Properties

Label 1404.2.a.h
Level $1404$
Weight $2$
Character orbit 1404.a
Self dual yes
Analytic conductor $11.211$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(1,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-4,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2109964438\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} - 2 q^{7} - 2 \beta q^{11} + q^{13} - 2 \beta q^{17} - 8 q^{19} + 2 q^{25} - 4 q^{31} - 2 \beta q^{35} - 8 q^{37} + 4 \beta q^{41} + q^{43} + \beta q^{47} - 3 q^{49} + 4 \beta q^{53} + \cdots - 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} + 2 q^{13} - 16 q^{19} + 4 q^{25} - 8 q^{31} - 16 q^{37} + 2 q^{43} - 6 q^{49} - 28 q^{55} + 2 q^{61} - 20 q^{67} - 8 q^{73} + 16 q^{79} - 28 q^{85} - 4 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
0 0 0 −2.64575 0 −2.00000 0 0 0
1.2 0 0 0 2.64575 0 −2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1404.2.a.h 2
3.b odd 2 1 inner 1404.2.a.h 2
4.b odd 2 1 5616.2.a.br 2
9.c even 3 2 4212.2.i.q 4
9.d odd 6 2 4212.2.i.q 4
12.b even 2 1 5616.2.a.br 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1404.2.a.h 2 1.a even 1 1 trivial
1404.2.a.h 2 3.b odd 2 1 inner
4212.2.i.q 4 9.c even 3 2
4212.2.i.q 4 9.d odd 6 2
5616.2.a.br 2 4.b odd 2 1
5616.2.a.br 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1404))\):

\( T_{5}^{2} - 7 \) Copy content Toggle raw display
\( T_{17}^{2} - 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 7 \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 28 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 28 \) Copy content Toggle raw display
$19$ \( (T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 112 \) Copy content Toggle raw display
$43$ \( (T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 7 \) Copy content Toggle raw display
$53$ \( T^{2} - 112 \) Copy content Toggle raw display
$59$ \( T^{2} - 7 \) Copy content Toggle raw display
$61$ \( (T - 1)^{2} \) Copy content Toggle raw display
$67$ \( (T + 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 175 \) Copy content Toggle raw display
$73$ \( (T + 4)^{2} \) Copy content Toggle raw display
$79$ \( (T - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 63 \) Copy content Toggle raw display
$89$ \( T^{2} - 175 \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less