Properties

Label 1400.4.g.h
Level $1400$
Weight $4$
Character orbit 1400.g
Analytic conductor $82.603$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1400,4,Mod(449,1400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1400.449"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1400.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-124,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6026740080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{57})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{3} - 7 \beta_1 q^{7} + (2 \beta_{3} - 31) q^{9} + ( - 6 \beta_{3} + 18) q^{11} + (5 \beta_{2} + 21 \beta_1) q^{13} + ( - 6 \beta_{2} - 4 \beta_1) q^{17} + (13 \beta_{3} + 59) q^{19}+ \cdots + (222 \beta_{3} - 1242) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 124 q^{9} + 72 q^{11} + 236 q^{19} - 28 q^{21} + 112 q^{29} + 40 q^{31} - 1056 q^{39} - 1088 q^{41} - 196 q^{49} + 1352 q^{51} + 396 q^{59} - 692 q^{61} + 704 q^{69} - 2448 q^{71} - 1168 q^{79} - 1508 q^{81}+ \cdots - 4968 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 29x^{2} + 196 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 15\nu ) / 14 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 43\nu ) / 14 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 29 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 29 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -15\beta_{2} + 43\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
4.27492i
3.27492i
3.27492i
4.27492i
0 8.54983i 0 0 0 7.00000i 0 −46.0997 0
449.2 0 6.54983i 0 0 0 7.00000i 0 −15.9003 0
449.3 0 6.54983i 0 0 0 7.00000i 0 −15.9003 0
449.4 0 8.54983i 0 0 0 7.00000i 0 −46.0997 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1400.4.g.h 4
5.b even 2 1 inner 1400.4.g.h 4
5.c odd 4 1 56.4.a.c 2
5.c odd 4 1 1400.4.a.i 2
15.e even 4 1 504.4.a.i 2
20.e even 4 1 112.4.a.h 2
35.f even 4 1 392.4.a.h 2
35.k even 12 2 392.4.i.i 4
35.l odd 12 2 392.4.i.l 4
40.i odd 4 1 448.4.a.s 2
40.k even 4 1 448.4.a.r 2
60.l odd 4 1 1008.4.a.x 2
140.j odd 4 1 784.4.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.4.a.c 2 5.c odd 4 1
112.4.a.h 2 20.e even 4 1
392.4.a.h 2 35.f even 4 1
392.4.i.i 4 35.k even 12 2
392.4.i.l 4 35.l odd 12 2
448.4.a.r 2 40.k even 4 1
448.4.a.s 2 40.i odd 4 1
504.4.a.i 2 15.e even 4 1
784.4.a.t 2 140.j odd 4 1
1008.4.a.x 2 60.l odd 4 1
1400.4.a.i 2 5.c odd 4 1
1400.4.g.h 4 1.a even 1 1 trivial
1400.4.g.h 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1400, [\chi])\):

\( T_{3}^{4} + 116T_{3}^{2} + 3136 \) Copy content Toggle raw display
\( T_{11}^{2} - 36T_{11} - 1728 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 116T^{2} + 3136 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 36 T - 1728)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 3732 T^{2} + 968256 \) Copy content Toggle raw display
$17$ \( T^{4} + 4136 T^{2} + 4145296 \) Copy content Toggle raw display
$19$ \( (T^{2} - 118 T - 6152)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 7232 T^{2} + 3211264 \) Copy content Toggle raw display
$29$ \( (T^{2} - 56 T - 26804)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 20 T - 11072)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 3341302416 \) Copy content Toggle raw display
$41$ \( (T^{2} + 544 T + 55516)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 107216 T^{2} + 977437696 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 2634563584 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 77024011024 \) Copy content Toggle raw display
$59$ \( (T^{2} - 198 T + 168)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 346 T - 24848)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 1035168 T^{2} + 91240704 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1224 T + 264192)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 2947621264 \) Copy content Toggle raw display
$79$ \( (T^{2} + 584 T + 11392)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 63661345344 \) Copy content Toggle raw display
$89$ \( (T^{2} + 596 T - 1370396)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 9238285456 \) Copy content Toggle raw display
show more
show less