Properties

Label 1380.4.a.e.1.2
Level $1380$
Weight $4$
Character 1380.1
Self dual yes
Analytic conductor $81.423$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1380,4,Mod(1,1380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1380.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1380.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-15,0,-25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(81.4226358079\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 278x^{3} + 216x^{2} + 14064x - 33408 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.62011\) of defining polynomial
Character \(\chi\) \(=\) 1380.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} -10.8260 q^{7} +9.00000 q^{9} -54.7975 q^{11} -37.0769 q^{13} +15.0000 q^{15} -84.5816 q^{17} -101.690 q^{19} +32.4780 q^{21} +23.0000 q^{23} +25.0000 q^{25} -27.0000 q^{27} -92.1437 q^{29} -70.5081 q^{31} +164.393 q^{33} +54.1299 q^{35} -35.7561 q^{37} +111.231 q^{39} +300.733 q^{41} -136.814 q^{43} -45.0000 q^{45} -371.796 q^{47} -225.798 q^{49} +253.745 q^{51} +42.8401 q^{53} +273.988 q^{55} +305.069 q^{57} +154.584 q^{59} -159.820 q^{61} -97.4339 q^{63} +185.385 q^{65} +16.1624 q^{67} -69.0000 q^{69} -864.131 q^{71} -730.329 q^{73} -75.0000 q^{75} +593.237 q^{77} -246.416 q^{79} +81.0000 q^{81} +779.092 q^{83} +422.908 q^{85} +276.431 q^{87} -532.933 q^{89} +401.394 q^{91} +211.524 q^{93} +508.449 q^{95} +760.277 q^{97} -493.178 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} - 25 q^{5} - 7 q^{7} + 45 q^{9} + 64 q^{11} + 80 q^{13} + 75 q^{15} - 21 q^{17} - 52 q^{19} + 21 q^{21} + 115 q^{23} + 125 q^{25} - 135 q^{27} - 277 q^{29} - 289 q^{31} - 192 q^{33} + 35 q^{35}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −10.8260 −0.584548 −0.292274 0.956335i \(-0.594412\pi\)
−0.292274 + 0.956335i \(0.594412\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −54.7975 −1.50201 −0.751004 0.660298i \(-0.770430\pi\)
−0.751004 + 0.660298i \(0.770430\pi\)
\(12\) 0 0
\(13\) −37.0769 −0.791022 −0.395511 0.918461i \(-0.629432\pi\)
−0.395511 + 0.918461i \(0.629432\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −84.5816 −1.20671 −0.603355 0.797473i \(-0.706170\pi\)
−0.603355 + 0.797473i \(0.706170\pi\)
\(18\) 0 0
\(19\) −101.690 −1.22785 −0.613927 0.789363i \(-0.710411\pi\)
−0.613927 + 0.789363i \(0.710411\pi\)
\(20\) 0 0
\(21\) 32.4780 0.337489
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −92.1437 −0.590023 −0.295011 0.955494i \(-0.595323\pi\)
−0.295011 + 0.955494i \(0.595323\pi\)
\(30\) 0 0
\(31\) −70.5081 −0.408504 −0.204252 0.978918i \(-0.565476\pi\)
−0.204252 + 0.978918i \(0.565476\pi\)
\(32\) 0 0
\(33\) 164.393 0.867184
\(34\) 0 0
\(35\) 54.1299 0.261418
\(36\) 0 0
\(37\) −35.7561 −0.158872 −0.0794361 0.996840i \(-0.525312\pi\)
−0.0794361 + 0.996840i \(0.525312\pi\)
\(38\) 0 0
\(39\) 111.231 0.456697
\(40\) 0 0
\(41\) 300.733 1.14553 0.572764 0.819720i \(-0.305871\pi\)
0.572764 + 0.819720i \(0.305871\pi\)
\(42\) 0 0
\(43\) −136.814 −0.485208 −0.242604 0.970125i \(-0.578001\pi\)
−0.242604 + 0.970125i \(0.578001\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) −371.796 −1.15387 −0.576937 0.816789i \(-0.695752\pi\)
−0.576937 + 0.816789i \(0.695752\pi\)
\(48\) 0 0
\(49\) −225.798 −0.658303
\(50\) 0 0
\(51\) 253.745 0.696694
\(52\) 0 0
\(53\) 42.8401 0.111029 0.0555146 0.998458i \(-0.482320\pi\)
0.0555146 + 0.998458i \(0.482320\pi\)
\(54\) 0 0
\(55\) 273.988 0.671718
\(56\) 0 0
\(57\) 305.069 0.708902
\(58\) 0 0
\(59\) 154.584 0.341104 0.170552 0.985349i \(-0.445445\pi\)
0.170552 + 0.985349i \(0.445445\pi\)
\(60\) 0 0
\(61\) −159.820 −0.335456 −0.167728 0.985833i \(-0.553643\pi\)
−0.167728 + 0.985833i \(0.553643\pi\)
\(62\) 0 0
\(63\) −97.4339 −0.194849
\(64\) 0 0
\(65\) 185.385 0.353756
\(66\) 0 0
\(67\) 16.1624 0.0294709 0.0147354 0.999891i \(-0.495309\pi\)
0.0147354 + 0.999891i \(0.495309\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) −864.131 −1.44442 −0.722208 0.691676i \(-0.756872\pi\)
−0.722208 + 0.691676i \(0.756872\pi\)
\(72\) 0 0
\(73\) −730.329 −1.17094 −0.585469 0.810695i \(-0.699090\pi\)
−0.585469 + 0.810695i \(0.699090\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 593.237 0.877996
\(78\) 0 0
\(79\) −246.416 −0.350936 −0.175468 0.984485i \(-0.556144\pi\)
−0.175468 + 0.984485i \(0.556144\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 779.092 1.03032 0.515159 0.857095i \(-0.327733\pi\)
0.515159 + 0.857095i \(0.327733\pi\)
\(84\) 0 0
\(85\) 422.908 0.539657
\(86\) 0 0
\(87\) 276.431 0.340650
\(88\) 0 0
\(89\) −532.933 −0.634727 −0.317364 0.948304i \(-0.602798\pi\)
−0.317364 + 0.948304i \(0.602798\pi\)
\(90\) 0 0
\(91\) 401.394 0.462390
\(92\) 0 0
\(93\) 211.524 0.235850
\(94\) 0 0
\(95\) 508.449 0.549113
\(96\) 0 0
\(97\) 760.277 0.795819 0.397909 0.917425i \(-0.369736\pi\)
0.397909 + 0.917425i \(0.369736\pi\)
\(98\) 0 0
\(99\) −493.178 −0.500669
\(100\) 0 0
\(101\) 434.376 0.427941 0.213971 0.976840i \(-0.431360\pi\)
0.213971 + 0.976840i \(0.431360\pi\)
\(102\) 0 0
\(103\) −1517.38 −1.45157 −0.725784 0.687923i \(-0.758523\pi\)
−0.725784 + 0.687923i \(0.758523\pi\)
\(104\) 0 0
\(105\) −162.390 −0.150930
\(106\) 0 0
\(107\) 18.5570 0.0167661 0.00838307 0.999965i \(-0.497332\pi\)
0.00838307 + 0.999965i \(0.497332\pi\)
\(108\) 0 0
\(109\) 1638.74 1.44003 0.720013 0.693960i \(-0.244136\pi\)
0.720013 + 0.693960i \(0.244136\pi\)
\(110\) 0 0
\(111\) 107.268 0.0917250
\(112\) 0 0
\(113\) −1459.93 −1.21538 −0.607691 0.794173i \(-0.707904\pi\)
−0.607691 + 0.794173i \(0.707904\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) 0 0
\(117\) −333.692 −0.263674
\(118\) 0 0
\(119\) 915.679 0.705380
\(120\) 0 0
\(121\) 1671.77 1.25603
\(122\) 0 0
\(123\) −902.200 −0.661371
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −916.657 −0.640474 −0.320237 0.947337i \(-0.603763\pi\)
−0.320237 + 0.947337i \(0.603763\pi\)
\(128\) 0 0
\(129\) 410.442 0.280135
\(130\) 0 0
\(131\) 1962.33 1.30878 0.654389 0.756158i \(-0.272926\pi\)
0.654389 + 0.756158i \(0.272926\pi\)
\(132\) 0 0
\(133\) 1100.89 0.717740
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) 653.968 0.407827 0.203913 0.978989i \(-0.434634\pi\)
0.203913 + 0.978989i \(0.434634\pi\)
\(138\) 0 0
\(139\) 989.239 0.603641 0.301821 0.953365i \(-0.402406\pi\)
0.301821 + 0.953365i \(0.402406\pi\)
\(140\) 0 0
\(141\) 1115.39 0.666189
\(142\) 0 0
\(143\) 2031.72 1.18812
\(144\) 0 0
\(145\) 460.718 0.263866
\(146\) 0 0
\(147\) 677.394 0.380072
\(148\) 0 0
\(149\) 3011.34 1.65570 0.827848 0.560952i \(-0.189565\pi\)
0.827848 + 0.560952i \(0.189565\pi\)
\(150\) 0 0
\(151\) −1773.97 −0.956049 −0.478024 0.878347i \(-0.658647\pi\)
−0.478024 + 0.878347i \(0.658647\pi\)
\(152\) 0 0
\(153\) −761.235 −0.402236
\(154\) 0 0
\(155\) 352.540 0.182689
\(156\) 0 0
\(157\) 1666.19 0.846982 0.423491 0.905900i \(-0.360804\pi\)
0.423491 + 0.905900i \(0.360804\pi\)
\(158\) 0 0
\(159\) −128.520 −0.0641027
\(160\) 0 0
\(161\) −248.998 −0.121887
\(162\) 0 0
\(163\) 600.652 0.288630 0.144315 0.989532i \(-0.453902\pi\)
0.144315 + 0.989532i \(0.453902\pi\)
\(164\) 0 0
\(165\) −821.963 −0.387817
\(166\) 0 0
\(167\) −545.020 −0.252544 −0.126272 0.991996i \(-0.540301\pi\)
−0.126272 + 0.991996i \(0.540301\pi\)
\(168\) 0 0
\(169\) −822.303 −0.374284
\(170\) 0 0
\(171\) −915.208 −0.409285
\(172\) 0 0
\(173\) 506.110 0.222421 0.111210 0.993797i \(-0.464527\pi\)
0.111210 + 0.993797i \(0.464527\pi\)
\(174\) 0 0
\(175\) −270.650 −0.116910
\(176\) 0 0
\(177\) −463.753 −0.196937
\(178\) 0 0
\(179\) −4583.58 −1.91393 −0.956963 0.290211i \(-0.906275\pi\)
−0.956963 + 0.290211i \(0.906275\pi\)
\(180\) 0 0
\(181\) 2077.09 0.852975 0.426488 0.904493i \(-0.359751\pi\)
0.426488 + 0.904493i \(0.359751\pi\)
\(182\) 0 0
\(183\) 479.459 0.193675
\(184\) 0 0
\(185\) 178.781 0.0710498
\(186\) 0 0
\(187\) 4634.87 1.81249
\(188\) 0 0
\(189\) 292.302 0.112496
\(190\) 0 0
\(191\) 4036.84 1.52930 0.764648 0.644448i \(-0.222913\pi\)
0.764648 + 0.644448i \(0.222913\pi\)
\(192\) 0 0
\(193\) −1543.62 −0.575710 −0.287855 0.957674i \(-0.592942\pi\)
−0.287855 + 0.957674i \(0.592942\pi\)
\(194\) 0 0
\(195\) −556.154 −0.204241
\(196\) 0 0
\(197\) 885.497 0.320249 0.160125 0.987097i \(-0.448810\pi\)
0.160125 + 0.987097i \(0.448810\pi\)
\(198\) 0 0
\(199\) 1438.25 0.512336 0.256168 0.966632i \(-0.417540\pi\)
0.256168 + 0.966632i \(0.417540\pi\)
\(200\) 0 0
\(201\) −48.4871 −0.0170150
\(202\) 0 0
\(203\) 997.546 0.344897
\(204\) 0 0
\(205\) −1503.67 −0.512296
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 5572.35 1.84425
\(210\) 0 0
\(211\) −1671.94 −0.545504 −0.272752 0.962084i \(-0.587934\pi\)
−0.272752 + 0.962084i \(0.587934\pi\)
\(212\) 0 0
\(213\) 2592.39 0.833933
\(214\) 0 0
\(215\) 684.069 0.216991
\(216\) 0 0
\(217\) 763.319 0.238790
\(218\) 0 0
\(219\) 2190.99 0.676042
\(220\) 0 0
\(221\) 3136.02 0.954533
\(222\) 0 0
\(223\) 2522.92 0.757610 0.378805 0.925477i \(-0.376335\pi\)
0.378805 + 0.925477i \(0.376335\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −3712.52 −1.08550 −0.542750 0.839895i \(-0.682617\pi\)
−0.542750 + 0.839895i \(0.682617\pi\)
\(228\) 0 0
\(229\) 2762.74 0.797236 0.398618 0.917117i \(-0.369490\pi\)
0.398618 + 0.917117i \(0.369490\pi\)
\(230\) 0 0
\(231\) −1779.71 −0.506911
\(232\) 0 0
\(233\) −1722.35 −0.484269 −0.242134 0.970243i \(-0.577847\pi\)
−0.242134 + 0.970243i \(0.577847\pi\)
\(234\) 0 0
\(235\) 1858.98 0.516028
\(236\) 0 0
\(237\) 739.248 0.202613
\(238\) 0 0
\(239\) 165.745 0.0448584 0.0224292 0.999748i \(-0.492860\pi\)
0.0224292 + 0.999748i \(0.492860\pi\)
\(240\) 0 0
\(241\) −3006.51 −0.803595 −0.401797 0.915729i \(-0.631614\pi\)
−0.401797 + 0.915729i \(0.631614\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1128.99 0.294402
\(246\) 0 0
\(247\) 3770.34 0.971259
\(248\) 0 0
\(249\) −2337.27 −0.594854
\(250\) 0 0
\(251\) 2030.25 0.510550 0.255275 0.966868i \(-0.417834\pi\)
0.255275 + 0.966868i \(0.417834\pi\)
\(252\) 0 0
\(253\) −1260.34 −0.313190
\(254\) 0 0
\(255\) −1268.72 −0.311571
\(256\) 0 0
\(257\) −5844.20 −1.41849 −0.709244 0.704963i \(-0.750964\pi\)
−0.709244 + 0.704963i \(0.750964\pi\)
\(258\) 0 0
\(259\) 387.096 0.0928685
\(260\) 0 0
\(261\) −829.293 −0.196674
\(262\) 0 0
\(263\) 6082.65 1.42613 0.713066 0.701097i \(-0.247306\pi\)
0.713066 + 0.701097i \(0.247306\pi\)
\(264\) 0 0
\(265\) −214.201 −0.0496538
\(266\) 0 0
\(267\) 1598.80 0.366460
\(268\) 0 0
\(269\) 4553.74 1.03214 0.516071 0.856546i \(-0.327394\pi\)
0.516071 + 0.856546i \(0.327394\pi\)
\(270\) 0 0
\(271\) −5783.03 −1.29629 −0.648144 0.761518i \(-0.724454\pi\)
−0.648144 + 0.761518i \(0.724454\pi\)
\(272\) 0 0
\(273\) −1204.18 −0.266961
\(274\) 0 0
\(275\) −1369.94 −0.300401
\(276\) 0 0
\(277\) −8349.27 −1.81104 −0.905522 0.424299i \(-0.860520\pi\)
−0.905522 + 0.424299i \(0.860520\pi\)
\(278\) 0 0
\(279\) −634.573 −0.136168
\(280\) 0 0
\(281\) 7536.07 1.59987 0.799936 0.600085i \(-0.204867\pi\)
0.799936 + 0.600085i \(0.204867\pi\)
\(282\) 0 0
\(283\) −1036.12 −0.217636 −0.108818 0.994062i \(-0.534707\pi\)
−0.108818 + 0.994062i \(0.534707\pi\)
\(284\) 0 0
\(285\) −1525.35 −0.317031
\(286\) 0 0
\(287\) −3255.73 −0.669616
\(288\) 0 0
\(289\) 2241.05 0.456147
\(290\) 0 0
\(291\) −2280.83 −0.459466
\(292\) 0 0
\(293\) 7166.52 1.42892 0.714458 0.699678i \(-0.246673\pi\)
0.714458 + 0.699678i \(0.246673\pi\)
\(294\) 0 0
\(295\) −772.921 −0.152546
\(296\) 0 0
\(297\) 1479.53 0.289061
\(298\) 0 0
\(299\) −852.769 −0.164939
\(300\) 0 0
\(301\) 1481.15 0.283627
\(302\) 0 0
\(303\) −1303.13 −0.247072
\(304\) 0 0
\(305\) 799.098 0.150020
\(306\) 0 0
\(307\) −4234.85 −0.787283 −0.393642 0.919264i \(-0.628785\pi\)
−0.393642 + 0.919264i \(0.628785\pi\)
\(308\) 0 0
\(309\) 4552.13 0.838063
\(310\) 0 0
\(311\) 2688.79 0.490249 0.245125 0.969492i \(-0.421171\pi\)
0.245125 + 0.969492i \(0.421171\pi\)
\(312\) 0 0
\(313\) 4677.80 0.844744 0.422372 0.906422i \(-0.361198\pi\)
0.422372 + 0.906422i \(0.361198\pi\)
\(314\) 0 0
\(315\) 487.169 0.0871393
\(316\) 0 0
\(317\) −7045.39 −1.24829 −0.624146 0.781308i \(-0.714553\pi\)
−0.624146 + 0.781308i \(0.714553\pi\)
\(318\) 0 0
\(319\) 5049.25 0.886218
\(320\) 0 0
\(321\) −55.6711 −0.00967994
\(322\) 0 0
\(323\) 8601.08 1.48166
\(324\) 0 0
\(325\) −926.923 −0.158204
\(326\) 0 0
\(327\) −4916.22 −0.831400
\(328\) 0 0
\(329\) 4025.06 0.674495
\(330\) 0 0
\(331\) −6047.17 −1.00418 −0.502088 0.864816i \(-0.667435\pi\)
−0.502088 + 0.864816i \(0.667435\pi\)
\(332\) 0 0
\(333\) −321.805 −0.0529574
\(334\) 0 0
\(335\) −80.8119 −0.0131798
\(336\) 0 0
\(337\) −8033.01 −1.29847 −0.649237 0.760586i \(-0.724912\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(338\) 0 0
\(339\) 4379.78 0.701701
\(340\) 0 0
\(341\) 3863.67 0.613576
\(342\) 0 0
\(343\) 6157.80 0.969358
\(344\) 0 0
\(345\) 345.000 0.0538382
\(346\) 0 0
\(347\) 7188.45 1.11209 0.556046 0.831151i \(-0.312318\pi\)
0.556046 + 0.831151i \(0.312318\pi\)
\(348\) 0 0
\(349\) 5053.84 0.775146 0.387573 0.921839i \(-0.373313\pi\)
0.387573 + 0.921839i \(0.373313\pi\)
\(350\) 0 0
\(351\) 1001.08 0.152232
\(352\) 0 0
\(353\) −1769.27 −0.266767 −0.133384 0.991064i \(-0.542584\pi\)
−0.133384 + 0.991064i \(0.542584\pi\)
\(354\) 0 0
\(355\) 4320.65 0.645962
\(356\) 0 0
\(357\) −2747.04 −0.407251
\(358\) 0 0
\(359\) 3031.16 0.445623 0.222812 0.974862i \(-0.428477\pi\)
0.222812 + 0.974862i \(0.428477\pi\)
\(360\) 0 0
\(361\) 3481.80 0.507625
\(362\) 0 0
\(363\) −5015.31 −0.725167
\(364\) 0 0
\(365\) 3651.64 0.523660
\(366\) 0 0
\(367\) −2139.70 −0.304336 −0.152168 0.988355i \(-0.548626\pi\)
−0.152168 + 0.988355i \(0.548626\pi\)
\(368\) 0 0
\(369\) 2706.60 0.381843
\(370\) 0 0
\(371\) −463.787 −0.0649019
\(372\) 0 0
\(373\) −7854.92 −1.09038 −0.545191 0.838312i \(-0.683543\pi\)
−0.545191 + 0.838312i \(0.683543\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) 3416.40 0.466721
\(378\) 0 0
\(379\) 3708.77 0.502656 0.251328 0.967902i \(-0.419133\pi\)
0.251328 + 0.967902i \(0.419133\pi\)
\(380\) 0 0
\(381\) 2749.97 0.369778
\(382\) 0 0
\(383\) −9945.03 −1.32681 −0.663404 0.748262i \(-0.730889\pi\)
−0.663404 + 0.748262i \(0.730889\pi\)
\(384\) 0 0
\(385\) −2966.19 −0.392652
\(386\) 0 0
\(387\) −1231.33 −0.161736
\(388\) 0 0
\(389\) 1933.85 0.252057 0.126029 0.992027i \(-0.459777\pi\)
0.126029 + 0.992027i \(0.459777\pi\)
\(390\) 0 0
\(391\) −1945.38 −0.251616
\(392\) 0 0
\(393\) −5887.00 −0.755623
\(394\) 0 0
\(395\) 1232.08 0.156943
\(396\) 0 0
\(397\) 10794.1 1.36459 0.682293 0.731079i \(-0.260983\pi\)
0.682293 + 0.731079i \(0.260983\pi\)
\(398\) 0 0
\(399\) −3302.67 −0.414387
\(400\) 0 0
\(401\) 1632.94 0.203355 0.101677 0.994817i \(-0.467579\pi\)
0.101677 + 0.994817i \(0.467579\pi\)
\(402\) 0 0
\(403\) 2614.22 0.323136
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) 1959.35 0.238627
\(408\) 0 0
\(409\) −2315.45 −0.279931 −0.139965 0.990156i \(-0.544699\pi\)
−0.139965 + 0.990156i \(0.544699\pi\)
\(410\) 0 0
\(411\) −1961.90 −0.235459
\(412\) 0 0
\(413\) −1673.53 −0.199392
\(414\) 0 0
\(415\) −3895.46 −0.460772
\(416\) 0 0
\(417\) −2967.72 −0.348512
\(418\) 0 0
\(419\) 11098.3 1.29401 0.647005 0.762486i \(-0.276021\pi\)
0.647005 + 0.762486i \(0.276021\pi\)
\(420\) 0 0
\(421\) −1339.59 −0.155077 −0.0775386 0.996989i \(-0.524706\pi\)
−0.0775386 + 0.996989i \(0.524706\pi\)
\(422\) 0 0
\(423\) −3346.17 −0.384625
\(424\) 0 0
\(425\) −2114.54 −0.241342
\(426\) 0 0
\(427\) 1730.20 0.196090
\(428\) 0 0
\(429\) −6095.17 −0.685962
\(430\) 0 0
\(431\) −11640.5 −1.30094 −0.650468 0.759534i \(-0.725427\pi\)
−0.650468 + 0.759534i \(0.725427\pi\)
\(432\) 0 0
\(433\) 265.807 0.0295009 0.0147504 0.999891i \(-0.495305\pi\)
0.0147504 + 0.999891i \(0.495305\pi\)
\(434\) 0 0
\(435\) −1382.16 −0.152343
\(436\) 0 0
\(437\) −2338.86 −0.256025
\(438\) 0 0
\(439\) −13319.8 −1.44810 −0.724052 0.689745i \(-0.757722\pi\)
−0.724052 + 0.689745i \(0.757722\pi\)
\(440\) 0 0
\(441\) −2032.18 −0.219434
\(442\) 0 0
\(443\) −7380.48 −0.791551 −0.395776 0.918347i \(-0.629524\pi\)
−0.395776 + 0.918347i \(0.629524\pi\)
\(444\) 0 0
\(445\) 2664.66 0.283859
\(446\) 0 0
\(447\) −9034.03 −0.955917
\(448\) 0 0
\(449\) −2149.35 −0.225911 −0.112956 0.993600i \(-0.536032\pi\)
−0.112956 + 0.993600i \(0.536032\pi\)
\(450\) 0 0
\(451\) −16479.4 −1.72059
\(452\) 0 0
\(453\) 5321.90 0.551975
\(454\) 0 0
\(455\) −2006.97 −0.206787
\(456\) 0 0
\(457\) −2729.18 −0.279356 −0.139678 0.990197i \(-0.544607\pi\)
−0.139678 + 0.990197i \(0.544607\pi\)
\(458\) 0 0
\(459\) 2283.70 0.232231
\(460\) 0 0
\(461\) −9157.59 −0.925187 −0.462594 0.886570i \(-0.653081\pi\)
−0.462594 + 0.886570i \(0.653081\pi\)
\(462\) 0 0
\(463\) −6156.84 −0.617997 −0.308999 0.951063i \(-0.599994\pi\)
−0.308999 + 0.951063i \(0.599994\pi\)
\(464\) 0 0
\(465\) −1057.62 −0.105475
\(466\) 0 0
\(467\) −11199.5 −1.10974 −0.554871 0.831936i \(-0.687232\pi\)
−0.554871 + 0.831936i \(0.687232\pi\)
\(468\) 0 0
\(469\) −174.974 −0.0172271
\(470\) 0 0
\(471\) −4998.56 −0.489005
\(472\) 0 0
\(473\) 7497.07 0.728785
\(474\) 0 0
\(475\) −2542.24 −0.245571
\(476\) 0 0
\(477\) 385.561 0.0370097
\(478\) 0 0
\(479\) −5515.01 −0.526069 −0.263035 0.964786i \(-0.584723\pi\)
−0.263035 + 0.964786i \(0.584723\pi\)
\(480\) 0 0
\(481\) 1325.73 0.125671
\(482\) 0 0
\(483\) 746.993 0.0703713
\(484\) 0 0
\(485\) −3801.38 −0.355901
\(486\) 0 0
\(487\) −16725.2 −1.55624 −0.778122 0.628113i \(-0.783828\pi\)
−0.778122 + 0.628113i \(0.783828\pi\)
\(488\) 0 0
\(489\) −1801.96 −0.166641
\(490\) 0 0
\(491\) −3275.48 −0.301060 −0.150530 0.988605i \(-0.548098\pi\)
−0.150530 + 0.988605i \(0.548098\pi\)
\(492\) 0 0
\(493\) 7793.66 0.711986
\(494\) 0 0
\(495\) 2465.89 0.223906
\(496\) 0 0
\(497\) 9355.07 0.844330
\(498\) 0 0
\(499\) −9605.61 −0.861736 −0.430868 0.902415i \(-0.641792\pi\)
−0.430868 + 0.902415i \(0.641792\pi\)
\(500\) 0 0
\(501\) 1635.06 0.145807
\(502\) 0 0
\(503\) −15666.1 −1.38871 −0.694353 0.719635i \(-0.744309\pi\)
−0.694353 + 0.719635i \(0.744309\pi\)
\(504\) 0 0
\(505\) −2171.88 −0.191381
\(506\) 0 0
\(507\) 2466.91 0.216093
\(508\) 0 0
\(509\) 8018.31 0.698243 0.349121 0.937078i \(-0.386480\pi\)
0.349121 + 0.937078i \(0.386480\pi\)
\(510\) 0 0
\(511\) 7906.53 0.684470
\(512\) 0 0
\(513\) 2745.62 0.236301
\(514\) 0 0
\(515\) 7586.88 0.649161
\(516\) 0 0
\(517\) 20373.5 1.73313
\(518\) 0 0
\(519\) −1518.33 −0.128415
\(520\) 0 0
\(521\) 18656.8 1.56885 0.784425 0.620223i \(-0.212958\pi\)
0.784425 + 0.620223i \(0.212958\pi\)
\(522\) 0 0
\(523\) −5707.10 −0.477158 −0.238579 0.971123i \(-0.576682\pi\)
−0.238579 + 0.971123i \(0.576682\pi\)
\(524\) 0 0
\(525\) 811.949 0.0674978
\(526\) 0 0
\(527\) 5963.69 0.492945
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 1391.26 0.113701
\(532\) 0 0
\(533\) −11150.3 −0.906138
\(534\) 0 0
\(535\) −92.7852 −0.00749805
\(536\) 0 0
\(537\) 13750.7 1.10501
\(538\) 0 0
\(539\) 12373.2 0.988777
\(540\) 0 0
\(541\) −16964.5 −1.34817 −0.674085 0.738653i \(-0.735462\pi\)
−0.674085 + 0.738653i \(0.735462\pi\)
\(542\) 0 0
\(543\) −6231.26 −0.492466
\(544\) 0 0
\(545\) −8193.71 −0.644000
\(546\) 0 0
\(547\) −16634.9 −1.30029 −0.650143 0.759812i \(-0.725291\pi\)
−0.650143 + 0.759812i \(0.725291\pi\)
\(548\) 0 0
\(549\) −1438.38 −0.111819
\(550\) 0 0
\(551\) 9370.07 0.724461
\(552\) 0 0
\(553\) 2667.69 0.205139
\(554\) 0 0
\(555\) −536.342 −0.0410206
\(556\) 0 0
\(557\) −269.537 −0.0205039 −0.0102519 0.999947i \(-0.503263\pi\)
−0.0102519 + 0.999947i \(0.503263\pi\)
\(558\) 0 0
\(559\) 5072.64 0.383810
\(560\) 0 0
\(561\) −13904.6 −1.04644
\(562\) 0 0
\(563\) −1897.23 −0.142022 −0.0710111 0.997476i \(-0.522623\pi\)
−0.0710111 + 0.997476i \(0.522623\pi\)
\(564\) 0 0
\(565\) 7299.63 0.543536
\(566\) 0 0
\(567\) −876.905 −0.0649498
\(568\) 0 0
\(569\) 23754.5 1.75016 0.875078 0.483982i \(-0.160810\pi\)
0.875078 + 0.483982i \(0.160810\pi\)
\(570\) 0 0
\(571\) −23381.2 −1.71361 −0.856807 0.515638i \(-0.827555\pi\)
−0.856807 + 0.515638i \(0.827555\pi\)
\(572\) 0 0
\(573\) −12110.5 −0.882940
\(574\) 0 0
\(575\) 575.000 0.0417029
\(576\) 0 0
\(577\) −4514.83 −0.325745 −0.162873 0.986647i \(-0.552076\pi\)
−0.162873 + 0.986647i \(0.552076\pi\)
\(578\) 0 0
\(579\) 4630.85 0.332386
\(580\) 0 0
\(581\) −8434.43 −0.602271
\(582\) 0 0
\(583\) −2347.54 −0.166767
\(584\) 0 0
\(585\) 1668.46 0.117919
\(586\) 0 0
\(587\) 16906.6 1.18877 0.594387 0.804179i \(-0.297395\pi\)
0.594387 + 0.804179i \(0.297395\pi\)
\(588\) 0 0
\(589\) 7169.95 0.501583
\(590\) 0 0
\(591\) −2656.49 −0.184896
\(592\) 0 0
\(593\) −7881.32 −0.545779 −0.272890 0.962045i \(-0.587979\pi\)
−0.272890 + 0.962045i \(0.587979\pi\)
\(594\) 0 0
\(595\) −4578.40 −0.315455
\(596\) 0 0
\(597\) −4314.75 −0.295797
\(598\) 0 0
\(599\) −19024.0 −1.29766 −0.648830 0.760933i \(-0.724741\pi\)
−0.648830 + 0.760933i \(0.724741\pi\)
\(600\) 0 0
\(601\) 24227.3 1.64435 0.822175 0.569235i \(-0.192761\pi\)
0.822175 + 0.569235i \(0.192761\pi\)
\(602\) 0 0
\(603\) 145.461 0.00982362
\(604\) 0 0
\(605\) −8358.86 −0.561712
\(606\) 0 0
\(607\) −18274.4 −1.22197 −0.610983 0.791644i \(-0.709226\pi\)
−0.610983 + 0.791644i \(0.709226\pi\)
\(608\) 0 0
\(609\) −2992.64 −0.199126
\(610\) 0 0
\(611\) 13785.1 0.912739
\(612\) 0 0
\(613\) 23647.1 1.55807 0.779036 0.626980i \(-0.215709\pi\)
0.779036 + 0.626980i \(0.215709\pi\)
\(614\) 0 0
\(615\) 4511.00 0.295774
\(616\) 0 0
\(617\) 1060.90 0.0692223 0.0346112 0.999401i \(-0.488981\pi\)
0.0346112 + 0.999401i \(0.488981\pi\)
\(618\) 0 0
\(619\) 14526.8 0.943264 0.471632 0.881796i \(-0.343665\pi\)
0.471632 + 0.881796i \(0.343665\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) 5769.52 0.371029
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −16717.0 −1.06478
\(628\) 0 0
\(629\) 3024.31 0.191713
\(630\) 0 0
\(631\) −6601.21 −0.416466 −0.208233 0.978079i \(-0.566771\pi\)
−0.208233 + 0.978079i \(0.566771\pi\)
\(632\) 0 0
\(633\) 5015.83 0.314947
\(634\) 0 0
\(635\) 4583.29 0.286429
\(636\) 0 0
\(637\) 8371.89 0.520732
\(638\) 0 0
\(639\) −7777.18 −0.481472
\(640\) 0 0
\(641\) 8276.87 0.510010 0.255005 0.966940i \(-0.417923\pi\)
0.255005 + 0.966940i \(0.417923\pi\)
\(642\) 0 0
\(643\) 4673.00 0.286602 0.143301 0.989679i \(-0.454228\pi\)
0.143301 + 0.989679i \(0.454228\pi\)
\(644\) 0 0
\(645\) −2052.21 −0.125280
\(646\) 0 0
\(647\) −17958.0 −1.09120 −0.545598 0.838047i \(-0.683697\pi\)
−0.545598 + 0.838047i \(0.683697\pi\)
\(648\) 0 0
\(649\) −8470.83 −0.512341
\(650\) 0 0
\(651\) −2289.96 −0.137866
\(652\) 0 0
\(653\) −15325.2 −0.918409 −0.459204 0.888331i \(-0.651865\pi\)
−0.459204 + 0.888331i \(0.651865\pi\)
\(654\) 0 0
\(655\) −9811.67 −0.585303
\(656\) 0 0
\(657\) −6572.96 −0.390313
\(658\) 0 0
\(659\) 22421.9 1.32539 0.662695 0.748889i \(-0.269412\pi\)
0.662695 + 0.748889i \(0.269412\pi\)
\(660\) 0 0
\(661\) −10921.3 −0.642647 −0.321323 0.946970i \(-0.604128\pi\)
−0.321323 + 0.946970i \(0.604128\pi\)
\(662\) 0 0
\(663\) −9408.07 −0.551100
\(664\) 0 0
\(665\) −5504.46 −0.320983
\(666\) 0 0
\(667\) −2119.30 −0.123028
\(668\) 0 0
\(669\) −7568.75 −0.437406
\(670\) 0 0
\(671\) 8757.72 0.503857
\(672\) 0 0
\(673\) 8617.37 0.493574 0.246787 0.969070i \(-0.420625\pi\)
0.246787 + 0.969070i \(0.420625\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 11919.7 0.676679 0.338340 0.941024i \(-0.390135\pi\)
0.338340 + 0.941024i \(0.390135\pi\)
\(678\) 0 0
\(679\) −8230.75 −0.465194
\(680\) 0 0
\(681\) 11137.5 0.626713
\(682\) 0 0
\(683\) −6568.28 −0.367977 −0.183988 0.982928i \(-0.558901\pi\)
−0.183988 + 0.982928i \(0.558901\pi\)
\(684\) 0 0
\(685\) −3269.84 −0.182386
\(686\) 0 0
\(687\) −8288.23 −0.460285
\(688\) 0 0
\(689\) −1588.38 −0.0878265
\(690\) 0 0
\(691\) −19000.6 −1.04605 −0.523023 0.852319i \(-0.675196\pi\)
−0.523023 + 0.852319i \(0.675196\pi\)
\(692\) 0 0
\(693\) 5339.14 0.292665
\(694\) 0 0
\(695\) −4946.19 −0.269957
\(696\) 0 0
\(697\) −25436.5 −1.38232
\(698\) 0 0
\(699\) 5167.04 0.279593
\(700\) 0 0
\(701\) −9809.23 −0.528516 −0.264258 0.964452i \(-0.585127\pi\)
−0.264258 + 0.964452i \(0.585127\pi\)
\(702\) 0 0
\(703\) 3636.03 0.195072
\(704\) 0 0
\(705\) −5576.94 −0.297929
\(706\) 0 0
\(707\) −4702.55 −0.250152
\(708\) 0 0
\(709\) −10403.1 −0.551051 −0.275525 0.961294i \(-0.588852\pi\)
−0.275525 + 0.961294i \(0.588852\pi\)
\(710\) 0 0
\(711\) −2217.74 −0.116979
\(712\) 0 0
\(713\) −1621.69 −0.0851790
\(714\) 0 0
\(715\) −10158.6 −0.531344
\(716\) 0 0
\(717\) −497.235 −0.0258990
\(718\) 0 0
\(719\) 4317.97 0.223968 0.111984 0.993710i \(-0.464279\pi\)
0.111984 + 0.993710i \(0.464279\pi\)
\(720\) 0 0
\(721\) 16427.1 0.848512
\(722\) 0 0
\(723\) 9019.53 0.463956
\(724\) 0 0
\(725\) −2303.59 −0.118005
\(726\) 0 0
\(727\) −18018.3 −0.919204 −0.459602 0.888125i \(-0.652008\pi\)
−0.459602 + 0.888125i \(0.652008\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 11571.9 0.585504
\(732\) 0 0
\(733\) −16659.4 −0.839466 −0.419733 0.907648i \(-0.637876\pi\)
−0.419733 + 0.907648i \(0.637876\pi\)
\(734\) 0 0
\(735\) −3386.97 −0.169973
\(736\) 0 0
\(737\) −885.658 −0.0442655
\(738\) 0 0
\(739\) 8311.01 0.413702 0.206851 0.978372i \(-0.433679\pi\)
0.206851 + 0.978372i \(0.433679\pi\)
\(740\) 0 0
\(741\) −11311.0 −0.560757
\(742\) 0 0
\(743\) 24197.8 1.19479 0.597396 0.801947i \(-0.296202\pi\)
0.597396 + 0.801947i \(0.296202\pi\)
\(744\) 0 0
\(745\) −15056.7 −0.740450
\(746\) 0 0
\(747\) 7011.82 0.343439
\(748\) 0 0
\(749\) −200.898 −0.00980062
\(750\) 0 0
\(751\) −26263.9 −1.27614 −0.638071 0.769978i \(-0.720267\pi\)
−0.638071 + 0.769978i \(0.720267\pi\)
\(752\) 0 0
\(753\) −6090.74 −0.294766
\(754\) 0 0
\(755\) 8869.83 0.427558
\(756\) 0 0
\(757\) −21151.2 −1.01553 −0.507763 0.861497i \(-0.669528\pi\)
−0.507763 + 0.861497i \(0.669528\pi\)
\(758\) 0 0
\(759\) 3781.03 0.180820
\(760\) 0 0
\(761\) −10850.2 −0.516846 −0.258423 0.966032i \(-0.583203\pi\)
−0.258423 + 0.966032i \(0.583203\pi\)
\(762\) 0 0
\(763\) −17741.0 −0.841765
\(764\) 0 0
\(765\) 3806.17 0.179886
\(766\) 0 0
\(767\) −5731.50 −0.269821
\(768\) 0 0
\(769\) −18880.2 −0.885355 −0.442677 0.896681i \(-0.645971\pi\)
−0.442677 + 0.896681i \(0.645971\pi\)
\(770\) 0 0
\(771\) 17532.6 0.818964
\(772\) 0 0
\(773\) 27164.8 1.26397 0.631985 0.774981i \(-0.282240\pi\)
0.631985 + 0.774981i \(0.282240\pi\)
\(774\) 0 0
\(775\) −1762.70 −0.0817008
\(776\) 0 0
\(777\) −1161.29 −0.0536177
\(778\) 0 0
\(779\) −30581.5 −1.40654
\(780\) 0 0
\(781\) 47352.3 2.16952
\(782\) 0 0
\(783\) 2487.88 0.113550
\(784\) 0 0
\(785\) −8330.94 −0.378782
\(786\) 0 0
\(787\) −40172.2 −1.81955 −0.909775 0.415102i \(-0.863746\pi\)
−0.909775 + 0.415102i \(0.863746\pi\)
\(788\) 0 0
\(789\) −18248.0 −0.823377
\(790\) 0 0
\(791\) 15805.1 0.710450
\(792\) 0 0
\(793\) 5925.62 0.265353
\(794\) 0 0
\(795\) 642.602 0.0286676
\(796\) 0 0
\(797\) −8815.68 −0.391804 −0.195902 0.980624i \(-0.562763\pi\)
−0.195902 + 0.980624i \(0.562763\pi\)
\(798\) 0 0
\(799\) 31447.1 1.39239
\(800\) 0 0
\(801\) −4796.39 −0.211576
\(802\) 0 0
\(803\) 40020.2 1.75876
\(804\) 0 0
\(805\) 1244.99 0.0545094
\(806\) 0 0
\(807\) −13661.2 −0.595908
\(808\) 0 0
\(809\) 9213.85 0.400422 0.200211 0.979753i \(-0.435837\pi\)
0.200211 + 0.979753i \(0.435837\pi\)
\(810\) 0 0
\(811\) 4586.15 0.198572 0.0992859 0.995059i \(-0.468344\pi\)
0.0992859 + 0.995059i \(0.468344\pi\)
\(812\) 0 0
\(813\) 17349.1 0.748412
\(814\) 0 0
\(815\) −3003.26 −0.129079
\(816\) 0 0
\(817\) 13912.6 0.595764
\(818\) 0 0
\(819\) 3612.55 0.154130
\(820\) 0 0
\(821\) −32687.8 −1.38954 −0.694770 0.719232i \(-0.744494\pi\)
−0.694770 + 0.719232i \(0.744494\pi\)
\(822\) 0 0
\(823\) 20504.4 0.868453 0.434226 0.900804i \(-0.357022\pi\)
0.434226 + 0.900804i \(0.357022\pi\)
\(824\) 0 0
\(825\) 4109.82 0.173437
\(826\) 0 0
\(827\) −4684.68 −0.196980 −0.0984900 0.995138i \(-0.531401\pi\)
−0.0984900 + 0.995138i \(0.531401\pi\)
\(828\) 0 0
\(829\) −9147.26 −0.383230 −0.191615 0.981470i \(-0.561372\pi\)
−0.191615 + 0.981470i \(0.561372\pi\)
\(830\) 0 0
\(831\) 25047.8 1.04561
\(832\) 0 0
\(833\) 19098.4 0.794381
\(834\) 0 0
\(835\) 2725.10 0.112941
\(836\) 0 0
\(837\) 1903.72 0.0786166
\(838\) 0 0
\(839\) 14493.4 0.596387 0.298194 0.954505i \(-0.403616\pi\)
0.298194 + 0.954505i \(0.403616\pi\)
\(840\) 0 0
\(841\) −15898.5 −0.651873
\(842\) 0 0
\(843\) −22608.2 −0.923687
\(844\) 0 0
\(845\) 4111.51 0.167385
\(846\) 0 0
\(847\) −18098.6 −0.734208
\(848\) 0 0
\(849\) 3108.36 0.125652
\(850\) 0 0
\(851\) −822.391 −0.0331272
\(852\) 0 0
\(853\) 3353.81 0.134622 0.0673109 0.997732i \(-0.478558\pi\)
0.0673109 + 0.997732i \(0.478558\pi\)
\(854\) 0 0
\(855\) 4576.04 0.183038
\(856\) 0 0
\(857\) −21865.0 −0.871522 −0.435761 0.900062i \(-0.643521\pi\)
−0.435761 + 0.900062i \(0.643521\pi\)
\(858\) 0 0
\(859\) 18902.3 0.750801 0.375400 0.926863i \(-0.377505\pi\)
0.375400 + 0.926863i \(0.377505\pi\)
\(860\) 0 0
\(861\) 9767.20 0.386603
\(862\) 0 0
\(863\) 7703.41 0.303855 0.151928 0.988392i \(-0.451452\pi\)
0.151928 + 0.988392i \(0.451452\pi\)
\(864\) 0 0
\(865\) −2530.55 −0.0994697
\(866\) 0 0
\(867\) −6723.15 −0.263357
\(868\) 0 0
\(869\) 13503.0 0.527109
\(870\) 0 0
\(871\) −599.251 −0.0233121
\(872\) 0 0
\(873\) 6842.49 0.265273
\(874\) 0 0
\(875\) 1353.25 0.0522836
\(876\) 0 0
\(877\) −34873.8 −1.34277 −0.671383 0.741111i \(-0.734299\pi\)
−0.671383 + 0.741111i \(0.734299\pi\)
\(878\) 0 0
\(879\) −21499.6 −0.824986
\(880\) 0 0
\(881\) 30721.2 1.17483 0.587413 0.809287i \(-0.300146\pi\)
0.587413 + 0.809287i \(0.300146\pi\)
\(882\) 0 0
\(883\) −9266.14 −0.353149 −0.176575 0.984287i \(-0.556502\pi\)
−0.176575 + 0.984287i \(0.556502\pi\)
\(884\) 0 0
\(885\) 2318.76 0.0880727
\(886\) 0 0
\(887\) −517.512 −0.0195900 −0.00979501 0.999952i \(-0.503118\pi\)
−0.00979501 + 0.999952i \(0.503118\pi\)
\(888\) 0 0
\(889\) 9923.72 0.374388
\(890\) 0 0
\(891\) −4438.60 −0.166890
\(892\) 0 0
\(893\) 37807.9 1.41679
\(894\) 0 0
\(895\) 22917.9 0.855934
\(896\) 0 0
\(897\) 2558.31 0.0952278
\(898\) 0 0
\(899\) 6496.87 0.241027
\(900\) 0 0
\(901\) −3623.49 −0.133980
\(902\) 0 0
\(903\) −4443.44 −0.163752
\(904\) 0 0
\(905\) −10385.4 −0.381462
\(906\) 0 0
\(907\) −47279.6 −1.73086 −0.865432 0.501026i \(-0.832956\pi\)
−0.865432 + 0.501026i \(0.832956\pi\)
\(908\) 0 0
\(909\) 3909.39 0.142647
\(910\) 0 0
\(911\) 24167.4 0.878925 0.439463 0.898261i \(-0.355169\pi\)
0.439463 + 0.898261i \(0.355169\pi\)
\(912\) 0 0
\(913\) −42692.3 −1.54755
\(914\) 0 0
\(915\) −2397.29 −0.0866143
\(916\) 0 0
\(917\) −21244.2 −0.765044
\(918\) 0 0
\(919\) −30359.3 −1.08973 −0.544864 0.838524i \(-0.683419\pi\)
−0.544864 + 0.838524i \(0.683419\pi\)
\(920\) 0 0
\(921\) 12704.6 0.454538
\(922\) 0 0
\(923\) 32039.3 1.14256
\(924\) 0 0
\(925\) −893.904 −0.0317745
\(926\) 0 0
\(927\) −13656.4 −0.483856
\(928\) 0 0
\(929\) 41703.4 1.47281 0.736407 0.676538i \(-0.236521\pi\)
0.736407 + 0.676538i \(0.236521\pi\)
\(930\) 0 0
\(931\) 22961.3 0.808300
\(932\) 0 0
\(933\) −8066.38 −0.283046
\(934\) 0 0
\(935\) −23174.3 −0.810569
\(936\) 0 0
\(937\) −10355.8 −0.361056 −0.180528 0.983570i \(-0.557781\pi\)
−0.180528 + 0.983570i \(0.557781\pi\)
\(938\) 0 0
\(939\) −14033.4 −0.487713
\(940\) 0 0
\(941\) −7478.39 −0.259074 −0.129537 0.991575i \(-0.541349\pi\)
−0.129537 + 0.991575i \(0.541349\pi\)
\(942\) 0 0
\(943\) 6916.87 0.238859
\(944\) 0 0
\(945\) −1461.51 −0.0503099
\(946\) 0 0
\(947\) 18102.2 0.621165 0.310582 0.950546i \(-0.399476\pi\)
0.310582 + 0.950546i \(0.399476\pi\)
\(948\) 0 0
\(949\) 27078.3 0.926238
\(950\) 0 0
\(951\) 21136.2 0.720702
\(952\) 0 0
\(953\) 22335.3 0.759193 0.379597 0.925152i \(-0.376063\pi\)
0.379597 + 0.925152i \(0.376063\pi\)
\(954\) 0 0
\(955\) −20184.2 −0.683922
\(956\) 0 0
\(957\) −15147.7 −0.511658
\(958\) 0 0
\(959\) −7079.85 −0.238394
\(960\) 0 0
\(961\) −24819.6 −0.833125
\(962\) 0 0
\(963\) 167.013 0.00558871
\(964\) 0 0
\(965\) 7718.09 0.257465
\(966\) 0 0
\(967\) −9714.97 −0.323074 −0.161537 0.986867i \(-0.551645\pi\)
−0.161537 + 0.986867i \(0.551645\pi\)
\(968\) 0 0
\(969\) −25803.2 −0.855438
\(970\) 0 0
\(971\) −4699.40 −0.155315 −0.0776575 0.996980i \(-0.524744\pi\)
−0.0776575 + 0.996980i \(0.524744\pi\)
\(972\) 0 0
\(973\) −10709.5 −0.352857
\(974\) 0 0
\(975\) 2780.77 0.0913393
\(976\) 0 0
\(977\) −29581.8 −0.968686 −0.484343 0.874878i \(-0.660941\pi\)
−0.484343 + 0.874878i \(0.660941\pi\)
\(978\) 0 0
\(979\) 29203.4 0.953365
\(980\) 0 0
\(981\) 14748.7 0.480009
\(982\) 0 0
\(983\) 2416.69 0.0784135 0.0392067 0.999231i \(-0.487517\pi\)
0.0392067 + 0.999231i \(0.487517\pi\)
\(984\) 0 0
\(985\) −4427.49 −0.143220
\(986\) 0 0
\(987\) −12075.2 −0.389420
\(988\) 0 0
\(989\) −3146.72 −0.101173
\(990\) 0 0
\(991\) 17124.7 0.548923 0.274461 0.961598i \(-0.411500\pi\)
0.274461 + 0.961598i \(0.411500\pi\)
\(992\) 0 0
\(993\) 18141.5 0.579762
\(994\) 0 0
\(995\) −7191.25 −0.229124
\(996\) 0 0
\(997\) 41385.0 1.31462 0.657311 0.753620i \(-0.271694\pi\)
0.657311 + 0.753620i \(0.271694\pi\)
\(998\) 0 0
\(999\) 965.416 0.0305750
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1380.4.a.e.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.4.a.e.1.2 5 1.1 even 1 trivial