gp: [N,k,chi] = [1440,2,Mod(289,1440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1440.289");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 2 i \beta = 2i β = 2 i .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 1440 Z ) × \left(\mathbb{Z}/1440\mathbb{Z}\right)^\times ( Z / 1 4 4 0 Z ) × .
n n n
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
991 991 9 9 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1440 , [ χ ] ) S_{2}^{\mathrm{new}}(1440, [\chi]) S 2 n e w ( 1 4 4 0 , [ χ ] ) :
T 7 T_{7} T 7
T7
T 11 T_{11} T 1 1
T11
T 17 2 + 64 T_{17}^{2} + 64 T 1 7 2 + 6 4
T17^2 + 64
T 19 T_{19} T 1 9
T19
T 29 − 10 T_{29} - 10 T 2 9 − 1 0
T29 - 10
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 + 2 T + 5 T^{2} + 2T + 5 T 2 + 2 T + 5
T^2 + 2*T + 5
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
T 2 + 16 T^{2} + 16 T 2 + 1 6
T^2 + 16
17 17 1 7
T 2 + 64 T^{2} + 64 T 2 + 6 4
T^2 + 64
19 19 1 9
T 2 T^{2} T 2
T^2
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
T 2 + 144 T^{2} + 144 T 2 + 1 4 4
T^2 + 144
41 41 4 1
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
43 43 4 3
T 2 T^{2} T 2
T^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 + 16 T^{2} + 16 T 2 + 1 6
T^2 + 16
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
67 67 6 7
T 2 T^{2} T 2
T^2
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
T 2 + 256 T^{2} + 256 T 2 + 2 5 6
T^2 + 256
79 79 7 9
T 2 T^{2} T 2
T^2
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
( T + 10 ) 2 (T + 10)^{2} ( T + 1 0 ) 2
(T + 10)^2
97 97 9 7
T 2 + 64 T^{2} + 64 T 2 + 6 4
T^2 + 64
show more
show less