Properties

Label 143.2.o
Level $143$
Weight $2$
Character orbit 143.o
Rep. character $\chi_{143}(32,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $48$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.o (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 143 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(143, [\chi])\).

Total New Old
Modular forms 64 64 0
Cusp forms 48 48 0
Eisenstein series 16 16 0

Trace form

\( 48 q - 4 q^{3} - 12 q^{4} - 8 q^{5} - 20 q^{9} + 8 q^{11} - 16 q^{14} + 12 q^{15} - 8 q^{16} - 52 q^{20} + 12 q^{22} - 36 q^{26} - 16 q^{27} + 4 q^{31} + 48 q^{33} - 12 q^{34} + 120 q^{36} - 20 q^{37} - 12 q^{42}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(143, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
143.2.o.a 143.o 143.o $48$ $1.142$ None 143.2.o.a \(0\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{12}]$