Properties

Label 1407.1.g.c
Level $1407$
Weight $1$
Character orbit 1407.g
Self dual yes
Analytic conductor $0.702$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -3, -1407, 469
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1407,1,Mod(1406,1407)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1407.1406"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1407, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1407 = 3 \cdot 7 \cdot 67 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1407.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.702184472775\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{469})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.4221.1
Stark unit: Root of $x^{4} - 61x^{3} - 123x^{2} - 61x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} - q^{4} + q^{7} + q^{9} + q^{12} - 2 q^{13} + q^{16} - q^{21} + q^{25} - q^{27} - q^{28} + 2 q^{31} - q^{36} + 2 q^{37} + 2 q^{39} - q^{48} + q^{49} + 2 q^{52} + 2 q^{61} + q^{63}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1407\mathbb{Z}\right)^\times\).

\(n\) \(337\) \(470\) \(1207\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1406.1
0
0 −1.00000 −1.00000 0 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
469.c even 2 1 RM by \(\Q(\sqrt{469}) \)
1407.g odd 2 1 CM by \(\Q(\sqrt{-1407}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1407.1.g.c 1
3.b odd 2 1 CM 1407.1.g.c 1
7.b odd 2 1 1407.1.g.d yes 1
21.c even 2 1 1407.1.g.d yes 1
67.b odd 2 1 1407.1.g.d yes 1
201.d even 2 1 1407.1.g.d yes 1
469.c even 2 1 RM 1407.1.g.c 1
1407.g odd 2 1 CM 1407.1.g.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1407.1.g.c 1 1.a even 1 1 trivial
1407.1.g.c 1 3.b odd 2 1 CM
1407.1.g.c 1 469.c even 2 1 RM
1407.1.g.c 1 1407.g odd 2 1 CM
1407.1.g.d yes 1 7.b odd 2 1
1407.1.g.d yes 1 21.c even 2 1
1407.1.g.d yes 1 67.b odd 2 1
1407.1.g.d yes 1 201.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1407, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 2 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less