\(618\) 0 0
\(619\) −5.36585 + 9.29392i −0.215672 + 0.373554i −0.953480 0.301456i \(-0.902527\pi\)
0.737808 + 0.675010i \(0.235861\pi\)
\(620\) 0 0
\(621\) 0.696152 2.59808i 0.0279356 0.104257i
\(622\) 0 0
\(623\) −2.43091 + 4.21046i −0.0973922 + 0.168688i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 1.13681 1.13681i 0.0453999 0.0453999i
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 8.00481 0.318666 0.159333 0.987225i \(-0.449066\pi\)
0.159333 + 0.987225i \(0.449066\pi\)
\(632\) 0 0
\(633\) 7.09808 + 26.4904i 0.282123 + 1.05290i
\(634\) 0 0
\(635\) 4.17329 + 7.22835i 0.165612 + 0.286848i
\(636\) 0 0
\(637\) −2.46410 + 4.26795i −0.0976313 + 0.169102i
\(638\) 0 0
\(639\) −25.7196 14.8492i −1.01745 0.587427i
\(640\) 0 0
\(641\) −9.93782 + 17.2128i −0.392520 + 0.679865i −0.992781 0.119939i \(-0.961730\pi\)
0.600261 + 0.799804i \(0.295063\pi\)
\(642\) 0 0
\(643\) −16.1433 27.9611i −0.636631 1.10268i −0.986167 0.165754i \(-0.946994\pi\)
0.349536 0.936923i \(-0.386339\pi\)
\(644\) 0 0
\(645\) 7.09808 + 1.90192i 0.279486 + 0.0748882i
\(646\) 0 0
\(647\) 28.4230 1.11742 0.558711 0.829362i \(-0.311296\pi\)
0.558711 + 0.829362i \(0.311296\pi\)
\(648\) 0 0
\(649\) −4.67949 −0.183686
\(650\) 0 0
\(651\) −0.328169 0.0879327i −0.0128620 0.00344636i
\(652\) 0 0
\(653\) 2.56218 + 4.43782i 0.100266 + 0.173665i 0.911794 0.410648i \(-0.134697\pi\)
−0.811528 + 0.584313i \(0.801364\pi\)
\(654\) 0 0
\(655\) 5.65685 9.79796i 0.221032 0.382838i
\(656\) 0 0
\(657\) 11.4115 + 6.58846i 0.445207 + 0.257040i
\(658\) 0 0
\(659\) −9.55772 + 16.5545i −0.372316 + 0.644870i −0.989921 0.141618i \(-0.954770\pi\)
0.617605 + 0.786488i \(0.288103\pi\)
\(660\) 0 0
\(661\) −5.33975 9.24871i −0.207692 0.359733i 0.743295 0.668964i \(-0.233262\pi\)
−0.950987 + 0.309231i \(0.899929\pi\)
\(662\) 0 0
\(663\) 0.896575 + 3.34607i 0.0348201 + 0.129950i
\(664\) 0 0
\(665\) −1.26795 −0.0491690
\(666\) 0 0
\(667\) 1.55291 0.0601291
\(668\) 0 0
\(669\) 33.8827 33.8827i 1.30998 1.30998i
\(670\) 0 0
\(671\) 1.26191 + 2.18569i 0.0487155 + 0.0843777i
\(672\) 0 0
\(673\) −17.5622 + 30.4186i −0.676972 + 1.17255i 0.298916 + 0.954279i \(0.403375\pi\)
−0.975888 + 0.218271i \(0.929958\pi\)
\(674\) 0 0
\(675\) −5.01910 + 1.34486i −0.193185 + 0.0517638i
\(676\) 0 0
\(677\) −8.63397 + 14.9545i −0.331831 + 0.574747i −0.982871 0.184296i \(-0.941000\pi\)
0.651040 + 0.759043i \(0.274333\pi\)
\(678\) 0 0
\(679\) 2.82843 + 4.89898i 0.108545 + 0.188006i
\(680\) 0 0
\(681\) −7.14359 + 7.14359i −0.273743 + 0.273743i
\(682\) 0 0
\(683\) 47.2239 1.80697 0.903485 0.428619i \(-0.141000\pi\)
0.903485 + 0.428619i \(0.141000\pi\)
\(684\) 0 0
\(685\) 7.85641 0.300178
\(686\) 0 0
\(687\) −8.86920 33.1003i −0.338381 1.26286i
\(688\) 0 0
\(689\) 0.928203 + 1.60770i 0.0353617 + 0.0612483i
\(690\) 0 0
\(691\) −22.9048 + 39.6723i −0.871340 + 1.50921i −0.0107296 + 0.999942i \(0.503415\pi\)
−0.860611 + 0.509263i \(0.829918\pi\)
\(692\) 0 0
\(693\) 0.588457i 0.0223536i
\(694\) 0 0
\(695\) 6.31319 10.9348i 0.239473 0.414780i
\(696\) 0 0
\(697\) 6.36603 + 11.0263i 0.241130 + 0.417650i
\(698\) 0 0
\(699\) 21.3011 + 5.70762i 0.805683 + 0.215882i
\(700\) 0 0
\(701\) 15.0526 0.568527 0.284264 0.958746i \(-0.408251\pi\)
0.284264 + 0.958746i \(0.408251\pi\)
\(702\) 0 0
\(703\) 1.79315 0.0676300
\(704\) 0 0
\(705\) −11.4282 3.06218i −0.430411 0.115328i
\(706\) 0 0
\(707\) −3.20736 5.55532i −0.120625 0.208929i
\(708\) 0 0
\(709\) 7.76795 13.4545i 0.291731 0.505294i −0.682488 0.730897i \(-0.739102\pi\)
0.974219 + 0.225603i \(0.0724353\pi\)
\(710\) 0 0
\(711\) 27.4249 15.8338i 1.02851 0.593812i
\(712\) 0 0
\(713\) 0.0980762 0.169873i 0.00367298 0.00636179i
\(714\) 0 0
\(715\) 0.138701 + 0.240237i 0.00518711 + 0.00898434i
\(716\) 0 0
\(717\) 6.71281 + 25.0526i 0.250695 + 0.935605i
\(718\) 0 0
\(719\) 17.0449 0.635667 0.317834 0.948147i \(-0.397045\pi\)
0.317834 + 0.948147i \(0.397045\pi\)
\(720\) 0 0
\(721\) 8.33975 0.310588
\(722\) 0 0
\(723\) −8.81345 + 8.81345i −0.327776 + 0.327776i
\(724\) 0 0
\(725\) −1.50000 2.59808i −0.0557086 0.0964901i
\(726\) 0 0
\(727\) −16.0418 + 27.7852i −0.594957 + 1.03050i 0.398595 + 0.917127i \(0.369498\pi\)
−0.993553 + 0.113370i \(0.963836\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 5.79555 10.0382i 0.214356 0.371276i
\(732\) 0 0
\(733\) 5.73205 + 9.92820i 0.211718 + 0.366707i 0.952252 0.305312i \(-0.0987608\pi\)
−0.740534 + 0.672019i \(0.765427\pi\)
\(734\) 0 0
\(735\) −8.24504 + 8.24504i −0.304123 + 0.304123i
\(736\) 0 0
\(737\) 1.41154 0.0519948
\(738\) 0 0
\(739\) 17.2480 0.634477 0.317238 0.948346i \(-0.397244\pi\)
0.317238 + 0.948346i \(0.397244\pi\)
\(740\) 0 0
\(741\) 0.803848 + 3.00000i 0.0295301 + 0.110208i
\(742\) 0 0
\(743\) 23.9215 + 41.4333i 0.877595 + 1.52004i 0.853972 + 0.520318i \(0.174187\pi\)
0.0236229 + 0.999721i \(0.492480\pi\)
\(744\) 0 0
\(745\) 9.33013 16.1603i 0.341829 0.592066i
\(746\) 0 0
\(747\) 3.31388 1.91327i 0.121249 0.0700029i
\(748\) 0 0
\(749\) 3.66987 6.35641i 0.134094 0.232258i
\(750\) 0 0
\(751\) 14.1929 + 24.5828i 0.517906 + 0.897040i 0.999784 + 0.0208015i \(0.00662179\pi\)
−0.481877 + 0.876239i \(0.660045\pi\)
\(752\) 0 0
\(753\) −22.2224 5.95448i −0.809830 0.216993i
\(754\) 0 0
\(755\) 17.1464 0.624022
\(756\) 0 0
\(757\) 34.1962 1.24288 0.621440 0.783462i \(-0.286548\pi\)
0.621440 + 0.783462i \(0.286548\pi\)
\(758\) 0 0
\(759\) −0.328169 0.0879327i −0.0119118 0.00319176i
\(760\) 0 0
\(761\) 5.16025 + 8.93782i 0.187059 + 0.323996i 0.944268 0.329176i \(-0.106771\pi\)
−0.757209 + 0.653172i \(0.773438\pi\)
\(762\) 0 0
\(763\) 0.448288 0.776457i 0.0162291 0.0281096i
\(764\) 0 0
\(765\) 8.19615i 0.296333i
\(766\) 0 0
\(767\) 4.52004 7.82894i 0.163209 0.282687i
\(768\) 0 0
\(769\) 13.6244 + 23.5981i 0.491307 + 0.850968i 0.999950 0.0100091i \(-0.00318604\pi\)
−0.508643 + 0.860977i \(0.669853\pi\)
\(770\) 0 0
\(771\) −13.3199 49.7105i −0.479704 1.79028i
\(772\) 0 0
\(773\) 26.5359 0.954430 0.477215 0.878787i \(-0.341646\pi\)
0.477215 + 0.878787i \(0.341646\pi\)
\(774\) 0 0
\(775\) −0.378937 −0.0136118
\(776\) 0 0
\(777\) −0.464102 + 0.464102i −0.0166496 + 0.0166496i
\(778\) 0 0
\(779\) 5.70762 + 9.88589i 0.204497 + 0.354199i
\(780\) 0 0
\(781\) −1.87564 + 3.24871i −0.0671158 + 0.116248i
\(782\) 0 0
\(783\) −15.0573 + 4.03459i −0.538104 + 0.144184i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.8492 + 25.7196i 0.529318 + 0.916806i 0.999415 + 0.0341915i \(0.0108856\pi\)
−0.470097 + 0.882615i \(0.655781\pi\)
\(788\) 0 0
\(789\) 3.33975 3.33975i 0.118898 0.118898i
\(790\) 0 0
\(791\) −1.03528 −0.0368102
\(792\) 0 0
\(793\) −4.87564 −0.173139
\(794\) 0 0
\(795\) 1.13681 + 4.24264i 0.0403186 + 0.150471i
\(796\) 0 0
\(797\) 10.6865 + 18.5096i 0.378536 + 0.655644i 0.990850 0.134971i \(-0.0430941\pi\)
−0.612313 + 0.790615i \(0.709761\pi\)
\(798\) 0 0
\(799\) −9.33109 + 16.1619i −0.330110 + 0.571768i
\(800\) 0 0
\(801\) 24.4019 + 14.0885i 0.862200 + 0.497791i
\(802\) 0 0
\(803\) 0.832204 1.44142i 0.0293679 0.0508666i
\(804\) 0 0
\(805\) 0.133975 + 0.232051i 0.00472198 + 0.00817872i
\(806\) 0 0
\(807\) 5.58750 + 1.49717i 0.196689 + 0.0527028i
\(808\) 0 0
\(809\) 23.3205 0.819905 0.409953 0.912107i \(-0.365545\pi\)
0.409953 + 0.912107i \(0.365545\pi\)
\(810\) 0 0
\(811\) −26.2137 −0.920488 −0.460244 0.887792i \(-0.652238\pi\)
−0.460244 + 0.887792i \(0.652238\pi\)
\(812\) 0 0
\(813\) 38.4904 + 10.3135i 1.34992 + 0.361709i
\(814\) 0 0
\(815\) 2.50026 + 4.33057i 0.0875802 + 0.151693i
\(816\) 0 0
\(817\) 5.19615 9.00000i 0.181790 0.314870i
\(818\) 0 0
\(819\) −0.984508 0.568406i −0.0344015 0.0198617i
\(820\) 0 0
\(821\) 2.66987 4.62436i 0.0931792 0.161391i −0.815668 0.578520i \(-0.803630\pi\)
0.908847 + 0.417129i \(0.136964\pi\)
\(822\) 0 0
\(823\) −10.7267 18.5792i −0.373910 0.647631i 0.616253 0.787548i \(-0.288650\pi\)
−0.990163 + 0.139917i \(0.955316\pi\)
\(824\) 0 0
\(825\) 0.169873 + 0.633975i 0.00591422 + 0.0220722i
\(826\) 0 0
\(827\) −14.5582 −0.506240 −0.253120 0.967435i \(-0.581457\pi\)
−0.253120 + 0.967435i \(0.581457\pi\)
\(828\) 0 0
\(829\) −13.8756 −0.481921 −0.240961 0.970535i \(-0.577462\pi\)
−0.240961 + 0.970535i \(0.577462\pi\)
\(830\) 0 0
\(831\) 5.61969 5.61969i 0.194945 0.194945i
\(832\) 0 0
\(833\) 9.19615 + 15.9282i 0.318628 + 0.551880i
\(834\) 0 0
\(835\) −0.965926 + 1.67303i −0.0334272 + 0.0578977i
\(836\) 0 0
\(837\) −0.509619 + 1.90192i −0.0176150 + 0.0657401i
\(838\) 0 0
\(839\) 19.1290 33.1325i 0.660408 1.14386i −0.320100 0.947384i \(-0.603717\pi\)
0.980508 0.196477i \(-0.0629500\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) −30.6830 + 30.6830i −1.05678 + 1.05678i
\(844\) 0 0
\(845\) 12.4641 0.428778
\(846\) 0 0
\(847\) −5.61969 −0.193095
\(848\) 0 0
\(849\) −5.30385 19.7942i −0.182028 0.679336i
\(850\) 0 0
\(851\) −0.189469 0.328169i −0.00649490 0.0112495i
\(852\) 0 0
\(853\) −8.97372 + 15.5429i −0.307254 + 0.532180i −0.977761 0.209724i \(-0.932744\pi\)
0.670506 + 0.741904i \(0.266077\pi\)
\(854\) 0 0
\(855\) 7.34847i 0.251312i
\(856\) 0 0
\(857\) −14.9545 + 25.9019i −0.510835 + 0.884793i 0.489086 + 0.872236i \(0.337331\pi\)
−0.999921 + 0.0125572i \(0.996003\pi\)
\(858\) 0 0
\(859\) 1.64085 + 2.84203i 0.0559850 + 0.0969688i 0.892660 0.450731i \(-0.148837\pi\)
−0.836675 + 0.547700i \(0.815503\pi\)
\(860\) 0 0
\(861\) −4.03590 1.08142i −0.137543 0.0368545i
\(862\) 0 0
\(863\) 55.2658 1.88127 0.940635 0.339419i \(-0.110230\pi\)
0.940635 + 0.339419i \(0.110230\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.272008
\(866\) 0 0
\(867\) −15.9539 4.27483i −0.541822 0.145181i
\(868\) 0 0
\(869\) −2.00000 3.46410i −0.0678454 0.117512i
\(870\) 0 0
\(871\) −1.36345 + 2.36156i −0.0461986 + 0.0800183i
\(872\) 0 0
\(873\) 28.3923 16.3923i 0.960934 0.554795i
\(874\) 0 0
\(875\) 0.258819 0.448288i 0.00874968 0.0151549i
\(876\) 0 0
\(877\) 6.02628 + 10.4378i 0.203493 + 0.352460i 0.949652 0.313308i \(-0.101437\pi\)
−0.746159 + 0.665768i \(0.768104\pi\)
\(878\) 0 0
\(879\) −13.9527 52.0721i −0.470612 1.75635i
\(880\) 0 0
\(881\) 14.6603 0.493917 0.246958 0.969026i \(-0.420569\pi\)
0.246958 + 0.969026i \(0.420569\pi\)
\(882\) 0 0
\(883\) −21.2504 −0.715132 −0.357566 0.933888i \(-0.616393\pi\)
−0.357566 + 0.933888i \(0.616393\pi\)
\(884\) 0 0
\(885\) 15.1244 15.1244i 0.508400 0.508400i
\(886\) 0 0
\(887\) 15.2282 + 26.3760i 0.511312 + 0.885619i 0.999914 + 0.0131119i \(0.00417376\pi\)
−0.488602 + 0.872507i \(0.662493\pi\)
\(888\) 0 0
\(889\) −2.16025 + 3.74167i −0.0724526 + 0.125492i
\(890\) 0 0
\(891\) 3.41044 0.114254
\(892\) 0 0
\(893\) −8.36603 + 14.4904i −0.279958 + 0.484902i
\(894\) 0 0
\(895\) −8.43451 14.6090i −0.281935 0.488325i
\(896\) 0 0
\(897\) 0.464102 0.464102i 0.0154959 0.0154959i
\(898\) 0 0
\(899\) −1.13681 −0.0379148
\(900\) 0 0
\(901\) 6.92820 0.230812
\(902\) 0 0
\(903\) 0.984508 + 3.67423i 0.0327624 + 0.122271i
\(904\) 0 0
\(905\) −4.42820 7.66987i −0.147198 0.254955i
\(906\) 0 0
\(907\) 2.00120 3.46618i 0.0664488 0.115093i −0.830887 0.556441i \(-0.812166\pi\)
0.897336 + 0.441349i \(0.145500\pi\)
\(908\) 0 0
\(909\) −32.1962 + 18.5885i −1.06788 + 0.616540i
\(910\) 0 0
\(911\) −17.6641 + 30.5951i −0.585237 + 1.01366i 0.409609 + 0.912261i \(0.365665\pi\)
−0.994846 + 0.101399i \(0.967668\pi\)
\(912\) 0 0
\(913\) −0.241670 0.418584i −0.00799810 0.0138531i
\(914\) 0 0
\(915\) −11.1428 2.98571i −0.368370 0.0987045i
\(916\) 0 0
\(917\) 5.85641 0.193396
\(918\) 0 0
\(919\) −30.3548 −1.00131 −0.500657 0.865646i \(-0.666908\pi\)
−0.500657 + 0.865646i \(0.666908\pi\)
\(920\) 0 0
\(921\) 12.0622 + 3.23205i 0.397462 + 0.106500i
\(922\) 0 0
\(923\) −3.62347 6.27603i −0.119268 0.206578i
\(924\) 0 0
\(925\) −0.366025 + 0.633975i −0.0120348 + 0.0208450i
\(926\) 0 0
\(927\) 48.3335i 1.58748i
\(928\) 0 0
\(929\) −2.12436 + 3.67949i −0.0696978 + 0.120720i −0.898768 0.438424i \(-0.855537\pi\)
0.829070 + 0.559144i \(0.188870\pi\)
\(930\) 0 0
\(931\) 8.24504 + 14.2808i 0.270220 + 0.468036i
\(932\) 0 0
\(933\) −6.97372 26.0263i −0.228309 0.852062i
\(934\) 0 0
\(935\) 1.03528 0.0338572
\(936\) 0 0
\(937\) −18.3923 −0.600850 −0.300425 0.953805i \(-0.597129\pi\)
−0.300425 + 0.953805i \(0.597129\pi\)
\(938\) 0 0
\(939\) 1.55291 1.55291i 0.0506774 0.0506774i
\(940\) 0 0
\(941\) −6.50000 11.2583i −0.211894 0.367011i 0.740413 0.672152i \(-0.234630\pi\)
−0.952307 + 0.305141i \(0.901296\pi\)
\(942\) 0 0
\(943\) 1.20616 2.08913i 0.0392781 0.0680316i
\(944\) 0 0
\(945\) −1.90192 1.90192i −0.0618696 0.0618696i
\(946\) 0 0
\(947\) −20.9408 + 36.2705i −0.680484 + 1.17863i 0.294349 + 0.955698i \(0.404897\pi\)
−0.974833 + 0.222935i \(0.928436\pi\)
\(948\) 0 0
\(949\) 1.60770 + 2.78461i 0.0521880 + 0.0903923i
\(950\) 0 0
\(951\) 6.93237 6.93237i 0.224797 0.224797i
\(952\) 0 0
\(953\) 3.80385 0.123219 0.0616094 0.998100i \(-0.480377\pi\)
0.0616094 + 0.998100i \(0.480377\pi\)
\(954\) 0 0
\(955\) −15.3533 −0.496820
\(956\) 0 0
\(957\) 0.509619 + 1.90192i 0.0164736 + 0.0614805i
\(958\) 0 0
\(959\) 2.03339 + 3.52193i 0.0656615 + 0.113729i
\(960\) 0 0
\(961\) 15.4282 26.7224i 0.497684 0.862014i
\(962\) 0 0
\(963\) −36.8389 21.2690i −1.18712 0.685382i
\(964\) 0 0
\(965\) 1.09808 1.90192i 0.0353483 0.0612251i
\(966\) 0 0
\(967\) 14.5768 + 25.2478i 0.468759 + 0.811914i 0.999362 0.0357059i \(-0.0113680\pi\)
−0.530603 + 0.847620i \(0.678035\pi\)
\(968\) 0 0
\(969\) 11.1962 + 3.00000i 0.359672 + 0.0963739i
\(970\) 0 0
\(971\) 25.0769 0.804756 0.402378 0.915474i \(-0.368184\pi\)
0.402378 + 0.915474i \(0.368184\pi\)
\(972\) 0 0
\(973\) 6.53590 0.209531
\(974\) 0 0
\(975\) −1.22474 0.328169i −0.0392232 0.0105098i
\(976\) 0 0
\(977\) −13.5622 23.4904i −0.433893 0.751524i 0.563312 0.826244i \(-0.309527\pi\)
−0.997205 + 0.0747204i \(0.976194\pi\)
\(978\) 0 0
\(979\) 1.77955 3.08227i 0.0568746 0.0985097i
\(980\) 0 0
\(981\) −4.50000 2.59808i −0.143674 0.0829502i
\(982\) 0 0
\(983\) 16.8876 29.2502i 0.538631 0.932936i −0.460347 0.887739i \(-0.652275\pi\)
0.998978 0.0451973i \(-0.0143917\pi\)
\(984\) 0 0
\(985\) 3.00000 + 5.19615i 0.0955879 + 0.165563i
\(986\) 0 0
\(987\) −1.58510 5.91567i −0.0504543 0.188298i
\(988\) 0 0
\(989\) −2.19615 −0.0698336
\(990\) 0 0
\(991\) 36.0860 1.14631 0.573155 0.819447i \(-0.305719\pi\)
0.573155 + 0.819447i \(0.305719\pi\)
\(992\) 0 0
\(993\) −33.1244 + 33.1244i −1.05117 + 1.05117i
\(994\) 0 0
\(995\) 6.88160 + 11.9193i 0.218161 + 0.377867i
\(996\) 0 0
\(997\) −27.3205 + 47.3205i −0.865249 + 1.49866i 0.00155038 + 0.999999i \(0.499506\pi\)
−0.866800 + 0.498657i \(0.833827\pi\)
\(998\) 0 0
\(999\) 2.68973 + 2.68973i 0.0850992 + 0.0850992i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.2.q.m.961.4 yes 8
3.2 odd 2 4320.2.q.j.2881.2 8
4.3 odd 2 inner 1440.2.q.m.961.1 yes 8
9.4 even 3 inner 1440.2.q.m.481.4 yes 8
9.5 odd 6 4320.2.q.j.1441.2 8
12.11 even 2 4320.2.q.j.2881.3 8
36.23 even 6 4320.2.q.j.1441.3 8
36.31 odd 6 inner 1440.2.q.m.481.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.2.q.m.481.1 8 36.31 odd 6 inner
1440.2.q.m.481.4 yes 8 9.4 even 3 inner
1440.2.q.m.961.1 yes 8 4.3 odd 2 inner
1440.2.q.m.961.4 yes 8 1.1 even 1 trivial
4320.2.q.j.1441.2 8 9.5 odd 6
4320.2.q.j.1441.3 8 36.23 even 6
4320.2.q.j.2881.2 8 3.2 odd 2
4320.2.q.j.2881.3 8 12.11 even 2