Defining parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 48 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{48}(14, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 192 | 64 | 128 |
Cusp forms | 184 | 64 | 120 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{48}^{\mathrm{new}}(14, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
14.48.c.a | $32$ | $195.871$ | None | \(-134217728\) | \(31301883536\) | \(17\!\cdots\!88\) | \(10\!\cdots\!64\) | ||
14.48.c.b | $32$ | $195.871$ | None | \(134217728\) | \(-31301883536\) | \(15\!\cdots\!64\) | \(-16\!\cdots\!84\) |
Decomposition of \(S_{48}^{\mathrm{old}}(14, [\chi])\) into lower level spaces
\( S_{48}^{\mathrm{old}}(14, [\chi]) \simeq \) \(S_{48}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)