Properties

Label 14.44.a.d.1.3
Level $14$
Weight $44$
Character 14.1
Self dual yes
Analytic conductor $163.955$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,44,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,12582912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(163.954553484\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{31}\cdot 3^{9}\cdot 5^{3}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.17659e9\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.09715e6 q^{2} -5.44731e9 q^{3} +4.39805e12 q^{4} -1.56089e15 q^{5} -1.14238e16 q^{6} +5.58546e17 q^{7} +9.22337e18 q^{8} -2.98584e20 q^{9} -3.27343e21 q^{10} +5.35046e21 q^{11} -2.39575e22 q^{12} +3.95466e23 q^{13} +1.17136e24 q^{14} +8.50267e24 q^{15} +1.93428e25 q^{16} -5.26671e26 q^{17} -6.26176e26 q^{18} +1.48664e27 q^{19} -6.86488e27 q^{20} -3.04257e27 q^{21} +1.12207e28 q^{22} -9.08158e28 q^{23} -5.02426e28 q^{24} +1.29952e30 q^{25} +8.29352e29 q^{26} +3.41460e30 q^{27} +2.45651e30 q^{28} -3.65109e31 q^{29} +1.78314e31 q^{30} -1.37382e32 q^{31} +4.05648e31 q^{32} -2.91456e31 q^{33} -1.10451e33 q^{34} -8.71830e32 q^{35} -1.31319e33 q^{36} +4.35493e32 q^{37} +3.11771e33 q^{38} -2.15423e33 q^{39} -1.43967e34 q^{40} -5.75082e34 q^{41} -6.38074e33 q^{42} +5.90311e34 q^{43} +2.35316e34 q^{44} +4.66057e35 q^{45} -1.90455e35 q^{46} +5.17220e35 q^{47} -1.05366e35 q^{48} +3.11973e35 q^{49} +2.72529e36 q^{50} +2.86894e36 q^{51} +1.73928e36 q^{52} -4.68660e36 q^{53} +7.16093e36 q^{54} -8.35149e36 q^{55} +5.15168e36 q^{56} -8.09819e36 q^{57} -7.65689e37 q^{58} -1.38350e38 q^{59} +3.73951e37 q^{60} +3.03211e37 q^{61} -2.88112e38 q^{62} -1.66773e38 q^{63} +8.50706e37 q^{64} -6.17280e38 q^{65} -6.11227e37 q^{66} +3.07616e39 q^{67} -2.31633e39 q^{68} +4.94702e38 q^{69} -1.82836e39 q^{70} +5.51515e39 q^{71} -2.75395e39 q^{72} +2.24223e40 q^{73} +9.13295e38 q^{74} -7.07888e39 q^{75} +6.53831e39 q^{76} +2.98847e39 q^{77} -4.51774e39 q^{78} -3.95026e40 q^{79} -3.01921e40 q^{80} +7.94118e40 q^{81} -1.20603e41 q^{82} -1.32759e41 q^{83} -1.33814e40 q^{84} +8.22078e41 q^{85} +1.23797e41 q^{86} +1.98886e41 q^{87} +4.93492e40 q^{88} +7.96723e40 q^{89} +9.77393e41 q^{90} +2.20886e41 q^{91} -3.99412e41 q^{92} +7.48364e41 q^{93} +1.08469e42 q^{94} -2.32049e42 q^{95} -2.20969e41 q^{96} +2.39482e42 q^{97} +6.54256e41 q^{98} -1.59756e42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12582912 q^{2} + 29435191576 q^{3} + 26388279066624 q^{4} + 646778009315508 q^{5} + 61\!\cdots\!52 q^{6} + 33\!\cdots\!42 q^{7} + 55\!\cdots\!48 q^{8} + 34\!\cdots\!42 q^{9} + 13\!\cdots\!16 q^{10}+ \cdots + 37\!\cdots\!52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.09715e6 0.707107
\(3\) −5.44731e9 −0.300660 −0.150330 0.988636i \(-0.548034\pi\)
−0.150330 + 0.988636i \(0.548034\pi\)
\(4\) 4.39805e12 0.500000
\(5\) −1.56089e15 −1.46392 −0.731961 0.681346i \(-0.761395\pi\)
−0.731961 + 0.681346i \(0.761395\pi\)
\(6\) −1.14238e16 −0.212598
\(7\) 5.58546e17 0.377964
\(8\) 9.22337e18 0.353553
\(9\) −2.98584e20 −0.909604
\(10\) −3.27343e21 −1.03515
\(11\) 5.35046e21 0.217996 0.108998 0.994042i \(-0.465236\pi\)
0.108998 + 0.994042i \(0.465236\pi\)
\(12\) −2.39575e22 −0.150330
\(13\) 3.95466e23 0.443943 0.221971 0.975053i \(-0.428751\pi\)
0.221971 + 0.975053i \(0.428751\pi\)
\(14\) 1.17136e24 0.267261
\(15\) 8.50267e24 0.440142
\(16\) 1.93428e25 0.250000
\(17\) −5.26671e26 −1.84879 −0.924396 0.381435i \(-0.875430\pi\)
−0.924396 + 0.381435i \(0.875430\pi\)
\(18\) −6.26176e26 −0.643187
\(19\) 1.48664e27 0.477533 0.238766 0.971077i \(-0.423257\pi\)
0.238766 + 0.971077i \(0.423257\pi\)
\(20\) −6.86488e27 −0.731961
\(21\) −3.04257e27 −0.113639
\(22\) 1.12207e28 0.154146
\(23\) −9.08158e28 −0.479748 −0.239874 0.970804i \(-0.577106\pi\)
−0.239874 + 0.970804i \(0.577106\pi\)
\(24\) −5.02426e28 −0.106299
\(25\) 1.29952e30 1.14307
\(26\) 8.29352e29 0.313915
\(27\) 3.41460e30 0.574141
\(28\) 2.45651e30 0.188982
\(29\) −3.65109e31 −1.32089 −0.660443 0.750876i \(-0.729632\pi\)
−0.660443 + 0.750876i \(0.729632\pi\)
\(30\) 1.78314e31 0.311228
\(31\) −1.37382e32 −1.18483 −0.592413 0.805635i \(-0.701824\pi\)
−0.592413 + 0.805635i \(0.701824\pi\)
\(32\) 4.05648e31 0.176777
\(33\) −2.91456e31 −0.0655425
\(34\) −1.10451e33 −1.30729
\(35\) −8.71830e32 −0.553311
\(36\) −1.31319e33 −0.454802
\(37\) 4.35493e32 0.0836843 0.0418421 0.999124i \(-0.486677\pi\)
0.0418421 + 0.999124i \(0.486677\pi\)
\(38\) 3.11771e33 0.337667
\(39\) −2.15423e33 −0.133476
\(40\) −1.43967e34 −0.517575
\(41\) −5.75082e34 −1.21584 −0.607921 0.793998i \(-0.707996\pi\)
−0.607921 + 0.793998i \(0.707996\pi\)
\(42\) −6.38074e33 −0.0803547
\(43\) 5.90311e34 0.448238 0.224119 0.974562i \(-0.428050\pi\)
0.224119 + 0.974562i \(0.428050\pi\)
\(44\) 2.35316e34 0.108998
\(45\) 4.66057e35 1.33159
\(46\) −1.90455e35 −0.339233
\(47\) 5.17220e35 0.580192 0.290096 0.956998i \(-0.406313\pi\)
0.290096 + 0.956998i \(0.406313\pi\)
\(48\) −1.05366e35 −0.0751649
\(49\) 3.11973e35 0.142857
\(50\) 2.72529e36 0.808271
\(51\) 2.86894e36 0.555857
\(52\) 1.73928e36 0.221971
\(53\) −4.68660e36 −0.397124 −0.198562 0.980088i \(-0.563627\pi\)
−0.198562 + 0.980088i \(0.563627\pi\)
\(54\) 7.16093e36 0.405979
\(55\) −8.35149e36 −0.319129
\(56\) 5.15168e36 0.133631
\(57\) −8.09819e36 −0.143575
\(58\) −7.65689e37 −0.934008
\(59\) −1.38350e38 −1.16859 −0.584293 0.811543i \(-0.698628\pi\)
−0.584293 + 0.811543i \(0.698628\pi\)
\(60\) 3.73951e37 0.220071
\(61\) 3.03211e37 0.125070 0.0625350 0.998043i \(-0.480081\pi\)
0.0625350 + 0.998043i \(0.480081\pi\)
\(62\) −2.88112e38 −0.837798
\(63\) −1.66773e38 −0.343798
\(64\) 8.50706e37 0.125000
\(65\) −6.17280e38 −0.649898
\(66\) −6.11227e37 −0.0463456
\(67\) 3.07616e39 1.68811 0.844056 0.536255i \(-0.180161\pi\)
0.844056 + 0.536255i \(0.180161\pi\)
\(68\) −2.31633e39 −0.924396
\(69\) 4.94702e38 0.144241
\(70\) −1.82836e39 −0.391250
\(71\) 5.51515e39 0.869967 0.434983 0.900438i \(-0.356754\pi\)
0.434983 + 0.900438i \(0.356754\pi\)
\(72\) −2.75395e39 −0.321594
\(73\) 2.24223e40 1.94643 0.973216 0.229893i \(-0.0738376\pi\)
0.973216 + 0.229893i \(0.0738376\pi\)
\(74\) 9.13295e38 0.0591737
\(75\) −7.07888e39 −0.343674
\(76\) 6.53831e39 0.238766
\(77\) 2.98847e39 0.0823946
\(78\) −4.51774e39 −0.0943815
\(79\) −3.95026e40 −0.627543 −0.313771 0.949499i \(-0.601593\pi\)
−0.313771 + 0.949499i \(0.601593\pi\)
\(80\) −3.01921e40 −0.365981
\(81\) 7.94118e40 0.736983
\(82\) −1.20603e41 −0.859730
\(83\) −1.32759e41 −0.729262 −0.364631 0.931152i \(-0.618805\pi\)
−0.364631 + 0.931152i \(0.618805\pi\)
\(84\) −1.33814e40 −0.0568193
\(85\) 8.22078e41 2.70649
\(86\) 1.23797e41 0.316952
\(87\) 1.98886e41 0.397137
\(88\) 4.93492e40 0.0770731
\(89\) 7.96723e40 0.0975938 0.0487969 0.998809i \(-0.484461\pi\)
0.0487969 + 0.998809i \(0.484461\pi\)
\(90\) 9.77393e41 0.941576
\(91\) 2.20886e41 0.167795
\(92\) −3.99412e41 −0.239874
\(93\) 7.48364e41 0.356229
\(94\) 1.08469e42 0.410257
\(95\) −2.32049e42 −0.699071
\(96\) −2.20969e41 −0.0531496
\(97\) 2.39482e42 0.460978 0.230489 0.973075i \(-0.425967\pi\)
0.230489 + 0.973075i \(0.425967\pi\)
\(98\) 6.54256e41 0.101015
\(99\) −1.59756e42 −0.198290
\(100\) 5.71534e42 0.571534
\(101\) −1.05171e43 −0.849153 −0.424576 0.905392i \(-0.639577\pi\)
−0.424576 + 0.905392i \(0.639577\pi\)
\(102\) 6.01661e42 0.393050
\(103\) 2.12783e43 1.12703 0.563516 0.826105i \(-0.309449\pi\)
0.563516 + 0.826105i \(0.309449\pi\)
\(104\) 3.64753e42 0.156957
\(105\) 4.74913e42 0.166358
\(106\) −9.82851e42 −0.280809
\(107\) −3.60197e42 −0.0840986 −0.0420493 0.999116i \(-0.513389\pi\)
−0.0420493 + 0.999116i \(0.513389\pi\)
\(108\) 1.50176e43 0.287070
\(109\) −1.75935e43 −0.275856 −0.137928 0.990442i \(-0.544044\pi\)
−0.137928 + 0.990442i \(0.544044\pi\)
\(110\) −1.75143e43 −0.225658
\(111\) −2.37226e42 −0.0251605
\(112\) 1.08038e43 0.0944911
\(113\) 1.77770e44 1.28432 0.642159 0.766571i \(-0.278039\pi\)
0.642159 + 0.766571i \(0.278039\pi\)
\(114\) −1.69831e43 −0.101523
\(115\) 1.41754e44 0.702314
\(116\) −1.60577e44 −0.660443
\(117\) −1.18080e44 −0.403812
\(118\) −2.90141e44 −0.826315
\(119\) −2.94170e44 −0.698777
\(120\) 7.84233e43 0.155614
\(121\) −5.73773e44 −0.952478
\(122\) 6.35879e43 0.0884379
\(123\) 3.13265e44 0.365554
\(124\) −6.04214e44 −0.592413
\(125\) −2.53879e44 −0.209441
\(126\) −3.49748e44 −0.243102
\(127\) 2.11297e45 1.23912 0.619560 0.784949i \(-0.287311\pi\)
0.619560 + 0.784949i \(0.287311\pi\)
\(128\) 1.78406e44 0.0883883
\(129\) −3.21561e44 −0.134767
\(130\) −1.29453e45 −0.459547
\(131\) 4.54316e42 0.00136781 0.000683904 1.00000i \(-0.499782\pi\)
0.000683904 1.00000i \(0.499782\pi\)
\(132\) −1.28184e44 −0.0327713
\(133\) 8.30356e44 0.180490
\(134\) 6.45119e45 1.19368
\(135\) −5.32982e45 −0.840497
\(136\) −4.85769e45 −0.653646
\(137\) 6.25961e45 0.719540 0.359770 0.933041i \(-0.382855\pi\)
0.359770 + 0.933041i \(0.382855\pi\)
\(138\) 1.03747e45 0.101994
\(139\) −1.88575e46 −1.58732 −0.793662 0.608359i \(-0.791828\pi\)
−0.793662 + 0.608359i \(0.791828\pi\)
\(140\) −3.83435e45 −0.276655
\(141\) −2.81746e45 −0.174440
\(142\) 1.15661e46 0.615159
\(143\) 2.11592e45 0.0967776
\(144\) −5.77545e45 −0.227401
\(145\) 5.69896e46 1.93367
\(146\) 4.70230e46 1.37634
\(147\) −1.69942e45 −0.0429514
\(148\) 1.91532e45 0.0418421
\(149\) −3.94768e46 −0.746168 −0.373084 0.927797i \(-0.621700\pi\)
−0.373084 + 0.927797i \(0.621700\pi\)
\(150\) −1.48455e46 −0.243015
\(151\) 3.01118e46 0.427299 0.213650 0.976910i \(-0.431465\pi\)
0.213650 + 0.976910i \(0.431465\pi\)
\(152\) 1.37118e46 0.168833
\(153\) 1.57256e47 1.68167
\(154\) 6.26729e45 0.0582618
\(155\) 2.14439e47 1.73449
\(156\) −9.47438e45 −0.0667378
\(157\) 1.73987e47 1.06825 0.534126 0.845405i \(-0.320641\pi\)
0.534126 + 0.845405i \(0.320641\pi\)
\(158\) −8.28430e46 −0.443740
\(159\) 2.55294e46 0.119399
\(160\) −6.33173e46 −0.258787
\(161\) −5.07248e46 −0.181328
\(162\) 1.66539e47 0.521126
\(163\) −3.53481e47 −0.969020 −0.484510 0.874786i \(-0.661002\pi\)
−0.484510 + 0.874786i \(0.661002\pi\)
\(164\) −2.52924e47 −0.607921
\(165\) 4.54931e46 0.0959491
\(166\) −2.78415e47 −0.515666
\(167\) −1.48346e47 −0.241474 −0.120737 0.992685i \(-0.538526\pi\)
−0.120737 + 0.992685i \(0.538526\pi\)
\(168\) −2.80628e46 −0.0401773
\(169\) −6.37138e47 −0.802915
\(170\) 1.72402e48 1.91378
\(171\) −4.43887e47 −0.434366
\(172\) 2.59621e47 0.224119
\(173\) 1.69876e48 1.29462 0.647309 0.762228i \(-0.275894\pi\)
0.647309 + 0.762228i \(0.275894\pi\)
\(174\) 4.17094e47 0.280818
\(175\) 7.25840e47 0.432039
\(176\) 1.03493e47 0.0544989
\(177\) 7.53635e47 0.351347
\(178\) 1.67085e47 0.0690093
\(179\) 2.17369e48 0.795900 0.397950 0.917407i \(-0.369722\pi\)
0.397950 + 0.917407i \(0.369722\pi\)
\(180\) 2.04974e48 0.665795
\(181\) 4.89790e48 1.41228 0.706139 0.708073i \(-0.250435\pi\)
0.706139 + 0.708073i \(0.250435\pi\)
\(182\) 4.63231e47 0.118649
\(183\) −1.65168e47 −0.0376035
\(184\) −8.37628e47 −0.169617
\(185\) −6.79758e47 −0.122507
\(186\) 1.56943e48 0.251892
\(187\) −2.81793e48 −0.403029
\(188\) 2.27476e48 0.290096
\(189\) 1.90721e48 0.217005
\(190\) −4.86641e48 −0.494318
\(191\) 1.65984e49 1.50608 0.753039 0.657976i \(-0.228587\pi\)
0.753039 + 0.657976i \(0.228587\pi\)
\(192\) −4.63406e47 −0.0375825
\(193\) 1.52796e49 1.10823 0.554114 0.832441i \(-0.313057\pi\)
0.554114 + 0.832441i \(0.313057\pi\)
\(194\) 5.02230e48 0.325961
\(195\) 3.36251e48 0.195398
\(196\) 1.37207e48 0.0714286
\(197\) 3.28956e49 1.53502 0.767510 0.641037i \(-0.221495\pi\)
0.767510 + 0.641037i \(0.221495\pi\)
\(198\) −3.35032e48 −0.140212
\(199\) 3.56718e49 1.33963 0.669814 0.742529i \(-0.266374\pi\)
0.669814 + 0.742529i \(0.266374\pi\)
\(200\) 1.19859e49 0.404136
\(201\) −1.67568e49 −0.507547
\(202\) −2.20559e49 −0.600442
\(203\) −2.03930e49 −0.499248
\(204\) 1.26177e49 0.277928
\(205\) 8.97641e49 1.77990
\(206\) 4.46238e49 0.796931
\(207\) 2.71161e49 0.436381
\(208\) 7.64942e48 0.110986
\(209\) 7.95420e48 0.104100
\(210\) 9.95965e48 0.117633
\(211\) 1.11689e50 1.19107 0.595535 0.803329i \(-0.296940\pi\)
0.595535 + 0.803329i \(0.296940\pi\)
\(212\) −2.06119e49 −0.198562
\(213\) −3.00427e49 −0.261564
\(214\) −7.55388e48 −0.0594667
\(215\) −9.21412e49 −0.656186
\(216\) 3.14941e49 0.202989
\(217\) −7.67343e49 −0.447822
\(218\) −3.68962e49 −0.195059
\(219\) −1.22141e50 −0.585213
\(220\) −3.67302e49 −0.159564
\(221\) −2.08281e50 −0.820758
\(222\) −4.97500e48 −0.0177912
\(223\) 2.23106e49 0.0724364 0.0362182 0.999344i \(-0.488469\pi\)
0.0362182 + 0.999344i \(0.488469\pi\)
\(224\) 2.26573e49 0.0668153
\(225\) −3.88015e50 −1.03974
\(226\) 3.72812e50 0.908151
\(227\) −5.89174e50 −1.30523 −0.652616 0.757689i \(-0.726328\pi\)
−0.652616 + 0.757689i \(0.726328\pi\)
\(228\) −3.56162e49 −0.0717874
\(229\) 6.00034e50 1.10081 0.550406 0.834897i \(-0.314473\pi\)
0.550406 + 0.834897i \(0.314473\pi\)
\(230\) 2.97279e50 0.496611
\(231\) −1.62791e49 −0.0247727
\(232\) −3.36753e50 −0.467004
\(233\) 7.17124e50 0.906654 0.453327 0.891344i \(-0.350237\pi\)
0.453327 + 0.891344i \(0.350237\pi\)
\(234\) −2.47631e50 −0.285538
\(235\) −8.07325e50 −0.849355
\(236\) −6.08469e50 −0.584293
\(237\) 2.15183e50 0.188677
\(238\) −6.16919e50 −0.494110
\(239\) 8.91012e50 0.652122 0.326061 0.945349i \(-0.394279\pi\)
0.326061 + 0.945349i \(0.394279\pi\)
\(240\) 1.64465e50 0.110036
\(241\) −2.47890e51 −1.51668 −0.758338 0.651861i \(-0.773988\pi\)
−0.758338 + 0.651861i \(0.773988\pi\)
\(242\) −1.20329e51 −0.673504
\(243\) −1.55345e51 −0.795722
\(244\) 1.33354e50 0.0625350
\(245\) −4.86957e50 −0.209132
\(246\) 6.56964e50 0.258486
\(247\) 5.87915e50 0.211997
\(248\) −1.26713e51 −0.418899
\(249\) 7.23177e50 0.219260
\(250\) −5.32422e50 −0.148097
\(251\) −1.32443e51 −0.338100 −0.169050 0.985608i \(-0.554070\pi\)
−0.169050 + 0.985608i \(0.554070\pi\)
\(252\) −7.33474e50 −0.171899
\(253\) −4.85906e50 −0.104583
\(254\) 4.43122e51 0.876191
\(255\) −4.47811e51 −0.813731
\(256\) 3.74144e50 0.0625000
\(257\) −4.83981e51 −0.743475 −0.371737 0.928338i \(-0.621238\pi\)
−0.371737 + 0.928338i \(0.621238\pi\)
\(258\) −6.74361e50 −0.0952948
\(259\) 2.43243e50 0.0316297
\(260\) −2.71483e51 −0.324949
\(261\) 1.09016e52 1.20148
\(262\) 9.52769e48 0.000967186 0
\(263\) −1.46486e52 −1.37008 −0.685041 0.728504i \(-0.740216\pi\)
−0.685041 + 0.728504i \(0.740216\pi\)
\(264\) −2.68821e50 −0.0231728
\(265\) 7.31528e51 0.581359
\(266\) 1.74138e51 0.127626
\(267\) −4.34000e50 −0.0293425
\(268\) 1.35291e52 0.844056
\(269\) −1.70623e52 −0.982568 −0.491284 0.870999i \(-0.663472\pi\)
−0.491284 + 0.870999i \(0.663472\pi\)
\(270\) −1.11774e52 −0.594321
\(271\) −3.99532e52 −1.96206 −0.981029 0.193863i \(-0.937898\pi\)
−0.981029 + 0.193863i \(0.937898\pi\)
\(272\) −1.01873e52 −0.462198
\(273\) −1.20323e51 −0.0504491
\(274\) 1.31274e52 0.508792
\(275\) 6.95301e51 0.249184
\(276\) 2.17572e51 0.0721204
\(277\) 1.01376e52 0.310901 0.155451 0.987844i \(-0.450317\pi\)
0.155451 + 0.987844i \(0.450317\pi\)
\(278\) −3.95470e52 −1.12241
\(279\) 4.10201e52 1.07772
\(280\) −8.04121e51 −0.195625
\(281\) 4.24066e52 0.955537 0.477769 0.878486i \(-0.341446\pi\)
0.477769 + 0.878486i \(0.341446\pi\)
\(282\) −5.90864e51 −0.123348
\(283\) −7.23916e52 −1.40049 −0.700245 0.713903i \(-0.746926\pi\)
−0.700245 + 0.713903i \(0.746926\pi\)
\(284\) 2.42559e52 0.434983
\(285\) 1.26404e52 0.210182
\(286\) 4.43741e51 0.0684321
\(287\) −3.21210e52 −0.459545
\(288\) −1.21120e52 −0.160797
\(289\) 1.96230e53 2.41803
\(290\) 1.19516e53 1.36731
\(291\) −1.30453e52 −0.138598
\(292\) 9.86144e52 0.973216
\(293\) 1.11359e51 0.0102110 0.00510552 0.999987i \(-0.498375\pi\)
0.00510552 + 0.999987i \(0.498375\pi\)
\(294\) −3.56393e51 −0.0303712
\(295\) 2.15949e53 1.71072
\(296\) 4.01671e51 0.0295869
\(297\) 1.82696e52 0.125160
\(298\) −8.27888e52 −0.527621
\(299\) −3.59146e52 −0.212981
\(300\) −3.11332e52 −0.171837
\(301\) 3.29716e52 0.169418
\(302\) 6.31490e52 0.302146
\(303\) 5.72898e52 0.255306
\(304\) 2.87558e52 0.119383
\(305\) −4.73280e52 −0.183093
\(306\) 3.29789e53 1.18912
\(307\) −7.10414e52 −0.238801 −0.119401 0.992846i \(-0.538097\pi\)
−0.119401 + 0.992846i \(0.538097\pi\)
\(308\) 1.31435e52 0.0411973
\(309\) −1.15909e53 −0.338853
\(310\) 4.49711e53 1.22647
\(311\) −2.25081e53 −0.572784 −0.286392 0.958113i \(-0.592456\pi\)
−0.286392 + 0.958113i \(0.592456\pi\)
\(312\) −1.98692e52 −0.0471908
\(313\) 4.44871e53 0.986349 0.493174 0.869931i \(-0.335836\pi\)
0.493174 + 0.869931i \(0.335836\pi\)
\(314\) 3.64877e53 0.755368
\(315\) 2.60314e53 0.503293
\(316\) −1.73734e53 −0.313771
\(317\) −5.50648e53 −0.929180 −0.464590 0.885526i \(-0.653798\pi\)
−0.464590 + 0.885526i \(0.653798\pi\)
\(318\) 5.35389e52 0.0844280
\(319\) −1.95350e53 −0.287948
\(320\) −1.32786e53 −0.182990
\(321\) 1.96210e52 0.0252851
\(322\) −1.06378e53 −0.128218
\(323\) −7.82971e53 −0.882859
\(324\) 3.49257e53 0.368491
\(325\) 5.13915e53 0.507457
\(326\) −7.41304e53 −0.685201
\(327\) 9.58371e52 0.0829387
\(328\) −5.30420e53 −0.429865
\(329\) 2.88891e53 0.219292
\(330\) 9.54060e52 0.0678463
\(331\) −2.39951e54 −1.59890 −0.799449 0.600734i \(-0.794875\pi\)
−0.799449 + 0.600734i \(0.794875\pi\)
\(332\) −5.83878e53 −0.364631
\(333\) −1.30031e53 −0.0761195
\(334\) −3.11103e53 −0.170748
\(335\) −4.80156e54 −2.47127
\(336\) −5.88519e52 −0.0284097
\(337\) 2.27735e54 1.03130 0.515652 0.856798i \(-0.327550\pi\)
0.515652 + 0.856798i \(0.327550\pi\)
\(338\) −1.33618e54 −0.567747
\(339\) −9.68370e53 −0.386143
\(340\) 3.61554e54 1.35324
\(341\) −7.35058e53 −0.258287
\(342\) −9.30897e53 −0.307143
\(343\) 1.74251e53 0.0539949
\(344\) 5.44466e53 0.158476
\(345\) −7.72177e53 −0.211157
\(346\) 3.56256e54 0.915433
\(347\) 1.98980e54 0.480536 0.240268 0.970707i \(-0.422765\pi\)
0.240268 + 0.970707i \(0.422765\pi\)
\(348\) 8.74710e53 0.198569
\(349\) −8.02785e54 −1.71337 −0.856687 0.515836i \(-0.827481\pi\)
−0.856687 + 0.515836i \(0.827481\pi\)
\(350\) 1.52220e54 0.305498
\(351\) 1.35036e54 0.254886
\(352\) 2.17040e53 0.0385366
\(353\) 1.39424e54 0.232906 0.116453 0.993196i \(-0.462848\pi\)
0.116453 + 0.993196i \(0.462848\pi\)
\(354\) 1.58049e54 0.248439
\(355\) −8.60855e54 −1.27356
\(356\) 3.50403e53 0.0487969
\(357\) 1.60244e54 0.210094
\(358\) 4.55857e54 0.562786
\(359\) −1.38159e55 −1.60639 −0.803193 0.595719i \(-0.796867\pi\)
−0.803193 + 0.595719i \(0.796867\pi\)
\(360\) 4.29862e54 0.470788
\(361\) −7.48171e54 −0.771962
\(362\) 1.02716e55 0.998631
\(363\) 3.12552e54 0.286372
\(364\) 9.71466e53 0.0838973
\(365\) −3.49989e55 −2.84942
\(366\) −3.46383e53 −0.0265897
\(367\) −9.24206e53 −0.0669034 −0.0334517 0.999440i \(-0.510650\pi\)
−0.0334517 + 0.999440i \(0.510650\pi\)
\(368\) −1.75663e54 −0.119937
\(369\) 1.71710e55 1.10593
\(370\) −1.42555e54 −0.0866257
\(371\) −2.61768e54 −0.150099
\(372\) 3.29134e54 0.178115
\(373\) 1.80546e55 0.922246 0.461123 0.887336i \(-0.347447\pi\)
0.461123 + 0.887336i \(0.347447\pi\)
\(374\) −5.90963e54 −0.284984
\(375\) 1.38296e54 0.0629703
\(376\) 4.77051e54 0.205129
\(377\) −1.44388e55 −0.586398
\(378\) 3.99971e54 0.153446
\(379\) 4.30562e55 1.56060 0.780302 0.625402i \(-0.215065\pi\)
0.780302 + 0.625402i \(0.215065\pi\)
\(380\) −1.02056e55 −0.349536
\(381\) −1.15100e55 −0.372554
\(382\) 3.48093e55 1.06496
\(383\) 6.63900e54 0.192012 0.0960062 0.995381i \(-0.469393\pi\)
0.0960062 + 0.995381i \(0.469393\pi\)
\(384\) −9.71833e53 −0.0265748
\(385\) −4.66469e54 −0.120619
\(386\) 3.20436e55 0.783635
\(387\) −1.76257e55 −0.407719
\(388\) 1.05325e55 0.230489
\(389\) −6.81335e55 −1.41073 −0.705366 0.708843i \(-0.749217\pi\)
−0.705366 + 0.708843i \(0.749217\pi\)
\(390\) 7.05170e54 0.138167
\(391\) 4.78301e55 0.886954
\(392\) 2.87745e54 0.0505076
\(393\) −2.47480e52 −0.000411244 0
\(394\) 6.89871e55 1.08542
\(395\) 6.16593e55 0.918674
\(396\) −7.02614e54 −0.0991449
\(397\) −3.48082e55 −0.465249 −0.232624 0.972567i \(-0.574731\pi\)
−0.232624 + 0.972567i \(0.574731\pi\)
\(398\) 7.48092e55 0.947260
\(399\) −4.52321e54 −0.0542662
\(400\) 2.51363e55 0.285767
\(401\) 1.41035e54 0.0151958 0.00759790 0.999971i \(-0.497581\pi\)
0.00759790 + 0.999971i \(0.497581\pi\)
\(402\) −3.51416e55 −0.358890
\(403\) −5.43300e55 −0.525995
\(404\) −4.62546e55 −0.424576
\(405\) −1.23953e56 −1.07889
\(406\) −4.27672e55 −0.353022
\(407\) 2.33008e54 0.0182428
\(408\) 2.64613e55 0.196525
\(409\) 4.31034e55 0.303711 0.151855 0.988403i \(-0.451475\pi\)
0.151855 + 0.988403i \(0.451475\pi\)
\(410\) 1.88249e56 1.25858
\(411\) −3.40980e55 −0.216337
\(412\) 9.35828e55 0.563516
\(413\) −7.72748e55 −0.441684
\(414\) 5.68667e55 0.308568
\(415\) 2.07222e56 1.06758
\(416\) 1.60420e55 0.0784787
\(417\) 1.02723e56 0.477244
\(418\) 1.66812e55 0.0736099
\(419\) 4.46146e56 1.87015 0.935074 0.354453i \(-0.115333\pi\)
0.935074 + 0.354453i \(0.115333\pi\)
\(420\) 2.08869e55 0.0831791
\(421\) 1.76221e56 0.666795 0.333397 0.942786i \(-0.391805\pi\)
0.333397 + 0.942786i \(0.391805\pi\)
\(422\) 2.34229e56 0.842214
\(423\) −1.54434e56 −0.527744
\(424\) −4.32262e55 −0.140405
\(425\) −6.84419e56 −2.11329
\(426\) −6.30041e55 −0.184954
\(427\) 1.69357e55 0.0472720
\(428\) −1.58416e55 −0.0420493
\(429\) −1.15261e55 −0.0290971
\(430\) −1.93234e56 −0.463994
\(431\) −5.97383e55 −0.136456 −0.0682278 0.997670i \(-0.521734\pi\)
−0.0682278 + 0.997670i \(0.521734\pi\)
\(432\) 6.60479e55 0.143535
\(433\) −3.99197e56 −0.825462 −0.412731 0.910853i \(-0.635425\pi\)
−0.412731 + 0.910853i \(0.635425\pi\)
\(434\) −1.60923e56 −0.316658
\(435\) −3.10440e56 −0.581378
\(436\) −7.73769e55 −0.137928
\(437\) −1.35010e56 −0.229095
\(438\) −2.56149e56 −0.413808
\(439\) −1.09943e57 −1.69115 −0.845575 0.533857i \(-0.820742\pi\)
−0.845575 + 0.533857i \(0.820742\pi\)
\(440\) −7.70289e55 −0.112829
\(441\) −9.31502e55 −0.129943
\(442\) −4.36796e56 −0.580363
\(443\) −9.91798e56 −1.25529 −0.627644 0.778501i \(-0.715981\pi\)
−0.627644 + 0.778501i \(0.715981\pi\)
\(444\) −1.04333e55 −0.0125802
\(445\) −1.24360e56 −0.142870
\(446\) 4.67887e55 0.0512203
\(447\) 2.15042e56 0.224343
\(448\) 4.75158e55 0.0472456
\(449\) 1.56259e57 1.48097 0.740487 0.672071i \(-0.234595\pi\)
0.740487 + 0.672071i \(0.234595\pi\)
\(450\) −8.13726e56 −0.735207
\(451\) −3.07695e56 −0.265048
\(452\) 7.81842e56 0.642159
\(453\) −1.64028e56 −0.128472
\(454\) −1.23559e57 −0.922938
\(455\) −3.44779e56 −0.245638
\(456\) −7.46926e55 −0.0507614
\(457\) 2.35754e56 0.152848 0.0764240 0.997075i \(-0.475650\pi\)
0.0764240 + 0.997075i \(0.475650\pi\)
\(458\) 1.25836e57 0.778392
\(459\) −1.79837e57 −1.06147
\(460\) 6.23440e56 0.351157
\(461\) 1.26404e57 0.679501 0.339751 0.940516i \(-0.389657\pi\)
0.339751 + 0.940516i \(0.389657\pi\)
\(462\) −3.41398e55 −0.0175170
\(463\) −2.44260e57 −1.19636 −0.598179 0.801362i \(-0.704109\pi\)
−0.598179 + 0.801362i \(0.704109\pi\)
\(464\) −7.06223e56 −0.330222
\(465\) −1.16812e57 −0.521492
\(466\) 1.50392e57 0.641102
\(467\) 3.99948e57 1.62814 0.814068 0.580770i \(-0.197248\pi\)
0.814068 + 0.580770i \(0.197248\pi\)
\(468\) −5.19320e56 −0.201906
\(469\) 1.71818e57 0.638047
\(470\) −1.69308e57 −0.600585
\(471\) −9.47759e56 −0.321180
\(472\) −1.27605e57 −0.413157
\(473\) 3.15843e56 0.0977140
\(474\) 4.51271e56 0.133415
\(475\) 1.93192e57 0.545853
\(476\) −1.29377e57 −0.349389
\(477\) 1.39934e57 0.361226
\(478\) 1.86859e57 0.461120
\(479\) 7.82348e57 1.84581 0.922904 0.385031i \(-0.125809\pi\)
0.922904 + 0.385031i \(0.125809\pi\)
\(480\) 3.44909e56 0.0778069
\(481\) 1.72223e56 0.0371510
\(482\) −5.19863e57 −1.07245
\(483\) 2.76314e56 0.0545179
\(484\) −2.52348e57 −0.476239
\(485\) −3.73806e57 −0.674837
\(486\) −3.25781e57 −0.562660
\(487\) 9.86088e57 1.62946 0.814729 0.579842i \(-0.196886\pi\)
0.814729 + 0.579842i \(0.196886\pi\)
\(488\) 2.79663e56 0.0442189
\(489\) 1.92552e57 0.291345
\(490\) −1.02122e57 −0.147878
\(491\) 9.61230e57 1.33222 0.666109 0.745854i \(-0.267959\pi\)
0.666109 + 0.745854i \(0.267959\pi\)
\(492\) 1.37775e57 0.182777
\(493\) 1.92292e58 2.44204
\(494\) 1.23295e57 0.149905
\(495\) 2.49362e57 0.290281
\(496\) −2.65736e57 −0.296206
\(497\) 3.08046e57 0.328817
\(498\) 1.51661e57 0.155040
\(499\) −1.06640e58 −1.04414 −0.522072 0.852902i \(-0.674841\pi\)
−0.522072 + 0.852902i \(0.674841\pi\)
\(500\) −1.11657e57 −0.104720
\(501\) 8.08084e56 0.0726015
\(502\) −2.77754e57 −0.239073
\(503\) −1.20265e58 −0.991811 −0.495905 0.868376i \(-0.665164\pi\)
−0.495905 + 0.868376i \(0.665164\pi\)
\(504\) −1.53821e57 −0.121551
\(505\) 1.64160e58 1.24309
\(506\) −1.01902e57 −0.0739514
\(507\) 3.47069e57 0.241404
\(508\) 9.29295e57 0.619560
\(509\) −1.97979e58 −1.26528 −0.632639 0.774446i \(-0.718028\pi\)
−0.632639 + 0.774446i \(0.718028\pi\)
\(510\) −9.39128e57 −0.575395
\(511\) 1.25239e58 0.735682
\(512\) 7.84638e56 0.0441942
\(513\) 5.07627e57 0.274171
\(514\) −1.01498e58 −0.525716
\(515\) −3.32131e58 −1.64989
\(516\) −1.41424e57 −0.0673836
\(517\) 2.76736e57 0.126479
\(518\) 5.10117e56 0.0223656
\(519\) −9.25369e57 −0.389239
\(520\) −5.69340e57 −0.229773
\(521\) −1.28414e58 −0.497279 −0.248640 0.968596i \(-0.579983\pi\)
−0.248640 + 0.968596i \(0.579983\pi\)
\(522\) 2.28622e58 0.849577
\(523\) 2.97646e57 0.106149 0.0530743 0.998591i \(-0.483098\pi\)
0.0530743 + 0.998591i \(0.483098\pi\)
\(524\) 1.99810e55 0.000683904 0
\(525\) −3.95388e57 −0.129897
\(526\) −3.07203e58 −0.968794
\(527\) 7.23553e58 2.19049
\(528\) −5.63758e56 −0.0163856
\(529\) −2.75866e58 −0.769842
\(530\) 1.53412e58 0.411083
\(531\) 4.13090e58 1.06295
\(532\) 3.65195e57 0.0902452
\(533\) −2.27425e58 −0.539764
\(534\) −9.10164e56 −0.0207483
\(535\) 5.62229e57 0.123114
\(536\) 2.83726e58 0.596838
\(537\) −1.18408e58 −0.239295
\(538\) −3.57822e58 −0.694780
\(539\) 1.66920e57 0.0311422
\(540\) −2.34408e58 −0.420249
\(541\) 1.79026e58 0.308443 0.154222 0.988036i \(-0.450713\pi\)
0.154222 + 0.988036i \(0.450713\pi\)
\(542\) −8.37879e58 −1.38738
\(543\) −2.66804e58 −0.424615
\(544\) −2.13643e58 −0.326823
\(545\) 2.74615e58 0.403831
\(546\) −2.52336e57 −0.0356729
\(547\) 1.56637e58 0.212895 0.106448 0.994318i \(-0.466052\pi\)
0.106448 + 0.994318i \(0.466052\pi\)
\(548\) 2.75301e58 0.359770
\(549\) −9.05338e57 −0.113764
\(550\) 1.45815e58 0.176200
\(551\) −5.42785e58 −0.630767
\(552\) 4.56282e57 0.0509968
\(553\) −2.20640e58 −0.237189
\(554\) 2.12602e58 0.219840
\(555\) 3.70285e57 0.0368330
\(556\) −8.29361e58 −0.793662
\(557\) −1.73442e59 −1.59686 −0.798430 0.602088i \(-0.794336\pi\)
−0.798430 + 0.602088i \(0.794336\pi\)
\(558\) 8.60254e58 0.762064
\(559\) 2.33448e58 0.198992
\(560\) −1.68636e58 −0.138328
\(561\) 1.53501e58 0.121174
\(562\) 8.89331e58 0.675667
\(563\) −3.83597e58 −0.280508 −0.140254 0.990116i \(-0.544792\pi\)
−0.140254 + 0.990116i \(0.544792\pi\)
\(564\) −1.23913e58 −0.0872201
\(565\) −2.77481e59 −1.88014
\(566\) −1.51816e59 −0.990296
\(567\) 4.43552e58 0.278553
\(568\) 5.08683e58 0.307580
\(569\) 4.99662e58 0.290913 0.145456 0.989365i \(-0.453535\pi\)
0.145456 + 0.989365i \(0.453535\pi\)
\(570\) 2.65088e58 0.148621
\(571\) −5.95296e58 −0.321408 −0.160704 0.987003i \(-0.551376\pi\)
−0.160704 + 0.987003i \(0.551376\pi\)
\(572\) 9.30593e57 0.0483888
\(573\) −9.04164e58 −0.452817
\(574\) −6.73626e58 −0.324947
\(575\) −1.18017e59 −0.548385
\(576\) −2.54007e58 −0.113700
\(577\) 1.93375e59 0.833914 0.416957 0.908926i \(-0.363097\pi\)
0.416957 + 0.908926i \(0.363097\pi\)
\(578\) 4.11524e59 1.70981
\(579\) −8.32326e58 −0.333199
\(580\) 2.50643e59 0.966837
\(581\) −7.41518e58 −0.275635
\(582\) −2.73580e58 −0.0980033
\(583\) −2.50754e58 −0.0865714
\(584\) 2.06809e59 0.688168
\(585\) 1.84310e59 0.591149
\(586\) 2.33536e57 0.00722029
\(587\) 2.62484e59 0.782318 0.391159 0.920323i \(-0.372074\pi\)
0.391159 + 0.920323i \(0.372074\pi\)
\(588\) −7.47411e57 −0.0214757
\(589\) −2.04238e59 −0.565793
\(590\) 4.52879e59 1.20966
\(591\) −1.79193e59 −0.461519
\(592\) 8.42366e57 0.0209211
\(593\) −4.04655e59 −0.969189 −0.484594 0.874739i \(-0.661033\pi\)
−0.484594 + 0.874739i \(0.661033\pi\)
\(594\) 3.83142e58 0.0885017
\(595\) 4.59168e59 1.02296
\(596\) −1.73621e59 −0.373084
\(597\) −1.94315e59 −0.402772
\(598\) −7.53183e58 −0.150600
\(599\) 4.89713e59 0.944638 0.472319 0.881428i \(-0.343417\pi\)
0.472319 + 0.881428i \(0.343417\pi\)
\(600\) −6.52911e58 −0.121507
\(601\) 9.95277e58 0.178708 0.0893538 0.996000i \(-0.471520\pi\)
0.0893538 + 0.996000i \(0.471520\pi\)
\(602\) 6.91464e58 0.119797
\(603\) −9.18493e59 −1.53551
\(604\) 1.32433e59 0.213650
\(605\) 8.95599e59 1.39435
\(606\) 1.20145e59 0.180529
\(607\) 8.00296e59 1.16063 0.580315 0.814392i \(-0.302929\pi\)
0.580315 + 0.814392i \(0.302929\pi\)
\(608\) 6.03053e58 0.0844167
\(609\) 1.11087e59 0.150104
\(610\) −9.92539e58 −0.129466
\(611\) 2.04543e59 0.257572
\(612\) 6.91617e59 0.840834
\(613\) 5.18622e59 0.608766 0.304383 0.952550i \(-0.401550\pi\)
0.304383 + 0.952550i \(0.401550\pi\)
\(614\) −1.48985e59 −0.168858
\(615\) −4.88973e59 −0.535143
\(616\) 2.75638e58 0.0291309
\(617\) 1.45786e60 1.48793 0.743967 0.668217i \(-0.232942\pi\)
0.743967 + 0.668217i \(0.232942\pi\)
\(618\) −2.43079e59 −0.239605
\(619\) −1.54383e58 −0.0146977 −0.00734886 0.999973i \(-0.502339\pi\)
−0.00734886 + 0.999973i \(0.502339\pi\)
\(620\) 9.43113e59 0.867246
\(621\) −3.10099e59 −0.275443
\(622\) −4.72029e59 −0.405019
\(623\) 4.45006e58 0.0368870
\(624\) −4.16688e58 −0.0333689
\(625\) −1.08110e60 −0.836463
\(626\) 9.32961e59 0.697454
\(627\) −4.33290e58 −0.0312987
\(628\) 7.65202e59 0.534126
\(629\) −2.29362e59 −0.154715
\(630\) 5.45919e59 0.355882
\(631\) −2.82293e60 −1.77856 −0.889280 0.457363i \(-0.848794\pi\)
−0.889280 + 0.457363i \(0.848794\pi\)
\(632\) −3.64347e59 −0.221870
\(633\) −6.08404e59 −0.358107
\(634\) −1.15479e60 −0.657030
\(635\) −3.29812e60 −1.81398
\(636\) 1.12279e59 0.0596996
\(637\) 1.23375e59 0.0634204
\(638\) −4.09678e59 −0.203610
\(639\) −1.64673e60 −0.791325
\(640\) −2.78473e59 −0.129394
\(641\) 2.06850e60 0.929413 0.464706 0.885465i \(-0.346160\pi\)
0.464706 + 0.885465i \(0.346160\pi\)
\(642\) 4.11483e58 0.0178792
\(643\) 1.36030e60 0.571610 0.285805 0.958288i \(-0.407739\pi\)
0.285805 + 0.958288i \(0.407739\pi\)
\(644\) −2.23090e59 −0.0906638
\(645\) 5.01922e59 0.197289
\(646\) −1.64201e60 −0.624275
\(647\) −2.84087e60 −1.04474 −0.522371 0.852718i \(-0.674952\pi\)
−0.522371 + 0.852718i \(0.674952\pi\)
\(648\) 7.32445e59 0.260563
\(649\) −7.40235e59 −0.254747
\(650\) 1.07776e60 0.358826
\(651\) 4.17996e59 0.134642
\(652\) −1.55463e60 −0.484510
\(653\) 2.98687e60 0.900706 0.450353 0.892850i \(-0.351298\pi\)
0.450353 + 0.892850i \(0.351298\pi\)
\(654\) 2.00985e59 0.0586465
\(655\) −7.09138e57 −0.00200236
\(656\) −1.11237e60 −0.303960
\(657\) −6.69494e60 −1.77048
\(658\) 6.05849e59 0.155063
\(659\) −3.53460e60 −0.875595 −0.437798 0.899074i \(-0.644241\pi\)
−0.437798 + 0.899074i \(0.644241\pi\)
\(660\) 2.00081e59 0.0479746
\(661\) 5.65170e60 1.31174 0.655869 0.754874i \(-0.272302\pi\)
0.655869 + 0.754874i \(0.272302\pi\)
\(662\) −5.03214e60 −1.13059
\(663\) 1.13457e60 0.246769
\(664\) −1.22448e60 −0.257833
\(665\) −1.29610e60 −0.264224
\(666\) −2.72695e59 −0.0538246
\(667\) 3.31577e60 0.633692
\(668\) −6.52431e59 −0.120737
\(669\) −1.21533e59 −0.0217787
\(670\) −1.00696e61 −1.74745
\(671\) 1.62232e59 0.0272647
\(672\) −1.23421e59 −0.0200887
\(673\) 6.22097e60 0.980696 0.490348 0.871527i \(-0.336870\pi\)
0.490348 + 0.871527i \(0.336870\pi\)
\(674\) 4.77595e60 0.729242
\(675\) 4.43733e60 0.656282
\(676\) −2.80216e60 −0.401457
\(677\) −1.08851e61 −1.51070 −0.755349 0.655323i \(-0.772533\pi\)
−0.755349 + 0.655323i \(0.772533\pi\)
\(678\) −2.03082e60 −0.273044
\(679\) 1.33762e60 0.174233
\(680\) 7.58233e60 0.956888
\(681\) 3.20941e60 0.392430
\(682\) −1.54153e60 −0.182636
\(683\) 9.58261e60 1.10012 0.550058 0.835126i \(-0.314605\pi\)
0.550058 + 0.835126i \(0.314605\pi\)
\(684\) −1.95223e60 −0.217183
\(685\) −9.77058e60 −1.05335
\(686\) 3.65432e59 0.0381802
\(687\) −3.26857e60 −0.330970
\(688\) 1.14183e60 0.112060
\(689\) −1.85339e60 −0.176300
\(690\) −1.61937e60 −0.149311
\(691\) 2.10236e60 0.187901 0.0939503 0.995577i \(-0.470051\pi\)
0.0939503 + 0.995577i \(0.470051\pi\)
\(692\) 7.47124e60 0.647309
\(693\) −8.92310e59 −0.0749465
\(694\) 4.17291e60 0.339790
\(695\) 2.94345e61 2.32372
\(696\) 1.83440e60 0.140409
\(697\) 3.02879e61 2.24784
\(698\) −1.68356e61 −1.21154
\(699\) −3.90640e60 −0.272594
\(700\) 3.19228e60 0.216020
\(701\) −3.54559e60 −0.232676 −0.116338 0.993210i \(-0.537116\pi\)
−0.116338 + 0.993210i \(0.537116\pi\)
\(702\) 2.83190e60 0.180231
\(703\) 6.47421e59 0.0399620
\(704\) 4.55166e59 0.0272495
\(705\) 4.39775e60 0.255367
\(706\) 2.92393e60 0.164690
\(707\) −5.87427e60 −0.320950
\(708\) 3.31452e60 0.175673
\(709\) 2.25652e61 1.16023 0.580117 0.814533i \(-0.303007\pi\)
0.580117 + 0.814533i \(0.303007\pi\)
\(710\) −1.80534e61 −0.900545
\(711\) 1.17948e61 0.570815
\(712\) 7.34847e59 0.0345046
\(713\) 1.24765e61 0.568417
\(714\) 3.36055e60 0.148559
\(715\) −3.30273e60 −0.141675
\(716\) 9.56001e60 0.397950
\(717\) −4.85362e60 −0.196067
\(718\) −2.89741e61 −1.13589
\(719\) −9.52150e60 −0.362272 −0.181136 0.983458i \(-0.557977\pi\)
−0.181136 + 0.983458i \(0.557977\pi\)
\(720\) 9.01486e60 0.332897
\(721\) 1.18849e61 0.425978
\(722\) −1.56903e61 −0.545860
\(723\) 1.35033e61 0.456003
\(724\) 2.15412e61 0.706139
\(725\) −4.74466e61 −1.50986
\(726\) 6.55469e60 0.202495
\(727\) −4.09031e60 −0.122678 −0.0613389 0.998117i \(-0.519537\pi\)
−0.0613389 + 0.998117i \(0.519537\pi\)
\(728\) 2.03731e60 0.0593243
\(729\) −1.76054e61 −0.497741
\(730\) −7.33979e61 −2.01485
\(731\) −3.10900e61 −0.828699
\(732\) −7.26418e59 −0.0188018
\(733\) −1.87150e61 −0.470385 −0.235193 0.971949i \(-0.575572\pi\)
−0.235193 + 0.971949i \(0.575572\pi\)
\(734\) −1.93820e60 −0.0473079
\(735\) 2.65261e60 0.0628775
\(736\) −3.68393e60 −0.0848083
\(737\) 1.64589e61 0.368001
\(738\) 3.60102e61 0.782013
\(739\) 9.15463e61 1.93101 0.965506 0.260379i \(-0.0838476\pi\)
0.965506 + 0.260379i \(0.0838476\pi\)
\(740\) −2.98961e60 −0.0612536
\(741\) −3.20256e60 −0.0637390
\(742\) −5.48967e60 −0.106136
\(743\) 7.05390e61 1.32486 0.662430 0.749124i \(-0.269525\pi\)
0.662430 + 0.749124i \(0.269525\pi\)
\(744\) 6.90244e60 0.125946
\(745\) 6.16190e61 1.09233
\(746\) 3.78631e61 0.652126
\(747\) 3.96396e61 0.663340
\(748\) −1.23934e61 −0.201514
\(749\) −2.01186e60 −0.0317863
\(750\) 2.90027e60 0.0445267
\(751\) −1.18086e62 −1.76174 −0.880869 0.473360i \(-0.843041\pi\)
−0.880869 + 0.473360i \(0.843041\pi\)
\(752\) 1.00045e61 0.145048
\(753\) 7.21459e60 0.101653
\(754\) −3.02804e61 −0.414646
\(755\) −4.70013e61 −0.625533
\(756\) 8.38799e60 0.108502
\(757\) −7.42551e61 −0.933609 −0.466804 0.884361i \(-0.654595\pi\)
−0.466804 + 0.884361i \(0.654595\pi\)
\(758\) 9.02954e61 1.10351
\(759\) 2.64688e60 0.0314439
\(760\) −2.14027e61 −0.247159
\(761\) 8.21411e60 0.0922126 0.0461063 0.998937i \(-0.485319\pi\)
0.0461063 + 0.998937i \(0.485319\pi\)
\(762\) −2.41382e61 −0.263435
\(763\) −9.82676e60 −0.104264
\(764\) 7.30003e61 0.753039
\(765\) −2.45459e62 −2.46183
\(766\) 1.39230e61 0.135773
\(767\) −5.47127e61 −0.518785
\(768\) −2.03808e60 −0.0187912
\(769\) −6.11310e61 −0.548081 −0.274041 0.961718i \(-0.588360\pi\)
−0.274041 + 0.961718i \(0.588360\pi\)
\(770\) −9.78256e60 −0.0852908
\(771\) 2.63639e61 0.223533
\(772\) 6.72003e61 0.554114
\(773\) 1.03908e62 0.833276 0.416638 0.909072i \(-0.363208\pi\)
0.416638 + 0.909072i \(0.363208\pi\)
\(774\) −3.69638e61 −0.288301
\(775\) −1.78531e62 −1.35434
\(776\) 2.20883e61 0.162980
\(777\) −1.32502e60 −0.00950977
\(778\) −1.42886e62 −0.997538
\(779\) −8.54940e61 −0.580604
\(780\) 1.47885e61 0.0976990
\(781\) 2.95086e61 0.189649
\(782\) 1.00307e62 0.627171
\(783\) −1.24670e62 −0.758375
\(784\) 6.03444e60 0.0357143
\(785\) −2.71575e62 −1.56384
\(786\) −5.19003e58 −0.000290794 0
\(787\) −2.34198e62 −1.27681 −0.638406 0.769700i \(-0.720406\pi\)
−0.638406 + 0.769700i \(0.720406\pi\)
\(788\) 1.44676e62 0.767510
\(789\) 7.97953e61 0.411928
\(790\) 1.29309e62 0.649600
\(791\) 9.92929e61 0.485427
\(792\) −1.47349e61 −0.0701060
\(793\) 1.19910e61 0.0555239
\(794\) −7.29980e61 −0.328980
\(795\) −3.98486e61 −0.174791
\(796\) 1.56886e62 0.669814
\(797\) 4.58049e62 1.90352 0.951762 0.306838i \(-0.0992708\pi\)
0.951762 + 0.306838i \(0.0992708\pi\)
\(798\) −9.48586e60 −0.0383720
\(799\) −2.72405e62 −1.07265
\(800\) 5.27147e61 0.202068
\(801\) −2.37889e61 −0.0887717
\(802\) 2.95772e60 0.0107451
\(803\) 1.19970e62 0.424314
\(804\) −7.36973e61 −0.253774
\(805\) 7.91760e61 0.265450
\(806\) −1.13938e62 −0.371934
\(807\) 9.29434e61 0.295418
\(808\) −9.70030e61 −0.300221
\(809\) −2.06295e62 −0.621722 −0.310861 0.950455i \(-0.600617\pi\)
−0.310861 + 0.950455i \(0.600617\pi\)
\(810\) −2.59949e62 −0.762887
\(811\) 1.66441e61 0.0475678 0.0237839 0.999717i \(-0.492429\pi\)
0.0237839 + 0.999717i \(0.492429\pi\)
\(812\) −8.96894e61 −0.249624
\(813\) 2.17637e62 0.589911
\(814\) 4.88654e60 0.0128996
\(815\) 5.51746e62 1.41857
\(816\) 5.54934e61 0.138964
\(817\) 8.77579e61 0.214049
\(818\) 9.03943e61 0.214756
\(819\) −6.59529e61 −0.152627
\(820\) 3.94787e62 0.889948
\(821\) 2.41534e62 0.530397 0.265198 0.964194i \(-0.414563\pi\)
0.265198 + 0.964194i \(0.414563\pi\)
\(822\) −7.15088e61 −0.152973
\(823\) −4.63388e62 −0.965713 −0.482857 0.875699i \(-0.660401\pi\)
−0.482857 + 0.875699i \(0.660401\pi\)
\(824\) 1.96257e62 0.398466
\(825\) −3.78752e61 −0.0749196
\(826\) −1.62057e62 −0.312318
\(827\) 7.90088e62 1.48357 0.741784 0.670639i \(-0.233980\pi\)
0.741784 + 0.670639i \(0.233980\pi\)
\(828\) 1.19258e62 0.218190
\(829\) −7.71157e62 −1.37474 −0.687370 0.726308i \(-0.741235\pi\)
−0.687370 + 0.726308i \(0.741235\pi\)
\(830\) 4.34576e62 0.754895
\(831\) −5.52229e61 −0.0934754
\(832\) 3.36425e61 0.0554928
\(833\) −1.64308e62 −0.264113
\(834\) 2.15425e62 0.337463
\(835\) 2.31551e62 0.353499
\(836\) 3.49829e61 0.0520501
\(837\) −4.69105e62 −0.680256
\(838\) 9.35637e62 1.32239
\(839\) 7.97899e62 1.09917 0.549586 0.835437i \(-0.314785\pi\)
0.549586 + 0.835437i \(0.314785\pi\)
\(840\) 4.38030e61 0.0588165
\(841\) 5.69009e62 0.744740
\(842\) 3.69562e62 0.471495
\(843\) −2.31002e62 −0.287291
\(844\) 4.91213e62 0.595535
\(845\) 9.94504e62 1.17540
\(846\) −3.23871e62 −0.373172
\(847\) −3.20479e62 −0.360003
\(848\) −9.06520e61 −0.0992811
\(849\) 3.94340e62 0.421071
\(850\) −1.43533e63 −1.49432
\(851\) −3.95496e61 −0.0401474
\(852\) −1.32129e62 −0.130782
\(853\) 1.28797e63 1.24309 0.621545 0.783378i \(-0.286505\pi\)
0.621545 + 0.783378i \(0.286505\pi\)
\(854\) 3.55168e61 0.0334264
\(855\) 6.92859e62 0.635878
\(856\) −3.32223e61 −0.0297333
\(857\) −7.05590e61 −0.0615836 −0.0307918 0.999526i \(-0.509803\pi\)
−0.0307918 + 0.999526i \(0.509803\pi\)
\(858\) −2.41720e61 −0.0205748
\(859\) 1.98347e62 0.164654 0.0823269 0.996605i \(-0.473765\pi\)
0.0823269 + 0.996605i \(0.473765\pi\)
\(860\) −4.05241e62 −0.328093
\(861\) 1.74973e62 0.138167
\(862\) −1.25280e62 −0.0964887
\(863\) −9.50539e62 −0.714065 −0.357033 0.934092i \(-0.616212\pi\)
−0.357033 + 0.934092i \(0.616212\pi\)
\(864\) 1.38512e62 0.101495
\(865\) −2.65159e63 −1.89522
\(866\) −8.37176e62 −0.583690
\(867\) −1.06893e63 −0.727004
\(868\) −3.37481e62 −0.223911
\(869\) −2.11357e62 −0.136802
\(870\) −6.51040e62 −0.411096
\(871\) 1.21652e63 0.749425
\(872\) −1.62271e62 −0.0975297
\(873\) −7.15054e62 −0.419308
\(874\) −2.83137e62 −0.161995
\(875\) −1.41803e62 −0.0791611
\(876\) −5.37183e62 −0.292607
\(877\) −4.49952e62 −0.239152 −0.119576 0.992825i \(-0.538154\pi\)
−0.119576 + 0.992825i \(0.538154\pi\)
\(878\) −2.30568e63 −1.19582
\(879\) −6.06605e60 −0.00307005
\(880\) −1.61541e62 −0.0797822
\(881\) −1.73419e63 −0.835823 −0.417911 0.908488i \(-0.637238\pi\)
−0.417911 + 0.908488i \(0.637238\pi\)
\(882\) −1.95350e62 −0.0918839
\(883\) −4.10211e61 −0.0188301 −0.00941503 0.999956i \(-0.502997\pi\)
−0.00941503 + 0.999956i \(0.502997\pi\)
\(884\) −9.16028e62 −0.410379
\(885\) −1.17634e63 −0.514344
\(886\) −2.07995e63 −0.887623
\(887\) 2.15240e63 0.896532 0.448266 0.893900i \(-0.352042\pi\)
0.448266 + 0.893900i \(0.352042\pi\)
\(888\) −2.18803e61 −0.00889558
\(889\) 1.18019e63 0.468344
\(890\) −2.60802e62 −0.101024
\(891\) 4.24890e62 0.160659
\(892\) 9.81231e61 0.0362182
\(893\) 7.68920e62 0.277061
\(894\) 4.50976e62 0.158634
\(895\) −3.39290e63 −1.16514
\(896\) 9.96479e61 0.0334077
\(897\) 1.95638e62 0.0640347
\(898\) 3.27698e63 1.04721
\(899\) 5.01595e63 1.56502
\(900\) −1.70651e63 −0.519870
\(901\) 2.46830e63 0.734200
\(902\) −6.45283e62 −0.187417
\(903\) −1.79606e62 −0.0509372
\(904\) 1.63964e63 0.454075
\(905\) −7.64509e63 −2.06747
\(906\) −3.43992e62 −0.0908432
\(907\) 3.62988e63 0.936129 0.468065 0.883694i \(-0.344951\pi\)
0.468065 + 0.883694i \(0.344951\pi\)
\(908\) −2.59121e63 −0.652616
\(909\) 3.14023e63 0.772393
\(910\) −7.23054e62 −0.173692
\(911\) 1.41700e63 0.332449 0.166224 0.986088i \(-0.446842\pi\)
0.166224 + 0.986088i \(0.446842\pi\)
\(912\) −1.56642e62 −0.0358937
\(913\) −7.10319e62 −0.158976
\(914\) 4.94411e62 0.108080
\(915\) 2.57810e62 0.0550486
\(916\) 2.63898e63 0.550406
\(917\) 2.53756e60 0.000516982 0
\(918\) −3.77146e63 −0.750570
\(919\) −7.02730e63 −1.36617 −0.683085 0.730339i \(-0.739362\pi\)
−0.683085 + 0.730339i \(0.739362\pi\)
\(920\) 1.30745e63 0.248305
\(921\) 3.86985e62 0.0717979
\(922\) 2.65088e63 0.480480
\(923\) 2.18105e63 0.386215
\(924\) −7.15965e61 −0.0123864
\(925\) 5.65931e62 0.0956568
\(926\) −5.12251e63 −0.845953
\(927\) −6.35334e63 −1.02515
\(928\) −1.48106e63 −0.233502
\(929\) 5.78775e63 0.891604 0.445802 0.895132i \(-0.352919\pi\)
0.445802 + 0.895132i \(0.352919\pi\)
\(930\) −2.44972e63 −0.368750
\(931\) 4.63792e62 0.0682190
\(932\) 3.15394e63 0.453327
\(933\) 1.22609e63 0.172213
\(934\) 8.38752e63 1.15127
\(935\) 4.39849e63 0.590003
\(936\) −1.08909e63 −0.142769
\(937\) 4.25352e63 0.544938 0.272469 0.962164i \(-0.412160\pi\)
0.272469 + 0.962164i \(0.412160\pi\)
\(938\) 3.60328e63 0.451167
\(939\) −2.42335e63 −0.296555
\(940\) −3.55065e63 −0.424678
\(941\) 8.12473e63 0.949800 0.474900 0.880040i \(-0.342484\pi\)
0.474900 + 0.880040i \(0.342484\pi\)
\(942\) −1.98760e63 −0.227109
\(943\) 5.22266e63 0.583297
\(944\) −2.67608e63 −0.292146
\(945\) −2.97695e63 −0.317678
\(946\) 6.62371e62 0.0690943
\(947\) 2.94814e63 0.300624 0.150312 0.988639i \(-0.451972\pi\)
0.150312 + 0.988639i \(0.451972\pi\)
\(948\) 9.46384e62 0.0943384
\(949\) 8.86727e63 0.864104
\(950\) 4.05152e63 0.385976
\(951\) 2.99955e63 0.279367
\(952\) −2.71324e63 −0.247055
\(953\) 2.03956e64 1.81568 0.907841 0.419315i \(-0.137730\pi\)
0.907841 + 0.419315i \(0.137730\pi\)
\(954\) 2.93463e63 0.255425
\(955\) −2.59082e64 −2.20478
\(956\) 3.91871e63 0.326061
\(957\) 1.06413e63 0.0865742
\(958\) 1.64070e64 1.30518
\(959\) 3.49628e63 0.271961
\(960\) 7.23327e62 0.0550178
\(961\) 5.42914e63 0.403811
\(962\) 3.61177e62 0.0262697
\(963\) 1.07549e63 0.0764964
\(964\) −1.09023e64 −0.758338
\(965\) −2.38498e64 −1.62236
\(966\) 5.79472e62 0.0385500
\(967\) −1.03408e64 −0.672796 −0.336398 0.941720i \(-0.609209\pi\)
−0.336398 + 0.941720i \(0.609209\pi\)
\(968\) −5.29212e63 −0.336752
\(969\) 4.26508e63 0.265440
\(970\) −7.83927e63 −0.477181
\(971\) −6.27338e63 −0.373498 −0.186749 0.982408i \(-0.559795\pi\)
−0.186749 + 0.982408i \(0.559795\pi\)
\(972\) −6.83213e63 −0.397861
\(973\) −1.05328e64 −0.599952
\(974\) 2.06798e64 1.15220
\(975\) −2.79945e63 −0.152572
\(976\) 5.86495e62 0.0312675
\(977\) 2.53012e64 1.31950 0.659749 0.751486i \(-0.270663\pi\)
0.659749 + 0.751486i \(0.270663\pi\)
\(978\) 4.03811e63 0.206012
\(979\) 4.26283e62 0.0212750
\(980\) −2.14166e63 −0.104566
\(981\) 5.25313e63 0.250919
\(982\) 2.01585e64 0.942020
\(983\) 5.05288e63 0.231014 0.115507 0.993307i \(-0.463151\pi\)
0.115507 + 0.993307i \(0.463151\pi\)
\(984\) 2.88936e63 0.129243
\(985\) −5.13465e64 −2.24715
\(986\) 4.03266e64 1.72679
\(987\) −1.57368e63 −0.0659322
\(988\) 2.58568e63 0.105999
\(989\) −5.36096e63 −0.215041
\(990\) 5.22950e63 0.205259
\(991\) −3.34182e64 −1.28351 −0.641756 0.766909i \(-0.721794\pi\)
−0.641756 + 0.766909i \(0.721794\pi\)
\(992\) −5.57289e63 −0.209449
\(993\) 1.30709e64 0.480724
\(994\) 6.46020e63 0.232508
\(995\) −5.56799e64 −1.96111
\(996\) 3.18057e63 0.109630
\(997\) −1.69582e64 −0.572050 −0.286025 0.958222i \(-0.592334\pi\)
−0.286025 + 0.958222i \(0.592334\pi\)
\(998\) −2.23641e64 −0.738321
\(999\) 1.48703e63 0.0480466
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.44.a.d.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.44.a.d.1.3 6 1.1 even 1 trivial