Properties

Label 14.5.d.a
Level $14$
Weight $5$
Character orbit 14.d
Analytic conductor $1.447$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,5,Mod(3,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.3"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 14.d (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.44717948317\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - 2 \beta_{3} - 3 \beta_{2} + \cdots - 6) q^{3} + 8 \beta_{2} q^{4} + (4 \beta_{3} - 9 \beta_{2} + 2 \beta_1 + 9) q^{5} + ( - 3 \beta_{3} + 32 \beta_{2} + \cdots + 16) q^{6} + ( - 56 \beta_{2} - 35) q^{7}+ \cdots + ( - 1224 \beta_{3} - 2862) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{3} - 16 q^{4} + 54 q^{5} - 28 q^{7} + 84 q^{9} - 96 q^{10} - 54 q^{11} + 144 q^{12} - 708 q^{15} - 128 q^{16} + 918 q^{17} + 576 q^{18} + 30 q^{19} - 378 q^{21} + 192 q^{22} - 486 q^{23} - 768 q^{24}+ \cdots - 11448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/14\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
−1.41421 2.44949i −12.9853 7.49706i −4.00000 + 6.92820i 21.9853 12.6932i 42.4098i −7.00000 48.4974i 22.6274 71.9117 + 124.555i −62.1838 35.9018i
3.2 1.41421 + 2.44949i 3.98528 + 2.30090i −4.00000 + 6.92820i 5.01472 2.89525i 13.0159i −7.00000 48.4974i −22.6274 −29.9117 51.8086i 14.1838 + 8.18900i
5.1 −1.41421 + 2.44949i −12.9853 + 7.49706i −4.00000 6.92820i 21.9853 + 12.6932i 42.4098i −7.00000 + 48.4974i 22.6274 71.9117 124.555i −62.1838 + 35.9018i
5.2 1.41421 2.44949i 3.98528 2.30090i −4.00000 6.92820i 5.01472 + 2.89525i 13.0159i −7.00000 + 48.4974i −22.6274 −29.9117 + 51.8086i 14.1838 8.18900i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.5.d.a 4
3.b odd 2 1 126.5.n.a 4
4.b odd 2 1 112.5.s.b 4
5.b even 2 1 350.5.k.a 4
5.c odd 4 2 350.5.i.a 8
7.b odd 2 1 98.5.d.a 4
7.c even 3 1 98.5.b.b 4
7.c even 3 1 98.5.d.a 4
7.d odd 6 1 inner 14.5.d.a 4
7.d odd 6 1 98.5.b.b 4
21.g even 6 1 126.5.n.a 4
21.g even 6 1 882.5.c.b 4
21.h odd 6 1 882.5.c.b 4
28.f even 6 1 112.5.s.b 4
28.f even 6 1 784.5.c.b 4
28.g odd 6 1 784.5.c.b 4
35.i odd 6 1 350.5.k.a 4
35.k even 12 2 350.5.i.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.5.d.a 4 1.a even 1 1 trivial
14.5.d.a 4 7.d odd 6 1 inner
98.5.b.b 4 7.c even 3 1
98.5.b.b 4 7.d odd 6 1
98.5.d.a 4 7.b odd 2 1
98.5.d.a 4 7.c even 3 1
112.5.s.b 4 4.b odd 2 1
112.5.s.b 4 28.f even 6 1
126.5.n.a 4 3.b odd 2 1
126.5.n.a 4 21.g even 6 1
350.5.i.a 8 5.c odd 4 2
350.5.i.a 8 35.k even 12 2
350.5.k.a 4 5.b even 2 1
350.5.k.a 4 35.i odd 6 1
784.5.c.b 4 28.f even 6 1
784.5.c.b 4 28.g odd 6 1
882.5.c.b 4 21.g even 6 1
882.5.c.b 4 21.h odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(14, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$3$ \( T^{4} + 18 T^{3} + \cdots + 4761 \) Copy content Toggle raw display
$5$ \( T^{4} - 54 T^{3} + \cdots + 21609 \) Copy content Toggle raw display
$7$ \( (T^{2} + 14 T + 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 54 T^{3} + \cdots + 194481 \) Copy content Toggle raw display
$13$ \( T^{4} + 62592 T^{2} + 955551744 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 2084013801 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 37762205625 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 161403866001 \) Copy content Toggle raw display
$29$ \( (T^{2} - 1620 T + 651492)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 566643101049 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 284591307841 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 1046087110656 \) Copy content Toggle raw display
$43$ \( (T^{2} - 1172 T - 3015836)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5548271897529 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 8389590597441 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 149611524833241 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 66399241936329 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 256392053989009 \) Copy content Toggle raw display
$71$ \( (T^{2} - 9396 T + 20407716)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 29440640401929 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 54769812839569 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 314640617324544 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 28434692391561 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
show more
show less