Properties

Label 143.2.s
Level $143$
Weight $2$
Character orbit 143.s
Rep. character $\chi_{143}(8,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $96$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.s (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 143 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(143, [\chi])\).

Total New Old
Modular forms 128 128 0
Cusp forms 96 96 0
Eisenstein series 32 32 0

Trace form

\( 96 q - 10 q^{2} - 12 q^{3} - 6 q^{5} - 10 q^{6} - 10 q^{7} - 10 q^{8} - 28 q^{9} + 8 q^{11} - 20 q^{13} + 12 q^{14} + 10 q^{15} + 24 q^{16} - 10 q^{18} - 10 q^{19} + 4 q^{20} - 32 q^{22} - 50 q^{24} - 34 q^{26}+ \cdots + 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(143, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
143.2.s.a 143.s 143.s $96$ $1.142$ None 143.2.s.a \(-10\) \(-12\) \(-6\) \(-10\) $\mathrm{SU}(2)[C_{20}]$