Properties

Label 14.48.c
Level $14$
Weight $48$
Character orbit 14.c
Rep. character $\chi_{14}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $2$
Sturm bound $96$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 48 \)
Character orbit: \([\chi]\) \(=\) 14.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{48}(14, [\chi])\).

Total New Old
Modular forms 192 64 128
Cusp forms 184 64 120
Eisenstein series 8 0 8

Trace form

\( 64 q - 22\!\cdots\!48 q^{4} + 33\!\cdots\!52 q^{5} - 10\!\cdots\!52 q^{6} + 87\!\cdots\!80 q^{7} - 27\!\cdots\!12 q^{9} + 13\!\cdots\!92 q^{10} - 14\!\cdots\!36 q^{11} - 58\!\cdots\!40 q^{13} - 90\!\cdots\!36 q^{14}+ \cdots - 31\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{48}^{\mathrm{new}}(14, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
14.48.c.a 14.c 7.c $32$ $195.871$ None 14.48.c.a \(-134217728\) \(31301883536\) \(17\!\cdots\!88\) \(10\!\cdots\!64\) $\mathrm{SU}(2)[C_{3}]$
14.48.c.b 14.c 7.c $32$ $195.871$ None 14.48.c.b \(134217728\) \(-31301883536\) \(15\!\cdots\!64\) \(-16\!\cdots\!84\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{48}^{\mathrm{old}}(14, [\chi])\) into lower level spaces

\( S_{48}^{\mathrm{old}}(14, [\chi]) \simeq \) \(S_{48}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)