Properties

Label 1440.2.f.c
Level 14401440
Weight 22
Character orbit 1440.f
Analytic conductor 11.49811.498
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1440,2,Mod(289,1440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1440.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1440.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.498457891111.4984578911
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1)q5+2βq13+4βq17+(2β3)q25+10q296βq37+10q41+7q49+2βq53+10q61+(2β+8)q65+8βq73++4βq97+O(q100) q + ( - \beta - 1) q^{5} + 2 \beta q^{13} + 4 \beta q^{17} + (2 \beta - 3) q^{25} + 10 q^{29} - 6 \beta q^{37} + 10 q^{41} + 7 q^{49} + 2 \beta q^{53} + 10 q^{61} + ( - 2 \beta + 8) q^{65} + 8 \beta q^{73} + \cdots + 4 \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q56q25+20q29+20q41+14q49+20q61+16q65+32q8520q89+O(q100) 2 q - 2 q^{5} - 6 q^{25} + 20 q^{29} + 20 q^{41} + 14 q^{49} + 20 q^{61} + 16 q^{65} + 32 q^{85} - 20 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1440Z)×\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times.

nn 577577 641641 901901 991991
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
1.00000i
1.00000i
0 0 0 −1.00000 2.00000i 0 0 0 0 0
289.2 0 0 0 −1.00000 + 2.00000i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.f.c 2
3.b odd 2 1 160.2.c.a 2
4.b odd 2 1 CM 1440.2.f.c 2
5.b even 2 1 inner 1440.2.f.c 2
5.c odd 4 1 7200.2.a.y 1
5.c odd 4 1 7200.2.a.bb 1
8.b even 2 1 2880.2.f.n 2
8.d odd 2 1 2880.2.f.n 2
12.b even 2 1 160.2.c.a 2
15.d odd 2 1 160.2.c.a 2
15.e even 4 1 800.2.a.e 1
15.e even 4 1 800.2.a.f 1
20.d odd 2 1 inner 1440.2.f.c 2
20.e even 4 1 7200.2.a.y 1
20.e even 4 1 7200.2.a.bb 1
24.f even 2 1 320.2.c.a 2
24.h odd 2 1 320.2.c.a 2
40.e odd 2 1 2880.2.f.n 2
40.f even 2 1 2880.2.f.n 2
48.i odd 4 1 1280.2.f.c 2
48.i odd 4 1 1280.2.f.d 2
48.k even 4 1 1280.2.f.c 2
48.k even 4 1 1280.2.f.d 2
60.h even 2 1 160.2.c.a 2
60.l odd 4 1 800.2.a.e 1
60.l odd 4 1 800.2.a.f 1
120.i odd 2 1 320.2.c.a 2
120.m even 2 1 320.2.c.a 2
120.q odd 4 1 1600.2.a.l 1
120.q odd 4 1 1600.2.a.m 1
120.w even 4 1 1600.2.a.l 1
120.w even 4 1 1600.2.a.m 1
240.t even 4 1 1280.2.f.c 2
240.t even 4 1 1280.2.f.d 2
240.bm odd 4 1 1280.2.f.c 2
240.bm odd 4 1 1280.2.f.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.c.a 2 3.b odd 2 1
160.2.c.a 2 12.b even 2 1
160.2.c.a 2 15.d odd 2 1
160.2.c.a 2 60.h even 2 1
320.2.c.a 2 24.f even 2 1
320.2.c.a 2 24.h odd 2 1
320.2.c.a 2 120.i odd 2 1
320.2.c.a 2 120.m even 2 1
800.2.a.e 1 15.e even 4 1
800.2.a.e 1 60.l odd 4 1
800.2.a.f 1 15.e even 4 1
800.2.a.f 1 60.l odd 4 1
1280.2.f.c 2 48.i odd 4 1
1280.2.f.c 2 48.k even 4 1
1280.2.f.c 2 240.t even 4 1
1280.2.f.c 2 240.bm odd 4 1
1280.2.f.d 2 48.i odd 4 1
1280.2.f.d 2 48.k even 4 1
1280.2.f.d 2 240.t even 4 1
1280.2.f.d 2 240.bm odd 4 1
1440.2.f.c 2 1.a even 1 1 trivial
1440.2.f.c 2 4.b odd 2 1 CM
1440.2.f.c 2 5.b even 2 1 inner
1440.2.f.c 2 20.d odd 2 1 inner
1600.2.a.l 1 120.q odd 4 1
1600.2.a.l 1 120.w even 4 1
1600.2.a.m 1 120.q odd 4 1
1600.2.a.m 1 120.w even 4 1
2880.2.f.n 2 8.b even 2 1
2880.2.f.n 2 8.d odd 2 1
2880.2.f.n 2 40.e odd 2 1
2880.2.f.n 2 40.f even 2 1
7200.2.a.y 1 5.c odd 4 1
7200.2.a.y 1 20.e even 4 1
7200.2.a.bb 1 5.c odd 4 1
7200.2.a.bb 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1440,[χ])S_{2}^{\mathrm{new}}(1440, [\chi]):

T7 T_{7} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T172+64 T_{17}^{2} + 64 Copy content Toggle raw display
T19 T_{19} Copy content Toggle raw display
T2910 T_{29} - 10 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+2T+5 T^{2} + 2T + 5 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+16 T^{2} + 16 Copy content Toggle raw display
1717 T2+64 T^{2} + 64 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+144 T^{2} + 144 Copy content Toggle raw display
4141 (T10)2 (T - 10)^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+16 T^{2} + 16 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T10)2 (T - 10)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+256 T^{2} + 256 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+64 T^{2} + 64 Copy content Toggle raw display
show more
show less