Properties

Label 1380.2.bb
Level $1380$
Weight $2$
Character orbit 1380.bb
Rep. character $\chi_{1380}(89,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $480$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1380.bb (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 345 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1380, [\chi])\).

Total New Old
Modular forms 3000 480 2520
Cusp forms 2760 480 2280
Eisenstein series 240 0 240

Trace form

\( 480q + O(q^{10}) \) \( 480q - 11q^{15} - 16q^{31} - 24q^{39} + 20q^{49} + 14q^{55} - 44q^{61} + 126q^{69} + 35q^{75} + 44q^{79} + 52q^{81} - 10q^{85} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1380, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 2}\)