Properties

Label 14.44.a.d.1.6
Level $14$
Weight $44$
Character 14.1
Self dual yes
Analytic conductor $163.955$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,44,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,12582912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(163.954553484\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{31}\cdot 3^{9}\cdot 5^{3}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.29194e10\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.09715e6 q^{2} +3.07447e10 q^{3} +4.39805e12 q^{4} +1.08735e15 q^{5} +6.44763e16 q^{6} +5.58546e17 q^{7} +9.22337e18 q^{8} +6.16978e20 q^{9} +2.28034e21 q^{10} +3.26888e22 q^{11} +1.35217e23 q^{12} +7.69036e22 q^{13} +1.17136e24 q^{14} +3.34302e25 q^{15} +1.93428e25 q^{16} +1.25713e26 q^{17} +1.29390e27 q^{18} +3.76143e27 q^{19} +4.78222e27 q^{20} +1.71723e28 q^{21} +6.85535e28 q^{22} -1.47052e29 q^{23} +2.83570e29 q^{24} +4.54628e28 q^{25} +1.61279e29 q^{26} +8.87664e30 q^{27} +2.45651e30 q^{28} -3.97142e31 q^{29} +7.01083e31 q^{30} +5.05493e31 q^{31} +4.05648e31 q^{32} +1.00501e33 q^{33} +2.63640e32 q^{34} +6.07335e32 q^{35} +2.71350e33 q^{36} -8.42749e33 q^{37} +7.88829e33 q^{38} +2.36438e33 q^{39} +1.00290e34 q^{40} -3.93886e33 q^{41} +3.60129e34 q^{42} -1.19391e35 q^{43} +1.43767e35 q^{44} +6.70872e35 q^{45} -3.08390e35 q^{46} -5.24880e35 q^{47} +5.94689e35 q^{48} +3.11973e35 q^{49} +9.53424e34 q^{50} +3.86501e36 q^{51} +3.38226e35 q^{52} -8.74845e36 q^{53} +1.86157e37 q^{54} +3.55442e37 q^{55} +5.15168e36 q^{56} +1.15644e38 q^{57} -8.32867e37 q^{58} -1.70284e38 q^{59} +1.47028e38 q^{60} +4.23434e38 q^{61} +1.06009e38 q^{62} +3.44611e38 q^{63} +8.50706e37 q^{64} +8.36212e37 q^{65} +2.10765e39 q^{66} +2.43748e39 q^{67} +5.52893e38 q^{68} -4.52106e39 q^{69} +1.27367e39 q^{70} +4.27997e39 q^{71} +5.69062e39 q^{72} -7.48972e39 q^{73} -1.76737e40 q^{74} +1.39774e39 q^{75} +1.65429e40 q^{76} +1.82582e40 q^{77} +4.95846e39 q^{78} -2.89284e40 q^{79} +2.10324e40 q^{80} +7.03821e40 q^{81} -8.26038e39 q^{82} -2.42413e41 q^{83} +7.55246e40 q^{84} +1.36694e41 q^{85} -2.50382e41 q^{86} -1.22100e42 q^{87} +3.01501e41 q^{88} -1.10549e41 q^{89} +1.40692e42 q^{90} +4.29542e40 q^{91} -6.46741e41 q^{92} +1.55412e42 q^{93} -1.10075e42 q^{94} +4.08999e42 q^{95} +1.24715e42 q^{96} +4.73194e42 q^{97} +6.54256e41 q^{98} +2.01683e43 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12582912 q^{2} + 29435191576 q^{3} + 26388279066624 q^{4} + 646778009315508 q^{5} + 61\!\cdots\!52 q^{6} + 33\!\cdots\!42 q^{7} + 55\!\cdots\!48 q^{8} + 34\!\cdots\!42 q^{9} + 13\!\cdots\!16 q^{10}+ \cdots + 37\!\cdots\!52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.09715e6 0.707107
\(3\) 3.07447e10 1.69693 0.848463 0.529255i \(-0.177528\pi\)
0.848463 + 0.529255i \(0.177528\pi\)
\(4\) 4.39805e12 0.500000
\(5\) 1.08735e15 1.01980 0.509899 0.860234i \(-0.329683\pi\)
0.509899 + 0.860234i \(0.329683\pi\)
\(6\) 6.44763e16 1.19991
\(7\) 5.58546e17 0.377964
\(8\) 9.22337e18 0.353553
\(9\) 6.16978e20 1.87956
\(10\) 2.28034e21 0.721107
\(11\) 3.26888e22 1.33185 0.665927 0.746017i \(-0.268036\pi\)
0.665927 + 0.746017i \(0.268036\pi\)
\(12\) 1.35217e23 0.848463
\(13\) 7.69036e22 0.0863306 0.0431653 0.999068i \(-0.486256\pi\)
0.0431653 + 0.999068i \(0.486256\pi\)
\(14\) 1.17136e24 0.267261
\(15\) 3.34302e25 1.73052
\(16\) 1.93428e25 0.250000
\(17\) 1.25713e26 0.441295 0.220648 0.975354i \(-0.429183\pi\)
0.220648 + 0.975354i \(0.429183\pi\)
\(18\) 1.29390e27 1.32905
\(19\) 3.76143e27 1.20823 0.604116 0.796896i \(-0.293526\pi\)
0.604116 + 0.796896i \(0.293526\pi\)
\(20\) 4.78222e27 0.509899
\(21\) 1.71723e28 0.641378
\(22\) 6.85535e28 0.941764
\(23\) −1.47052e29 −0.776823 −0.388412 0.921486i \(-0.626976\pi\)
−0.388412 + 0.921486i \(0.626976\pi\)
\(24\) 2.83570e29 0.599954
\(25\) 4.54628e28 0.0399895
\(26\) 1.61279e29 0.0610449
\(27\) 8.87664e30 1.49255
\(28\) 2.45651e30 0.188982
\(29\) −3.97142e31 −1.43678 −0.718388 0.695643i \(-0.755120\pi\)
−0.718388 + 0.695643i \(0.755120\pi\)
\(30\) 7.01083e31 1.22366
\(31\) 5.05493e31 0.435952 0.217976 0.975954i \(-0.430055\pi\)
0.217976 + 0.975954i \(0.430055\pi\)
\(32\) 4.05648e31 0.176777
\(33\) 1.00501e33 2.26006
\(34\) 2.63640e32 0.312043
\(35\) 6.07335e32 0.385448
\(36\) 2.71350e33 0.939779
\(37\) −8.42749e33 −1.61943 −0.809713 0.586826i \(-0.800377\pi\)
−0.809713 + 0.586826i \(0.800377\pi\)
\(38\) 7.88829e33 0.854349
\(39\) 2.36438e33 0.146497
\(40\) 1.00290e34 0.360553
\(41\) −3.93886e33 −0.0832755 −0.0416377 0.999133i \(-0.513258\pi\)
−0.0416377 + 0.999133i \(0.513258\pi\)
\(42\) 3.60129e34 0.453523
\(43\) −1.19391e35 −0.906571 −0.453285 0.891366i \(-0.649748\pi\)
−0.453285 + 0.891366i \(0.649748\pi\)
\(44\) 1.43767e35 0.665927
\(45\) 6.70872e35 1.91677
\(46\) −3.08390e35 −0.549297
\(47\) −5.24880e35 −0.588785 −0.294392 0.955685i \(-0.595117\pi\)
−0.294392 + 0.955685i \(0.595117\pi\)
\(48\) 5.94689e35 0.424232
\(49\) 3.11973e35 0.142857
\(50\) 9.53424e34 0.0282768
\(51\) 3.86501e36 0.748845
\(52\) 3.38226e35 0.0431653
\(53\) −8.74845e36 −0.741310 −0.370655 0.928771i \(-0.620867\pi\)
−0.370655 + 0.928771i \(0.620867\pi\)
\(54\) 1.86157e37 1.05539
\(55\) 3.55442e37 1.35822
\(56\) 5.15168e36 0.133631
\(57\) 1.15644e38 2.05028
\(58\) −8.32867e37 −1.01595
\(59\) −1.70284e38 −1.43832 −0.719162 0.694842i \(-0.755474\pi\)
−0.719162 + 0.694842i \(0.755474\pi\)
\(60\) 1.47028e38 0.865262
\(61\) 4.23434e38 1.74660 0.873302 0.487180i \(-0.161974\pi\)
0.873302 + 0.487180i \(0.161974\pi\)
\(62\) 1.06009e38 0.308264
\(63\) 3.44611e38 0.710406
\(64\) 8.50706e37 0.125000
\(65\) 8.36212e37 0.0880398
\(66\) 2.10765e39 1.59810
\(67\) 2.43748e39 1.33762 0.668810 0.743434i \(-0.266804\pi\)
0.668810 + 0.743434i \(0.266804\pi\)
\(68\) 5.52893e38 0.220648
\(69\) −4.52106e39 −1.31821
\(70\) 1.27367e39 0.272553
\(71\) 4.27997e39 0.675128 0.337564 0.941303i \(-0.390397\pi\)
0.337564 + 0.941303i \(0.390397\pi\)
\(72\) 5.69062e39 0.664524
\(73\) −7.48972e39 −0.650166 −0.325083 0.945686i \(-0.605392\pi\)
−0.325083 + 0.945686i \(0.605392\pi\)
\(74\) −1.76737e40 −1.14511
\(75\) 1.39774e39 0.0678592
\(76\) 1.65429e40 0.604116
\(77\) 1.82582e40 0.503394
\(78\) 4.95846e39 0.103589
\(79\) −2.89284e40 −0.459559 −0.229780 0.973243i \(-0.573801\pi\)
−0.229780 + 0.973243i \(0.573801\pi\)
\(80\) 2.10324e40 0.254950
\(81\) 7.03821e40 0.653182
\(82\) −8.26038e39 −0.0588847
\(83\) −2.42413e41 −1.33161 −0.665806 0.746125i \(-0.731912\pi\)
−0.665806 + 0.746125i \(0.731912\pi\)
\(84\) 7.55246e40 0.320689
\(85\) 1.36694e41 0.450032
\(86\) −2.50382e41 −0.641042
\(87\) −1.22100e42 −2.43810
\(88\) 3.01501e41 0.470882
\(89\) −1.10549e41 −0.135416 −0.0677082 0.997705i \(-0.521569\pi\)
−0.0677082 + 0.997705i \(0.521569\pi\)
\(90\) 1.40692e42 1.35536
\(91\) 4.29542e40 0.0326299
\(92\) −6.46741e41 −0.388412
\(93\) 1.55412e42 0.739778
\(94\) −1.10075e42 −0.416334
\(95\) 4.08999e42 1.23215
\(96\) 1.24715e42 0.299977
\(97\) 4.73194e42 0.910850 0.455425 0.890274i \(-0.349487\pi\)
0.455425 + 0.890274i \(0.349487\pi\)
\(98\) 6.54256e41 0.101015
\(99\) 2.01683e43 2.50330
\(100\) 1.99947e41 0.0199947
\(101\) 2.10385e43 1.69866 0.849329 0.527864i \(-0.177007\pi\)
0.849329 + 0.527864i \(0.177007\pi\)
\(102\) 8.10552e42 0.529514
\(103\) 4.08139e42 0.216176 0.108088 0.994141i \(-0.465527\pi\)
0.108088 + 0.994141i \(0.465527\pi\)
\(104\) 7.09311e41 0.0305225
\(105\) 1.86723e43 0.654076
\(106\) −1.83468e43 −0.524185
\(107\) −5.31402e43 −1.24071 −0.620357 0.784319i \(-0.713012\pi\)
−0.620357 + 0.784319i \(0.713012\pi\)
\(108\) 3.90399e43 0.746273
\(109\) −6.04632e43 −0.948029 −0.474015 0.880517i \(-0.657196\pi\)
−0.474015 + 0.880517i \(0.657196\pi\)
\(110\) 7.45417e43 0.960409
\(111\) −2.59100e44 −2.74805
\(112\) 1.08038e43 0.0944911
\(113\) −2.64814e44 −1.91318 −0.956588 0.291444i \(-0.905864\pi\)
−0.956588 + 0.291444i \(0.905864\pi\)
\(114\) 2.42523e44 1.44977
\(115\) −1.59897e44 −0.792204
\(116\) −1.74665e44 −0.718388
\(117\) 4.74479e43 0.162263
\(118\) −3.57112e44 −1.01705
\(119\) 7.02166e43 0.166794
\(120\) 3.08340e44 0.611832
\(121\) 4.66160e44 0.773837
\(122\) 8.88005e44 1.23503
\(123\) −1.21099e44 −0.141312
\(124\) 2.22318e44 0.217976
\(125\) −1.18674e45 −0.979018
\(126\) 7.22701e44 0.502333
\(127\) −2.31146e45 −1.35552 −0.677760 0.735284i \(-0.737049\pi\)
−0.677760 + 0.735284i \(0.737049\pi\)
\(128\) 1.78406e44 0.0883883
\(129\) −3.67065e45 −1.53838
\(130\) 1.75366e44 0.0622536
\(131\) −3.82539e45 −1.15171 −0.575854 0.817552i \(-0.695330\pi\)
−0.575854 + 0.817552i \(0.695330\pi\)
\(132\) 4.42007e45 1.13003
\(133\) 2.10093e45 0.456669
\(134\) 5.11176e45 0.945840
\(135\) 9.65202e45 1.52210
\(136\) 1.15950e45 0.156021
\(137\) 1.48934e46 1.71199 0.855996 0.516982i \(-0.172945\pi\)
0.855996 + 0.516982i \(0.172945\pi\)
\(138\) −9.48136e45 −0.932117
\(139\) 4.40069e45 0.370427 0.185213 0.982698i \(-0.440702\pi\)
0.185213 + 0.982698i \(0.440702\pi\)
\(140\) 2.67109e45 0.192724
\(141\) −1.61373e46 −0.999124
\(142\) 8.97574e45 0.477387
\(143\) 2.51389e45 0.114980
\(144\) 1.19341e46 0.469890
\(145\) −4.31833e46 −1.46522
\(146\) −1.57071e46 −0.459737
\(147\) 9.59152e45 0.242418
\(148\) −3.70645e46 −0.809713
\(149\) 1.27445e46 0.240890 0.120445 0.992720i \(-0.461568\pi\)
0.120445 + 0.992720i \(0.461568\pi\)
\(150\) 2.93127e45 0.0479837
\(151\) 5.33491e46 0.757047 0.378523 0.925592i \(-0.376432\pi\)
0.378523 + 0.925592i \(0.376432\pi\)
\(152\) 3.46931e46 0.427175
\(153\) 7.75623e46 0.829440
\(154\) 3.82903e46 0.355953
\(155\) 5.49648e46 0.444583
\(156\) 1.03986e46 0.0732483
\(157\) 1.63425e47 1.00341 0.501703 0.865040i \(-0.332707\pi\)
0.501703 + 0.865040i \(0.332707\pi\)
\(158\) −6.06672e46 −0.324958
\(159\) −2.68968e47 −1.25795
\(160\) 4.41082e46 0.180277
\(161\) −8.21353e46 −0.293612
\(162\) 1.47602e47 0.461869
\(163\) 5.06047e47 1.38726 0.693629 0.720333i \(-0.256011\pi\)
0.693629 + 0.720333i \(0.256011\pi\)
\(164\) −1.73233e46 −0.0416377
\(165\) 1.09280e48 2.30481
\(166\) −5.08378e47 −0.941592
\(167\) 1.13170e48 1.84216 0.921082 0.389369i \(-0.127307\pi\)
0.921082 + 0.389369i \(0.127307\pi\)
\(168\) 1.58387e47 0.226761
\(169\) −7.87617e47 −0.992547
\(170\) 2.86669e47 0.318221
\(171\) 2.32072e48 2.27094
\(172\) −5.25089e47 −0.453285
\(173\) 7.32705e47 0.558391 0.279195 0.960234i \(-0.409932\pi\)
0.279195 + 0.960234i \(0.409932\pi\)
\(174\) −2.56062e48 −1.72400
\(175\) 2.53930e46 0.0151146
\(176\) 6.32294e47 0.332964
\(177\) −5.23534e48 −2.44073
\(178\) −2.31839e47 −0.0957539
\(179\) −2.02921e48 −0.742997 −0.371498 0.928434i \(-0.621156\pi\)
−0.371498 + 0.928434i \(0.621156\pi\)
\(180\) 2.95052e48 0.958386
\(181\) 5.41534e48 1.56148 0.780739 0.624857i \(-0.214843\pi\)
0.780739 + 0.624857i \(0.214843\pi\)
\(182\) 9.00815e46 0.0230728
\(183\) 1.30183e49 2.96386
\(184\) −1.35631e48 −0.274649
\(185\) −9.16363e48 −1.65149
\(186\) 3.25923e48 0.523102
\(187\) 4.10942e48 0.587741
\(188\) −2.30845e48 −0.294392
\(189\) 4.95801e48 0.564129
\(190\) 8.57733e48 0.871264
\(191\) 4.96038e48 0.450088 0.225044 0.974349i \(-0.427747\pi\)
0.225044 + 0.974349i \(0.427747\pi\)
\(192\) 2.61547e48 0.212116
\(193\) −1.61867e49 −1.17402 −0.587011 0.809579i \(-0.699695\pi\)
−0.587011 + 0.809579i \(0.699695\pi\)
\(194\) 9.92359e48 0.644068
\(195\) 2.57091e48 0.149397
\(196\) 1.37207e48 0.0714286
\(197\) 1.93598e49 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(198\) 4.22960e49 1.77010
\(199\) 4.82521e49 1.81207 0.906035 0.423202i \(-0.139094\pi\)
0.906035 + 0.423202i \(0.139094\pi\)
\(200\) 4.19320e47 0.0141384
\(201\) 7.49395e49 2.26984
\(202\) 4.41210e49 1.20113
\(203\) −2.21822e49 −0.543050
\(204\) 1.69985e49 0.374423
\(205\) −4.28292e48 −0.0849242
\(206\) 8.55929e48 0.152860
\(207\) −9.07278e49 −1.46009
\(208\) 1.48753e48 0.0215826
\(209\) 1.22957e50 1.60919
\(210\) 3.91587e49 0.462502
\(211\) −9.66893e49 −1.03111 −0.515556 0.856856i \(-0.672415\pi\)
−0.515556 + 0.856856i \(0.672415\pi\)
\(212\) −3.84761e49 −0.370655
\(213\) 1.31586e50 1.14564
\(214\) −1.11443e50 −0.877318
\(215\) −1.29820e50 −0.924519
\(216\) 8.18726e49 0.527695
\(217\) 2.82341e49 0.164774
\(218\) −1.26801e50 −0.670358
\(219\) −2.30269e50 −1.10328
\(220\) 1.56325e50 0.679112
\(221\) 9.66780e48 0.0380973
\(222\) −5.43373e50 −1.94316
\(223\) −1.42564e50 −0.462866 −0.231433 0.972851i \(-0.574341\pi\)
−0.231433 + 0.972851i \(0.574341\pi\)
\(224\) 2.26573e49 0.0668153
\(225\) 2.80495e49 0.0751626
\(226\) −5.55356e50 −1.35282
\(227\) 2.76026e50 0.611496 0.305748 0.952113i \(-0.401094\pi\)
0.305748 + 0.952113i \(0.401094\pi\)
\(228\) 5.08607e50 1.02514
\(229\) 2.11283e50 0.387615 0.193808 0.981040i \(-0.437916\pi\)
0.193808 + 0.981040i \(0.437916\pi\)
\(230\) −3.35328e50 −0.560172
\(231\) 5.61343e50 0.854222
\(232\) −3.66299e50 −0.507977
\(233\) −3.52959e50 −0.446243 −0.223122 0.974791i \(-0.571625\pi\)
−0.223122 + 0.974791i \(0.571625\pi\)
\(234\) 9.95054e49 0.114738
\(235\) −5.70729e50 −0.600442
\(236\) −7.48919e50 −0.719162
\(237\) −8.89394e50 −0.779838
\(238\) 1.47255e50 0.117941
\(239\) 1.58750e51 1.16187 0.580937 0.813948i \(-0.302686\pi\)
0.580937 + 0.813948i \(0.302686\pi\)
\(240\) 6.46635e50 0.432631
\(241\) 9.83909e50 0.601989 0.300995 0.953626i \(-0.402681\pi\)
0.300995 + 0.953626i \(0.402681\pi\)
\(242\) 9.77608e50 0.547185
\(243\) −7.49945e50 −0.384144
\(244\) 1.86228e51 0.873302
\(245\) 3.39225e50 0.145686
\(246\) −2.53963e50 −0.0999229
\(247\) 2.89267e50 0.104307
\(248\) 4.66235e50 0.154132
\(249\) −7.45292e51 −2.25965
\(250\) −2.48878e51 −0.692270
\(251\) −4.94048e51 −1.26120 −0.630600 0.776108i \(-0.717191\pi\)
−0.630600 + 0.776108i \(0.717191\pi\)
\(252\) 1.51561e51 0.355203
\(253\) −4.80696e51 −1.03462
\(254\) −4.84748e51 −0.958497
\(255\) 4.20262e51 0.763672
\(256\) 3.74144e50 0.0625000
\(257\) 7.74707e51 1.19008 0.595039 0.803697i \(-0.297137\pi\)
0.595039 + 0.803697i \(0.297137\pi\)
\(258\) −7.69792e51 −1.08780
\(259\) −4.70714e51 −0.612085
\(260\) 3.67770e50 0.0440199
\(261\) −2.45028e52 −2.70050
\(262\) −8.02242e51 −0.814381
\(263\) −2.08066e51 −0.194605 −0.0973023 0.995255i \(-0.531021\pi\)
−0.0973023 + 0.995255i \(0.531021\pi\)
\(264\) 9.26956e51 0.799052
\(265\) −9.51263e51 −0.755987
\(266\) 4.40597e51 0.322914
\(267\) −3.39881e51 −0.229792
\(268\) 1.07201e52 0.668810
\(269\) −1.03892e52 −0.598282 −0.299141 0.954209i \(-0.596700\pi\)
−0.299141 + 0.954209i \(0.596700\pi\)
\(270\) 2.02418e52 1.07628
\(271\) 2.08593e52 1.02438 0.512189 0.858873i \(-0.328835\pi\)
0.512189 + 0.858873i \(0.328835\pi\)
\(272\) 2.43165e51 0.110324
\(273\) 1.32061e51 0.0553705
\(274\) 3.12337e52 1.21056
\(275\) 1.48613e51 0.0532602
\(276\) −1.98839e52 −0.659106
\(277\) −1.12078e51 −0.0343720 −0.0171860 0.999852i \(-0.505471\pi\)
−0.0171860 + 0.999852i \(0.505471\pi\)
\(278\) 9.22892e51 0.261931
\(279\) 3.11878e52 0.819397
\(280\) 5.60168e51 0.136276
\(281\) −5.26129e52 −1.18551 −0.592756 0.805382i \(-0.701960\pi\)
−0.592756 + 0.805382i \(0.701960\pi\)
\(282\) −3.38423e52 −0.706487
\(283\) 4.31465e52 0.834713 0.417357 0.908743i \(-0.362957\pi\)
0.417357 + 0.908743i \(0.362957\pi\)
\(284\) 1.88235e52 0.337564
\(285\) 1.25745e53 2.09087
\(286\) 5.27201e51 0.0813030
\(287\) −2.20003e51 −0.0314752
\(288\) 2.50276e52 0.332262
\(289\) −6.53490e52 −0.805259
\(290\) −9.05619e52 −1.03607
\(291\) 1.45482e53 1.54564
\(292\) −3.29401e52 −0.325083
\(293\) −1.72475e53 −1.58151 −0.790756 0.612132i \(-0.790312\pi\)
−0.790756 + 0.612132i \(0.790312\pi\)
\(294\) 2.01149e52 0.171415
\(295\) −1.85159e53 −1.46680
\(296\) −7.77299e52 −0.572554
\(297\) 2.90167e53 1.98785
\(298\) 2.67272e52 0.170335
\(299\) −1.13088e52 −0.0670636
\(300\) 6.14732e51 0.0339296
\(301\) −6.66856e52 −0.342651
\(302\) 1.11881e53 0.535313
\(303\) 6.46823e53 2.88250
\(304\) 7.27566e52 0.302058
\(305\) 4.60421e53 1.78118
\(306\) 1.62660e53 0.586503
\(307\) −3.06515e53 −1.03033 −0.515166 0.857090i \(-0.672270\pi\)
−0.515166 + 0.857090i \(0.672270\pi\)
\(308\) 8.03005e52 0.251697
\(309\) 1.25481e53 0.366835
\(310\) 1.15269e53 0.314368
\(311\) 2.36844e53 0.602717 0.301359 0.953511i \(-0.402560\pi\)
0.301359 + 0.953511i \(0.402560\pi\)
\(312\) 2.18075e52 0.0517944
\(313\) −1.96909e53 −0.436578 −0.218289 0.975884i \(-0.570048\pi\)
−0.218289 + 0.975884i \(0.570048\pi\)
\(314\) 3.42727e53 0.709515
\(315\) 3.74713e53 0.724472
\(316\) −1.27228e53 −0.229780
\(317\) 6.43536e53 1.08592 0.542961 0.839758i \(-0.317303\pi\)
0.542961 + 0.839758i \(0.317303\pi\)
\(318\) −5.64067e53 −0.889504
\(319\) −1.29821e54 −1.91358
\(320\) 9.25016e52 0.127475
\(321\) −1.63378e54 −2.10540
\(322\) −1.72250e53 −0.207615
\(323\) 4.72861e53 0.533187
\(324\) 3.09544e53 0.326591
\(325\) 3.49625e51 0.00345232
\(326\) 1.06126e54 0.980939
\(327\) −1.85892e54 −1.60874
\(328\) −3.63295e52 −0.0294423
\(329\) −2.93170e53 −0.222540
\(330\) 2.29176e54 1.62974
\(331\) 1.13752e54 0.757979 0.378990 0.925401i \(-0.376272\pi\)
0.378990 + 0.925401i \(0.376272\pi\)
\(332\) −1.06615e54 −0.665806
\(333\) −5.19958e54 −3.04381
\(334\) 2.37335e54 1.30261
\(335\) 2.65039e54 1.36410
\(336\) 3.32161e53 0.160344
\(337\) −3.81521e54 −1.72773 −0.863864 0.503725i \(-0.831963\pi\)
−0.863864 + 0.503725i \(0.831963\pi\)
\(338\) −1.65175e54 −0.701837
\(339\) −8.14163e54 −3.24652
\(340\) 6.01188e53 0.225016
\(341\) 1.65240e54 0.580624
\(342\) 4.86690e54 1.60580
\(343\) 1.74251e53 0.0539949
\(344\) −1.10119e54 −0.320521
\(345\) −4.91598e54 −1.34431
\(346\) 1.53659e54 0.394842
\(347\) −3.02875e54 −0.731441 −0.365720 0.930725i \(-0.619177\pi\)
−0.365720 + 0.930725i \(0.619177\pi\)
\(348\) −5.37002e54 −1.21905
\(349\) −6.88676e53 −0.146983 −0.0734917 0.997296i \(-0.523414\pi\)
−0.0734917 + 0.997296i \(0.523414\pi\)
\(350\) 5.32531e52 0.0106876
\(351\) 6.82646e53 0.128852
\(352\) 1.32602e54 0.235441
\(353\) 5.55122e54 0.927325 0.463663 0.886012i \(-0.346535\pi\)
0.463663 + 0.886012i \(0.346535\pi\)
\(354\) −1.09793e55 −1.72586
\(355\) 4.65382e54 0.688494
\(356\) −4.86202e53 −0.0677082
\(357\) 2.15879e54 0.283037
\(358\) −4.25556e54 −0.525378
\(359\) −3.90516e52 −0.00454055 −0.00227028 0.999997i \(-0.500723\pi\)
−0.00227028 + 0.999997i \(0.500723\pi\)
\(360\) 6.18770e54 0.677681
\(361\) 4.45654e54 0.459825
\(362\) 1.13568e55 1.10413
\(363\) 1.43319e55 1.31314
\(364\) 1.88915e53 0.0163149
\(365\) −8.14395e54 −0.663038
\(366\) 2.73014e55 2.09576
\(367\) −1.55566e55 −1.12615 −0.563073 0.826407i \(-0.690381\pi\)
−0.563073 + 0.826407i \(0.690381\pi\)
\(368\) −2.84440e54 −0.194206
\(369\) −2.43019e54 −0.156521
\(370\) −1.92175e55 −1.16778
\(371\) −4.88641e54 −0.280189
\(372\) 6.83510e54 0.369889
\(373\) 3.36721e55 1.72001 0.860004 0.510287i \(-0.170461\pi\)
0.860004 + 0.510287i \(0.170461\pi\)
\(374\) 8.61808e54 0.415596
\(375\) −3.64860e55 −1.66132
\(376\) −4.84117e54 −0.208167
\(377\) −3.05417e54 −0.124038
\(378\) 1.03977e55 0.398900
\(379\) 9.83811e54 0.356590 0.178295 0.983977i \(-0.442942\pi\)
0.178295 + 0.983977i \(0.442942\pi\)
\(380\) 1.79880e55 0.616077
\(381\) −7.10650e55 −2.30022
\(382\) 1.04027e55 0.318260
\(383\) −4.00962e55 −1.15966 −0.579829 0.814738i \(-0.696881\pi\)
−0.579829 + 0.814738i \(0.696881\pi\)
\(384\) 5.48503e54 0.149989
\(385\) 1.98531e55 0.513360
\(386\) −3.39460e55 −0.830158
\(387\) −7.36620e55 −1.70395
\(388\) 2.08113e55 0.455425
\(389\) 8.38195e55 1.73552 0.867758 0.496987i \(-0.165560\pi\)
0.867758 + 0.496987i \(0.165560\pi\)
\(390\) 5.39158e54 0.105640
\(391\) −1.84864e55 −0.342808
\(392\) 2.87745e54 0.0505076
\(393\) −1.17610e56 −1.95436
\(394\) 4.06005e55 0.638796
\(395\) −3.14553e55 −0.468658
\(396\) 8.87011e55 1.25165
\(397\) 1.12737e56 1.50685 0.753426 0.657532i \(-0.228400\pi\)
0.753426 + 0.657532i \(0.228400\pi\)
\(398\) 1.01192e56 1.28133
\(399\) 6.45924e55 0.774933
\(400\) 8.79378e53 0.00999737
\(401\) 1.42344e56 1.53368 0.766839 0.641840i \(-0.221828\pi\)
0.766839 + 0.641840i \(0.221828\pi\)
\(402\) 1.57159e56 1.60502
\(403\) 3.88742e54 0.0376360
\(404\) 9.25285e55 0.849329
\(405\) 7.65300e55 0.666114
\(406\) −4.65195e55 −0.383994
\(407\) −2.75485e56 −2.15684
\(408\) 3.56484e55 0.264757
\(409\) −2.65729e55 −0.187235 −0.0936176 0.995608i \(-0.529843\pi\)
−0.0936176 + 0.995608i \(0.529843\pi\)
\(410\) −8.98193e54 −0.0600505
\(411\) 4.57893e56 2.90513
\(412\) 1.79501e55 0.108088
\(413\) −9.51117e55 −0.543635
\(414\) −1.90270e56 −1.03244
\(415\) −2.63588e56 −1.35798
\(416\) 3.11958e54 0.0152612
\(417\) 1.35298e56 0.628587
\(418\) 2.57859e56 1.13787
\(419\) 6.60277e55 0.276774 0.138387 0.990378i \(-0.455808\pi\)
0.138387 + 0.990378i \(0.455808\pi\)
\(420\) 8.21217e55 0.327038
\(421\) −1.60800e56 −0.608443 −0.304222 0.952601i \(-0.598396\pi\)
−0.304222 + 0.952601i \(0.598396\pi\)
\(422\) −2.02772e56 −0.729106
\(423\) −3.23840e56 −1.10666
\(424\) −8.06902e55 −0.262093
\(425\) 5.71527e54 0.0176472
\(426\) 2.75956e56 0.810091
\(427\) 2.36507e56 0.660154
\(428\) −2.33713e56 −0.620357
\(429\) 7.72888e55 0.195112
\(430\) −2.72253e56 −0.653734
\(431\) −4.56596e56 −1.04297 −0.521484 0.853261i \(-0.674621\pi\)
−0.521484 + 0.853261i \(0.674621\pi\)
\(432\) 1.71699e56 0.373137
\(433\) 4.41906e56 0.913778 0.456889 0.889524i \(-0.348964\pi\)
0.456889 + 0.889524i \(0.348964\pi\)
\(434\) 5.92112e55 0.116513
\(435\) −1.32766e57 −2.48637
\(436\) −2.65920e56 −0.474015
\(437\) −5.53125e56 −0.938583
\(438\) −4.82909e56 −0.780139
\(439\) −4.16600e55 −0.0640815 −0.0320407 0.999487i \(-0.510201\pi\)
−0.0320407 + 0.999487i \(0.510201\pi\)
\(440\) 3.27838e56 0.480205
\(441\) 1.92481e56 0.268508
\(442\) 2.02749e55 0.0269388
\(443\) −5.07378e56 −0.642172 −0.321086 0.947050i \(-0.604048\pi\)
−0.321086 + 0.947050i \(0.604048\pi\)
\(444\) −1.13954e57 −1.37402
\(445\) −1.20206e56 −0.138098
\(446\) −2.98978e56 −0.327295
\(447\) 3.91827e56 0.408773
\(448\) 4.75158e55 0.0472456
\(449\) −1.88989e57 −1.79118 −0.895590 0.444881i \(-0.853246\pi\)
−0.895590 + 0.444881i \(0.853246\pi\)
\(450\) 5.88242e55 0.0531480
\(451\) −1.28757e56 −0.110911
\(452\) −1.16467e57 −0.956588
\(453\) 1.64020e57 1.28465
\(454\) 5.78868e56 0.432393
\(455\) 4.67063e55 0.0332759
\(456\) 1.06663e57 0.724884
\(457\) 2.82793e57 1.83345 0.916726 0.399516i \(-0.130822\pi\)
0.916726 + 0.399516i \(0.130822\pi\)
\(458\) 4.43092e56 0.274085
\(459\) 1.11591e57 0.658653
\(460\) −7.03234e56 −0.396102
\(461\) 1.27749e57 0.686732 0.343366 0.939202i \(-0.388433\pi\)
0.343366 + 0.939202i \(0.388433\pi\)
\(462\) 1.17722e57 0.604026
\(463\) −3.04250e57 −1.49018 −0.745091 0.666963i \(-0.767594\pi\)
−0.745091 + 0.666963i \(0.767594\pi\)
\(464\) −7.68185e56 −0.359194
\(465\) 1.68987e57 0.754425
\(466\) −7.40208e56 −0.315542
\(467\) −2.60467e57 −1.06033 −0.530164 0.847895i \(-0.677870\pi\)
−0.530164 + 0.847895i \(0.677870\pi\)
\(468\) 2.08678e56 0.0811317
\(469\) 1.36144e57 0.505573
\(470\) −1.19691e57 −0.424577
\(471\) 5.02445e57 1.70271
\(472\) −1.57060e57 −0.508524
\(473\) −3.90277e57 −1.20742
\(474\) −1.86519e57 −0.551429
\(475\) 1.71005e56 0.0483166
\(476\) 3.08816e56 0.0833969
\(477\) −5.39760e57 −1.39334
\(478\) 3.32923e57 0.821570
\(479\) 3.08764e57 0.728473 0.364237 0.931306i \(-0.381330\pi\)
0.364237 + 0.931306i \(0.381330\pi\)
\(480\) 1.35609e57 0.305916
\(481\) −6.48104e56 −0.139806
\(482\) 2.06341e57 0.425671
\(483\) −2.52522e57 −0.498237
\(484\) 2.05019e57 0.386919
\(485\) 5.14527e57 0.928883
\(486\) −1.57275e57 −0.271631
\(487\) −7.85202e57 −1.29750 −0.648752 0.761000i \(-0.724709\pi\)
−0.648752 + 0.761000i \(0.724709\pi\)
\(488\) 3.90549e57 0.617517
\(489\) 1.55582e58 2.35407
\(490\) 7.11405e56 0.103015
\(491\) −6.45569e57 −0.894727 −0.447363 0.894352i \(-0.647637\pi\)
−0.447363 + 0.894352i \(0.647637\pi\)
\(492\) −5.32598e56 −0.0706562
\(493\) −4.99260e57 −0.634042
\(494\) 6.06638e56 0.0737565
\(495\) 2.19300e58 2.55286
\(496\) 9.77765e56 0.108988
\(497\) 2.39056e57 0.255174
\(498\) −1.56299e58 −1.59781
\(499\) −2.66007e57 −0.260454 −0.130227 0.991484i \(-0.541571\pi\)
−0.130227 + 0.991484i \(0.541571\pi\)
\(500\) −5.21934e57 −0.489509
\(501\) 3.47938e58 3.12602
\(502\) −1.03609e58 −0.891803
\(503\) −2.37020e57 −0.195467 −0.0977337 0.995213i \(-0.531159\pi\)
−0.0977337 + 0.995213i \(0.531159\pi\)
\(504\) 3.17847e57 0.251167
\(505\) 2.28763e58 1.73229
\(506\) −1.00809e58 −0.731584
\(507\) −2.42150e58 −1.68428
\(508\) −1.01659e58 −0.677760
\(509\) 2.88568e58 1.84423 0.922117 0.386912i \(-0.126458\pi\)
0.922117 + 0.386912i \(0.126458\pi\)
\(510\) 8.81354e57 0.539997
\(511\) −4.18335e57 −0.245740
\(512\) 7.84638e56 0.0441942
\(513\) 3.33889e58 1.80334
\(514\) 1.62468e58 0.841512
\(515\) 4.43790e57 0.220456
\(516\) −1.61437e58 −0.769192
\(517\) −1.71577e58 −0.784176
\(518\) −9.87159e57 −0.432810
\(519\) 2.25268e58 0.947548
\(520\) 7.71269e56 0.0311268
\(521\) −2.47704e58 −0.959229 −0.479615 0.877479i \(-0.659224\pi\)
−0.479615 + 0.877479i \(0.659224\pi\)
\(522\) −5.13861e58 −1.90954
\(523\) 8.85534e57 0.315805 0.157902 0.987455i \(-0.449527\pi\)
0.157902 + 0.987455i \(0.449527\pi\)
\(524\) −1.68242e58 −0.575854
\(525\) 7.80701e56 0.0256484
\(526\) −4.36347e57 −0.137606
\(527\) 6.35471e57 0.192383
\(528\) 1.94397e58 0.565015
\(529\) −1.42099e58 −0.396545
\(530\) −1.99494e58 −0.534564
\(531\) −1.05062e59 −2.70341
\(532\) 9.23999e57 0.228334
\(533\) −3.02912e56 −0.00718922
\(534\) −7.12781e57 −0.162487
\(535\) −5.77820e58 −1.26528
\(536\) 2.24818e58 0.472920
\(537\) −6.23874e58 −1.26081
\(538\) −2.17876e58 −0.423049
\(539\) 1.01981e58 0.190265
\(540\) 4.24500e58 0.761048
\(541\) −1.61641e58 −0.278491 −0.139245 0.990258i \(-0.544468\pi\)
−0.139245 + 0.990258i \(0.544468\pi\)
\(542\) 4.37451e58 0.724344
\(543\) 1.66493e59 2.64971
\(544\) 5.09953e57 0.0780107
\(545\) −6.57447e58 −0.966799
\(546\) 2.76953e57 0.0391529
\(547\) −6.17347e58 −0.839077 −0.419538 0.907738i \(-0.637808\pi\)
−0.419538 + 0.907738i \(0.637808\pi\)
\(548\) 6.55019e58 0.855996
\(549\) 2.61250e59 3.28284
\(550\) 3.11663e57 0.0376606
\(551\) −1.49382e59 −1.73596
\(552\) −4.16995e58 −0.466058
\(553\) −1.61578e58 −0.173697
\(554\) −2.35044e57 −0.0243046
\(555\) −2.81733e59 −2.80245
\(556\) 1.93544e58 0.185213
\(557\) 8.62679e58 0.794260 0.397130 0.917762i \(-0.370006\pi\)
0.397130 + 0.917762i \(0.370006\pi\)
\(558\) 6.54055e58 0.579401
\(559\) −9.18164e57 −0.0782648
\(560\) 1.17476e58 0.0963619
\(561\) 1.26343e59 0.997353
\(562\) −1.10337e59 −0.838284
\(563\) −4.46566e57 −0.0326554 −0.0163277 0.999867i \(-0.505198\pi\)
−0.0163277 + 0.999867i \(0.505198\pi\)
\(564\) −7.09725e58 −0.499562
\(565\) −2.87946e59 −1.95105
\(566\) 9.04848e58 0.590231
\(567\) 3.93116e58 0.246880
\(568\) 3.94757e58 0.238694
\(569\) 2.24148e58 0.130503 0.0652515 0.997869i \(-0.479215\pi\)
0.0652515 + 0.997869i \(0.479215\pi\)
\(570\) 2.63707e59 1.47847
\(571\) 4.67159e58 0.252225 0.126113 0.992016i \(-0.459750\pi\)
0.126113 + 0.992016i \(0.459750\pi\)
\(572\) 1.10562e58 0.0574899
\(573\) 1.52505e59 0.763766
\(574\) −4.61380e57 −0.0222563
\(575\) −6.68539e57 −0.0310648
\(576\) 5.24867e58 0.234945
\(577\) −1.92135e59 −0.828566 −0.414283 0.910148i \(-0.635968\pi\)
−0.414283 + 0.910148i \(0.635968\pi\)
\(578\) −1.37047e59 −0.569404
\(579\) −4.97655e59 −1.99223
\(580\) −1.89922e59 −0.732611
\(581\) −1.35399e59 −0.503302
\(582\) 3.05098e59 1.09294
\(583\) −2.85977e59 −0.987317
\(584\) −6.90805e58 −0.229868
\(585\) 5.15925e58 0.165476
\(586\) −3.61706e59 −1.11830
\(587\) −4.66867e59 −1.39147 −0.695735 0.718298i \(-0.744921\pi\)
−0.695735 + 0.718298i \(0.744921\pi\)
\(588\) 4.21840e58 0.121209
\(589\) 1.90137e59 0.526731
\(590\) −3.88306e59 −1.03719
\(591\) 5.95211e59 1.53299
\(592\) −1.63011e59 −0.404856
\(593\) 5.39028e59 1.29103 0.645514 0.763749i \(-0.276643\pi\)
0.645514 + 0.763749i \(0.276643\pi\)
\(594\) 6.08525e59 1.40563
\(595\) 7.63501e58 0.170096
\(596\) 5.60510e58 0.120445
\(597\) 1.48350e60 3.07495
\(598\) −2.37163e58 −0.0474211
\(599\) −5.68626e58 −0.109686 −0.0548429 0.998495i \(-0.517466\pi\)
−0.0548429 + 0.998495i \(0.517466\pi\)
\(600\) 1.28919e58 0.0239919
\(601\) −3.18895e59 −0.572594 −0.286297 0.958141i \(-0.592424\pi\)
−0.286297 + 0.958141i \(0.592424\pi\)
\(602\) −1.39850e59 −0.242291
\(603\) 1.50387e60 2.51413
\(604\) 2.34632e59 0.378523
\(605\) 5.06879e59 0.789158
\(606\) 1.35649e60 2.03823
\(607\) −1.68587e59 −0.244493 −0.122246 0.992500i \(-0.539010\pi\)
−0.122246 + 0.992500i \(0.539010\pi\)
\(608\) 1.52582e59 0.213587
\(609\) −6.81985e59 −0.921516
\(610\) 9.65573e59 1.25949
\(611\) −4.03652e58 −0.0508301
\(612\) 3.41123e59 0.414720
\(613\) −1.23780e60 −1.45294 −0.726472 0.687196i \(-0.758841\pi\)
−0.726472 + 0.687196i \(0.758841\pi\)
\(614\) −6.42809e59 −0.728555
\(615\) −1.31677e59 −0.144110
\(616\) 1.68402e59 0.177977
\(617\) −1.37958e60 −1.40804 −0.704020 0.710181i \(-0.748613\pi\)
−0.704020 + 0.710181i \(0.748613\pi\)
\(618\) 2.63153e59 0.259391
\(619\) 1.10601e60 1.05296 0.526478 0.850189i \(-0.323512\pi\)
0.526478 + 0.850189i \(0.323512\pi\)
\(620\) 2.41738e59 0.222292
\(621\) −1.30533e60 −1.15944
\(622\) 4.96697e59 0.426186
\(623\) −6.17469e58 −0.0511826
\(624\) 4.57337e58 0.0366242
\(625\) −1.34209e60 −1.03839
\(626\) −4.12948e59 −0.308707
\(627\) 3.78027e60 2.73068
\(628\) 7.18752e59 0.501703
\(629\) −1.05945e60 −0.714645
\(630\) 7.85829e59 0.512279
\(631\) −5.47341e58 −0.0344847 −0.0172424 0.999851i \(-0.505489\pi\)
−0.0172424 + 0.999851i \(0.505489\pi\)
\(632\) −2.66817e59 −0.162479
\(633\) −2.97268e60 −1.74972
\(634\) 1.34959e60 0.767864
\(635\) −2.51336e60 −1.38236
\(636\) −1.18293e60 −0.628974
\(637\) 2.39919e58 0.0123329
\(638\) −2.72255e60 −1.35310
\(639\) 2.64065e60 1.26894
\(640\) 1.93990e59 0.0901383
\(641\) 1.56797e60 0.704516 0.352258 0.935903i \(-0.385414\pi\)
0.352258 + 0.935903i \(0.385414\pi\)
\(642\) −3.42628e60 −1.48874
\(643\) 1.28466e60 0.539823 0.269912 0.962885i \(-0.413006\pi\)
0.269912 + 0.962885i \(0.413006\pi\)
\(644\) −3.61235e59 −0.146806
\(645\) −3.99129e60 −1.56884
\(646\) 9.91662e59 0.377020
\(647\) −2.69430e60 −0.990840 −0.495420 0.868654i \(-0.664986\pi\)
−0.495420 + 0.868654i \(0.664986\pi\)
\(648\) 6.49160e59 0.230935
\(649\) −5.56640e60 −1.91564
\(650\) 7.33217e57 0.00244116
\(651\) 8.68048e59 0.279610
\(652\) 2.22562e60 0.693629
\(653\) −2.20855e59 −0.0665999 −0.0332999 0.999445i \(-0.510602\pi\)
−0.0332999 + 0.999445i \(0.510602\pi\)
\(654\) −3.89844e60 −1.13755
\(655\) −4.15954e60 −1.17451
\(656\) −7.61886e58 −0.0208189
\(657\) −4.62099e60 −1.22202
\(658\) −6.14822e59 −0.157359
\(659\) −2.05873e60 −0.509991 −0.254996 0.966942i \(-0.582074\pi\)
−0.254996 + 0.966942i \(0.582074\pi\)
\(660\) 4.80617e60 1.15240
\(661\) 7.06292e60 1.63928 0.819640 0.572879i \(-0.194173\pi\)
0.819640 + 0.572879i \(0.194173\pi\)
\(662\) 2.38555e60 0.535972
\(663\) 2.97233e59 0.0646483
\(664\) −2.23587e60 −0.470796
\(665\) 2.28445e60 0.465710
\(666\) −1.09043e61 −2.15230
\(667\) 5.84005e60 1.11612
\(668\) 4.97728e60 0.921082
\(669\) −4.38308e60 −0.785449
\(670\) 5.55828e60 0.964566
\(671\) 1.38416e61 2.32622
\(672\) 6.96592e59 0.113381
\(673\) −1.19470e61 −1.88336 −0.941680 0.336510i \(-0.890753\pi\)
−0.941680 + 0.336510i \(0.890753\pi\)
\(674\) −8.00107e60 −1.22169
\(675\) 4.03557e59 0.0596861
\(676\) −3.46398e60 −0.496274
\(677\) 1.14708e61 1.59197 0.795987 0.605314i \(-0.206952\pi\)
0.795987 + 0.605314i \(0.206952\pi\)
\(678\) −1.70742e61 −2.29563
\(679\) 2.64300e60 0.344269
\(680\) 1.26078e60 0.159110
\(681\) 8.48632e60 1.03766
\(682\) 3.46533e60 0.410563
\(683\) 7.55851e60 0.867743 0.433872 0.900975i \(-0.357147\pi\)
0.433872 + 0.900975i \(0.357147\pi\)
\(684\) 1.02066e61 1.13547
\(685\) 1.61944e61 1.74589
\(686\) 3.65432e59 0.0381802
\(687\) 6.49582e60 0.657755
\(688\) −2.30937e60 −0.226643
\(689\) −6.72787e59 −0.0639977
\(690\) −1.03096e61 −0.950571
\(691\) 3.22666e59 0.0288386 0.0144193 0.999896i \(-0.495410\pi\)
0.0144193 + 0.999896i \(0.495410\pi\)
\(692\) 3.22247e60 0.279195
\(693\) 1.12649e61 0.946158
\(694\) −6.35174e60 −0.517207
\(695\) 4.78509e60 0.377761
\(696\) −1.12617e61 −0.861999
\(697\) −4.95166e59 −0.0367491
\(698\) −1.44426e60 −0.103933
\(699\) −1.08516e61 −0.757242
\(700\) 1.11680e59 0.00755730
\(701\) 8.78052e60 0.576213 0.288107 0.957598i \(-0.406974\pi\)
0.288107 + 0.957598i \(0.406974\pi\)
\(702\) 1.43161e60 0.0911124
\(703\) −3.16994e61 −1.95664
\(704\) 2.78086e60 0.166482
\(705\) −1.75469e61 −1.01891
\(706\) 1.16417e61 0.655718
\(707\) 1.17510e61 0.642032
\(708\) −2.30253e61 −1.22037
\(709\) −7.91329e60 −0.406877 −0.203438 0.979088i \(-0.565212\pi\)
−0.203438 + 0.979088i \(0.565212\pi\)
\(710\) 9.75978e60 0.486839
\(711\) −1.78482e61 −0.863769
\(712\) −1.01964e60 −0.0478769
\(713\) −7.43337e60 −0.338658
\(714\) 4.52730e60 0.200137
\(715\) 2.73348e60 0.117256
\(716\) −8.92456e60 −0.371498
\(717\) 4.88072e61 1.97162
\(718\) −8.18972e58 −0.00321065
\(719\) 2.50071e61 0.951463 0.475732 0.879590i \(-0.342183\pi\)
0.475732 + 0.879590i \(0.342183\pi\)
\(720\) 1.29765e61 0.479193
\(721\) 2.27964e60 0.0817069
\(722\) 9.34604e60 0.325146
\(723\) 3.02500e61 1.02153
\(724\) 2.38169e61 0.780739
\(725\) −1.80552e60 −0.0574559
\(726\) 3.00563e61 0.928533
\(727\) 3.91765e61 1.17499 0.587497 0.809227i \(-0.300114\pi\)
0.587497 + 0.809227i \(0.300114\pi\)
\(728\) 3.96183e59 0.0115364
\(729\) −4.61602e61 −1.30505
\(730\) −1.70791e61 −0.468839
\(731\) −1.50091e61 −0.400065
\(732\) 5.72553e61 1.48193
\(733\) −3.94615e61 −0.991832 −0.495916 0.868370i \(-0.665168\pi\)
−0.495916 + 0.868370i \(0.665168\pi\)
\(734\) −3.26246e61 −0.796305
\(735\) 1.04293e61 0.247218
\(736\) −5.96514e60 −0.137324
\(737\) 7.96784e61 1.78151
\(738\) −5.09647e60 −0.110677
\(739\) 7.91849e61 1.67027 0.835135 0.550045i \(-0.185389\pi\)
0.835135 + 0.550045i \(0.185389\pi\)
\(740\) −4.03021e61 −0.825744
\(741\) 8.89344e60 0.177002
\(742\) −1.02475e61 −0.198123
\(743\) −3.82195e61 −0.717837 −0.358918 0.933369i \(-0.616854\pi\)
−0.358918 + 0.933369i \(0.616854\pi\)
\(744\) 1.43342e61 0.261551
\(745\) 1.38578e61 0.245660
\(746\) 7.06155e61 1.21623
\(747\) −1.49564e62 −2.50284
\(748\) 1.80734e61 0.293871
\(749\) −2.96812e61 −0.468946
\(750\) −7.65166e61 −1.17473
\(751\) 7.77523e60 0.115999 0.0579995 0.998317i \(-0.481528\pi\)
0.0579995 + 0.998317i \(0.481528\pi\)
\(752\) −1.01527e61 −0.147196
\(753\) −1.51893e62 −2.14016
\(754\) −6.40505e60 −0.0877079
\(755\) 5.80092e61 0.772035
\(756\) 2.18056e61 0.282065
\(757\) −1.17685e62 −1.47965 −0.739825 0.672800i \(-0.765092\pi\)
−0.739825 + 0.672800i \(0.765092\pi\)
\(758\) 2.06320e61 0.252147
\(759\) −1.47788e62 −1.75567
\(760\) 3.77235e61 0.435632
\(761\) 7.29869e61 0.819360 0.409680 0.912229i \(-0.365640\pi\)
0.409680 + 0.912229i \(0.365640\pi\)
\(762\) −1.49034e62 −1.62650
\(763\) −3.37715e61 −0.358321
\(764\) 2.18160e61 0.225044
\(765\) 8.43374e61 0.845862
\(766\) −8.40879e61 −0.820002
\(767\) −1.30955e61 −0.124171
\(768\) 1.15029e61 0.106058
\(769\) 4.93911e61 0.442825 0.221413 0.975180i \(-0.428933\pi\)
0.221413 + 0.975180i \(0.428933\pi\)
\(770\) 4.16349e61 0.363001
\(771\) 2.38181e62 2.01947
\(772\) −7.11898e61 −0.587011
\(773\) 1.07212e62 0.859776 0.429888 0.902882i \(-0.358553\pi\)
0.429888 + 0.902882i \(0.358553\pi\)
\(774\) −1.54480e62 −1.20488
\(775\) 2.29811e60 0.0174335
\(776\) 4.36444e61 0.322034
\(777\) −1.44719e62 −1.03866
\(778\) 1.75782e62 1.22720
\(779\) −1.48157e61 −0.100616
\(780\) 1.13070e61 0.0746985
\(781\) 1.39907e62 0.899172
\(782\) −3.87687e61 −0.242402
\(783\) −3.52529e62 −2.14445
\(784\) 6.03444e60 0.0357143
\(785\) 1.77700e62 1.02327
\(786\) −2.46647e62 −1.38194
\(787\) −2.32796e62 −1.26917 −0.634584 0.772854i \(-0.718828\pi\)
−0.634584 + 0.772854i \(0.718828\pi\)
\(788\) 8.51454e61 0.451697
\(789\) −6.39693e61 −0.330230
\(790\) −6.59665e61 −0.331391
\(791\) −1.47911e62 −0.723112
\(792\) 1.86020e62 0.885050
\(793\) 3.25636e61 0.150785
\(794\) 2.36427e62 1.06551
\(795\) −2.92463e62 −1.28285
\(796\) 2.12215e62 0.906035
\(797\) 1.97144e61 0.0819276 0.0409638 0.999161i \(-0.486957\pi\)
0.0409638 + 0.999161i \(0.486957\pi\)
\(798\) 1.35460e62 0.547961
\(799\) −6.59844e61 −0.259828
\(800\) 1.84419e60 0.00706921
\(801\) −6.82066e61 −0.254523
\(802\) 2.98516e62 1.08447
\(803\) −2.44830e62 −0.865926
\(804\) 3.29587e62 1.13492
\(805\) −8.93098e61 −0.299425
\(806\) 8.15251e60 0.0266127
\(807\) −3.19411e62 −1.01524
\(808\) 1.94046e62 0.600566
\(809\) 3.09224e62 0.931924 0.465962 0.884805i \(-0.345708\pi\)
0.465962 + 0.884805i \(0.345708\pi\)
\(810\) 1.60495e62 0.471014
\(811\) −9.14901e61 −0.261472 −0.130736 0.991417i \(-0.541734\pi\)
−0.130736 + 0.991417i \(0.541734\pi\)
\(812\) −9.75584e61 −0.271525
\(813\) 6.41313e62 1.73829
\(814\) −5.77734e62 −1.52512
\(815\) 5.50250e62 1.41472
\(816\) 7.47602e61 0.187211
\(817\) −4.49083e62 −1.09535
\(818\) −5.57274e61 −0.132395
\(819\) 2.65018e61 0.0613298
\(820\) −1.88365e61 −0.0424621
\(821\) −4.70292e62 −1.03274 −0.516369 0.856366i \(-0.672717\pi\)
−0.516369 + 0.856366i \(0.672717\pi\)
\(822\) 9.60271e62 2.05423
\(823\) −5.80301e62 −1.20936 −0.604682 0.796467i \(-0.706700\pi\)
−0.604682 + 0.796467i \(0.706700\pi\)
\(824\) 3.76442e61 0.0764298
\(825\) 4.56905e61 0.0903786
\(826\) −1.99464e62 −0.384408
\(827\) 1.51366e62 0.284223 0.142111 0.989851i \(-0.454611\pi\)
0.142111 + 0.989851i \(0.454611\pi\)
\(828\) −3.99025e62 −0.730043
\(829\) 7.49469e61 0.133608 0.0668038 0.997766i \(-0.478720\pi\)
0.0668038 + 0.997766i \(0.478720\pi\)
\(830\) −5.52785e62 −0.960234
\(831\) −3.44579e61 −0.0583267
\(832\) 6.54224e60 0.0107913
\(833\) 3.92192e61 0.0630422
\(834\) 2.83740e62 0.444478
\(835\) 1.23056e63 1.87864
\(836\) 5.40770e62 0.804595
\(837\) 4.48708e62 0.650678
\(838\) 1.38470e62 0.195709
\(839\) 1.15203e63 1.58702 0.793511 0.608556i \(-0.208251\pi\)
0.793511 + 0.608556i \(0.208251\pi\)
\(840\) 1.72222e62 0.231251
\(841\) 8.13182e62 1.06432
\(842\) −3.37221e62 −0.430234
\(843\) −1.61757e63 −2.01173
\(844\) −4.25244e62 −0.515556
\(845\) −8.56416e62 −1.01220
\(846\) −6.79141e62 −0.782523
\(847\) 2.60372e62 0.292483
\(848\) −1.69220e62 −0.185328
\(849\) 1.32653e63 1.41645
\(850\) 1.19858e61 0.0124784
\(851\) 1.23928e63 1.25801
\(852\) 5.78722e62 0.572821
\(853\) −5.36813e62 −0.518106 −0.259053 0.965863i \(-0.583410\pi\)
−0.259053 + 0.965863i \(0.583410\pi\)
\(854\) 4.95992e62 0.466799
\(855\) 2.52344e63 2.31591
\(856\) −4.90132e62 −0.438659
\(857\) −4.58663e62 −0.400319 −0.200159 0.979763i \(-0.564146\pi\)
−0.200159 + 0.979763i \(0.564146\pi\)
\(858\) 1.62086e62 0.137965
\(859\) 1.14466e63 0.950215 0.475108 0.879928i \(-0.342409\pi\)
0.475108 + 0.879928i \(0.342409\pi\)
\(860\) −5.70956e62 −0.462260
\(861\) −6.76393e61 −0.0534111
\(862\) −9.57551e62 −0.737489
\(863\) 3.59130e62 0.269786 0.134893 0.990860i \(-0.456931\pi\)
0.134893 + 0.990860i \(0.456931\pi\)
\(864\) 3.60079e62 0.263847
\(865\) 7.96707e62 0.569446
\(866\) 9.26745e62 0.646138
\(867\) −2.00913e63 −1.36646
\(868\) 1.24175e62 0.0823871
\(869\) −9.45635e62 −0.612066
\(870\) −2.78430e63 −1.75813
\(871\) 1.87451e62 0.115477
\(872\) −5.57675e62 −0.335179
\(873\) 2.91950e63 1.71200
\(874\) −1.15999e63 −0.663678
\(875\) −6.62849e62 −0.370034
\(876\) −1.01273e63 −0.551642
\(877\) −2.36827e63 −1.25875 −0.629375 0.777101i \(-0.716689\pi\)
−0.629375 + 0.777101i \(0.716689\pi\)
\(878\) −8.73674e61 −0.0453125
\(879\) −5.30269e63 −2.68371
\(880\) 6.87525e62 0.339556
\(881\) 3.81161e63 1.83707 0.918537 0.395336i \(-0.129372\pi\)
0.918537 + 0.395336i \(0.129372\pi\)
\(882\) 4.03662e62 0.189864
\(883\) −2.31351e63 −1.06198 −0.530990 0.847378i \(-0.678180\pi\)
−0.530990 + 0.847378i \(0.678180\pi\)
\(884\) 4.25194e61 0.0190486
\(885\) −5.69265e63 −2.48905
\(886\) −1.06405e63 −0.454085
\(887\) 1.93793e62 0.0807197 0.0403599 0.999185i \(-0.487150\pi\)
0.0403599 + 0.999185i \(0.487150\pi\)
\(888\) −2.38978e63 −0.971581
\(889\) −1.29105e63 −0.512338
\(890\) −2.52090e62 −0.0976497
\(891\) 2.30071e63 0.869944
\(892\) −6.27003e62 −0.231433
\(893\) −1.97430e63 −0.711389
\(894\) 8.21720e62 0.289046
\(895\) −2.20646e63 −0.757707
\(896\) 9.96479e61 0.0334077
\(897\) −3.47686e62 −0.113802
\(898\) −3.96338e63 −1.26656
\(899\) −2.00752e63 −0.626365
\(900\) 1.23363e62 0.0375813
\(901\) −1.09980e63 −0.327137
\(902\) −2.70022e62 −0.0784258
\(903\) −2.05023e63 −0.581454
\(904\) −2.44248e63 −0.676410
\(905\) 5.88837e63 1.59239
\(906\) 3.43975e63 0.908386
\(907\) 2.13308e63 0.550111 0.275055 0.961428i \(-0.411304\pi\)
0.275055 + 0.961428i \(0.411304\pi\)
\(908\) 1.21397e63 0.305748
\(909\) 1.29803e64 3.19273
\(910\) 9.79501e61 0.0235296
\(911\) −1.77503e63 −0.416447 −0.208223 0.978081i \(-0.566768\pi\)
−0.208223 + 0.978081i \(0.566768\pi\)
\(912\) 2.23688e63 0.512570
\(913\) −7.92421e63 −1.77351
\(914\) 5.93059e63 1.29645
\(915\) 1.41555e64 3.02254
\(916\) 9.29231e62 0.193808
\(917\) −2.13665e63 −0.435305
\(918\) 2.34024e63 0.465738
\(919\) 7.27263e63 1.41387 0.706933 0.707281i \(-0.250078\pi\)
0.706933 + 0.707281i \(0.250078\pi\)
\(920\) −1.47479e63 −0.280086
\(921\) −9.42372e63 −1.74840
\(922\) 2.67909e63 0.485593
\(923\) 3.29145e62 0.0582842
\(924\) 2.46881e63 0.427111
\(925\) −3.83137e62 −0.0647600
\(926\) −6.38058e63 −1.05372
\(927\) 2.51813e63 0.406316
\(928\) −1.61100e63 −0.253988
\(929\) −9.04979e63 −1.39412 −0.697061 0.717012i \(-0.745509\pi\)
−0.697061 + 0.717012i \(0.745509\pi\)
\(930\) 3.54392e63 0.533459
\(931\) 1.17347e63 0.172605
\(932\) −1.55233e63 −0.223122
\(933\) 7.28169e63 1.02277
\(934\) −5.46239e63 −0.749765
\(935\) 4.46838e63 0.599378
\(936\) 4.37629e62 0.0573688
\(937\) 7.60844e63 0.974752 0.487376 0.873192i \(-0.337954\pi\)
0.487376 + 0.873192i \(0.337954\pi\)
\(938\) 2.85515e63 0.357494
\(939\) −6.05390e63 −0.740841
\(940\) −2.51009e63 −0.300221
\(941\) −6.31607e63 −0.738364 −0.369182 0.929357i \(-0.620362\pi\)
−0.369182 + 0.929357i \(0.620362\pi\)
\(942\) 1.05370e64 1.20399
\(943\) 5.79216e62 0.0646904
\(944\) −3.29378e63 −0.359581
\(945\) 5.39110e63 0.575298
\(946\) −8.18470e63 −0.853775
\(947\) 1.39059e64 1.41799 0.708997 0.705211i \(-0.249148\pi\)
0.708997 + 0.705211i \(0.249148\pi\)
\(948\) −3.91159e63 −0.389919
\(949\) −5.75987e62 −0.0561292
\(950\) 3.58624e62 0.0341650
\(951\) 1.97853e64 1.84273
\(952\) 6.47634e62 0.0589705
\(953\) −4.60553e63 −0.409998 −0.204999 0.978762i \(-0.565719\pi\)
−0.204999 + 0.978762i \(0.565719\pi\)
\(954\) −1.13196e64 −0.985237
\(955\) 5.39367e63 0.458999
\(956\) 6.98191e63 0.580937
\(957\) −3.99131e64 −3.24720
\(958\) 6.47526e63 0.515108
\(959\) 8.31865e63 0.647072
\(960\) 2.84393e63 0.216315
\(961\) −1.08895e64 −0.809946
\(962\) −1.35917e63 −0.0988578
\(963\) −3.27863e64 −2.33200
\(964\) 4.32728e63 0.300995
\(965\) −1.76006e64 −1.19727
\(966\) −5.29577e63 −0.352307
\(967\) 2.17246e64 1.41346 0.706730 0.707484i \(-0.250170\pi\)
0.706730 + 0.707484i \(0.250170\pi\)
\(968\) 4.29957e63 0.273593
\(969\) 1.45380e64 0.904779
\(970\) 1.07904e64 0.656820
\(971\) 2.15959e64 1.28575 0.642877 0.765969i \(-0.277740\pi\)
0.642877 + 0.765969i \(0.277740\pi\)
\(972\) −3.29829e63 −0.192072
\(973\) 2.45799e63 0.140008
\(974\) −1.64669e64 −0.917474
\(975\) 1.07491e62 0.00585833
\(976\) 8.19040e63 0.436651
\(977\) 1.49198e64 0.778091 0.389046 0.921218i \(-0.372805\pi\)
0.389046 + 0.921218i \(0.372805\pi\)
\(978\) 3.26280e64 1.66458
\(979\) −3.61373e63 −0.180355
\(980\) 1.49193e63 0.0728428
\(981\) −3.73045e64 −1.78188
\(982\) −1.35386e64 −0.632667
\(983\) 6.91445e62 0.0316124 0.0158062 0.999875i \(-0.494969\pi\)
0.0158062 + 0.999875i \(0.494969\pi\)
\(984\) −1.11694e63 −0.0499615
\(985\) 2.10509e64 0.921280
\(986\) −1.04702e64 −0.448336
\(987\) −9.01341e63 −0.377633
\(988\) 1.27221e63 0.0521537
\(989\) 1.75568e64 0.704245
\(990\) 4.59906e64 1.80515
\(991\) −3.68259e64 −1.41439 −0.707196 0.707017i \(-0.750040\pi\)
−0.707196 + 0.707017i \(0.750040\pi\)
\(992\) 2.05052e63 0.0770661
\(993\) 3.49727e64 1.28623
\(994\) 5.01336e63 0.180435
\(995\) 5.24670e64 1.84795
\(996\) −3.27783e64 −1.12982
\(997\) 2.04016e64 0.688206 0.344103 0.938932i \(-0.388183\pi\)
0.344103 + 0.938932i \(0.388183\pi\)
\(998\) −5.57856e63 −0.184169
\(999\) −7.48078e64 −2.41707
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.44.a.d.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.44.a.d.1.6 6 1.1 even 1 trivial