Properties

Label 1372.2.e.d.1353.5
Level $1372$
Weight $2$
Character 1372.1353
Analytic conductor $10.955$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1372,2,Mod(361,1372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1372.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1372, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1372 = 2^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1372.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,7,0,7,0,0,0,-9,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9554751573\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 10 x^{10} - 7 x^{9} + 68 x^{8} - 44 x^{7} + 225 x^{6} - 77 x^{5} + 490 x^{4} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1353.5
Root \(-0.174968 + 0.303054i\) of defining polynomial
Character \(\chi\) \(=\) 1372.1353
Dual form 1372.2.e.d.361.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.57594 + 2.72960i) q^{3} +(2.01664 - 3.49292i) q^{5} +(-3.46716 + 6.00529i) q^{9} +(1.36090 + 2.35715i) q^{11} +3.56957 q^{13} +12.7124 q^{15} +(-0.845598 - 1.46462i) q^{17} +(-2.17393 + 3.76535i) q^{19} +(-0.891403 + 1.54396i) q^{23} +(-5.63368 - 9.75781i) q^{25} -12.4005 q^{27} +0.407899 q^{29} +(3.29367 + 5.70481i) q^{31} +(-4.28940 + 7.42946i) q^{33} +(4.99236 - 8.64701i) q^{37} +(5.62541 + 9.74350i) q^{39} +7.86636 q^{41} +6.09932 q^{43} +(13.9840 + 24.2210i) q^{45} +(0.856390 - 1.48331i) q^{47} +(2.66522 - 4.61630i) q^{51} +(2.96127 + 5.12907i) q^{53} +10.9778 q^{55} -13.7039 q^{57} +(3.84093 + 6.65269i) q^{59} +(-2.26027 + 3.91491i) q^{61} +(7.19853 - 12.4682i) q^{65} +(-2.08050 - 3.60354i) q^{67} -5.61918 q^{69} -7.93900 q^{71} +(-6.09087 - 10.5497i) q^{73} +(17.7566 - 30.7554i) q^{75} +(0.142640 - 0.247060i) q^{79} +(-9.14088 - 15.8325i) q^{81} -9.36705 q^{83} -6.82107 q^{85} +(0.642824 + 1.11340i) q^{87} +(-4.47487 + 7.75071i) q^{89} +(-10.3812 + 17.9808i) q^{93} +(8.76805 + 15.1867i) q^{95} -7.00302 q^{97} -18.8739 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 7 q^{3} + 7 q^{5} - 9 q^{9} - 3 q^{11} - 14 q^{13} + 22 q^{15} + 7 q^{19} - 11 q^{23} - 3 q^{25} - 56 q^{27} + 12 q^{29} + 14 q^{31} + 6 q^{37} - 5 q^{39} - 6 q^{43} + 21 q^{45} + 42 q^{47} + 17 q^{51}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1372\mathbb{Z}\right)^\times\).

\(n\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.57594 + 2.72960i 0.909868 + 1.57594i 0.814246 + 0.580520i \(0.197151\pi\)
0.0956215 + 0.995418i \(0.469516\pi\)
\(4\) 0 0
\(5\) 2.01664 3.49292i 0.901869 1.56208i 0.0768032 0.997046i \(-0.475529\pi\)
0.825066 0.565037i \(-0.191138\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.46716 + 6.00529i −1.15572 + 2.00176i
\(10\) 0 0
\(11\) 1.36090 + 2.35715i 0.410328 + 0.710709i 0.994925 0.100615i \(-0.0320809\pi\)
−0.584598 + 0.811323i \(0.698748\pi\)
\(12\) 0 0
\(13\) 3.56957 0.990019 0.495010 0.868887i \(-0.335165\pi\)
0.495010 + 0.868887i \(0.335165\pi\)
\(14\) 0 0
\(15\) 12.7124 3.28233
\(16\) 0 0
\(17\) −0.845598 1.46462i −0.205088 0.355222i 0.745073 0.666983i \(-0.232415\pi\)
−0.950161 + 0.311761i \(0.899081\pi\)
\(18\) 0 0
\(19\) −2.17393 + 3.76535i −0.498733 + 0.863830i −0.999999 0.00146273i \(-0.999534\pi\)
0.501266 + 0.865293i \(0.332868\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.891403 + 1.54396i −0.185870 + 0.321937i −0.943869 0.330319i \(-0.892844\pi\)
0.757999 + 0.652256i \(0.226177\pi\)
\(24\) 0 0
\(25\) −5.63368 9.75781i −1.12674 1.95156i
\(26\) 0 0
\(27\) −12.4005 −2.38647
\(28\) 0 0
\(29\) 0.407899 0.0757450 0.0378725 0.999283i \(-0.487942\pi\)
0.0378725 + 0.999283i \(0.487942\pi\)
\(30\) 0 0
\(31\) 3.29367 + 5.70481i 0.591561 + 1.02461i 0.994022 + 0.109177i \(0.0348215\pi\)
−0.402461 + 0.915437i \(0.631845\pi\)
\(32\) 0 0
\(33\) −4.28940 + 7.42946i −0.746688 + 1.29330i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.99236 8.64701i 0.820738 1.42156i −0.0843949 0.996432i \(-0.526896\pi\)
0.905133 0.425128i \(-0.139771\pi\)
\(38\) 0 0
\(39\) 5.62541 + 9.74350i 0.900787 + 1.56021i
\(40\) 0 0
\(41\) 7.86636 1.22852 0.614259 0.789104i \(-0.289455\pi\)
0.614259 + 0.789104i \(0.289455\pi\)
\(42\) 0 0
\(43\) 6.09932 0.930137 0.465068 0.885275i \(-0.346030\pi\)
0.465068 + 0.885275i \(0.346030\pi\)
\(44\) 0 0
\(45\) 13.9840 + 24.2210i 2.08461 + 3.61066i
\(46\) 0 0
\(47\) 0.856390 1.48331i 0.124917 0.216363i −0.796783 0.604265i \(-0.793467\pi\)
0.921701 + 0.387902i \(0.126800\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.66522 4.61630i 0.373205 0.646411i
\(52\) 0 0
\(53\) 2.96127 + 5.12907i 0.406762 + 0.704532i 0.994525 0.104501i \(-0.0333246\pi\)
−0.587763 + 0.809033i \(0.699991\pi\)
\(54\) 0 0
\(55\) 10.9778 1.48025
\(56\) 0 0
\(57\) −13.7039 −1.81512
\(58\) 0 0
\(59\) 3.84093 + 6.65269i 0.500047 + 0.866106i 1.00000 5.38702e-5i \(1.71474e-5\pi\)
−0.499953 + 0.866052i \(0.666650\pi\)
\(60\) 0 0
\(61\) −2.26027 + 3.91491i −0.289398 + 0.501252i −0.973666 0.227978i \(-0.926789\pi\)
0.684268 + 0.729231i \(0.260122\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.19853 12.4682i 0.892868 1.54649i
\(66\) 0 0
\(67\) −2.08050 3.60354i −0.254174 0.440242i 0.710497 0.703700i \(-0.248470\pi\)
−0.964671 + 0.263458i \(0.915137\pi\)
\(68\) 0 0
\(69\) −5.61918 −0.676470
\(70\) 0 0
\(71\) −7.93900 −0.942186 −0.471093 0.882084i \(-0.656140\pi\)
−0.471093 + 0.882084i \(0.656140\pi\)
\(72\) 0 0
\(73\) −6.09087 10.5497i −0.712883 1.23475i −0.963770 0.266733i \(-0.914056\pi\)
0.250888 0.968016i \(-0.419278\pi\)
\(74\) 0 0
\(75\) 17.7566 30.7554i 2.05036 3.55133i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.142640 0.247060i 0.0160482 0.0277964i −0.857890 0.513834i \(-0.828225\pi\)
0.873938 + 0.486037i \(0.161558\pi\)
\(80\) 0 0
\(81\) −9.14088 15.8325i −1.01565 1.75916i
\(82\) 0 0
\(83\) −9.36705 −1.02817 −0.514084 0.857740i \(-0.671868\pi\)
−0.514084 + 0.857740i \(0.671868\pi\)
\(84\) 0 0
\(85\) −6.82107 −0.739849
\(86\) 0 0
\(87\) 0.642824 + 1.11340i 0.0689179 + 0.119369i
\(88\) 0 0
\(89\) −4.47487 + 7.75071i −0.474336 + 0.821574i −0.999568 0.0293852i \(-0.990645\pi\)
0.525232 + 0.850959i \(0.323978\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.3812 + 17.9808i −1.07648 + 1.86453i
\(94\) 0 0
\(95\) 8.76805 + 15.1867i 0.899583 + 1.55812i
\(96\) 0 0
\(97\) −7.00302 −0.711049 −0.355524 0.934667i \(-0.615698\pi\)
−0.355524 + 0.934667i \(0.615698\pi\)
\(98\) 0 0
\(99\) −18.8739 −1.89690
\(100\) 0 0
\(101\) 0.572723 + 0.991986i 0.0569881 + 0.0987063i 0.893112 0.449834i \(-0.148517\pi\)
−0.836124 + 0.548541i \(0.815184\pi\)
\(102\) 0 0
\(103\) 4.13721 7.16586i 0.407651 0.706073i −0.586975 0.809605i \(-0.699681\pi\)
0.994626 + 0.103532i \(0.0330145\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.93666 13.7467i 0.767266 1.32894i −0.171775 0.985136i \(-0.554950\pi\)
0.939040 0.343807i \(-0.111717\pi\)
\(108\) 0 0
\(109\) −6.68804 11.5840i −0.640598 1.10955i −0.985299 0.170836i \(-0.945353\pi\)
0.344701 0.938712i \(-0.387980\pi\)
\(110\) 0 0
\(111\) 31.4706 2.98705
\(112\) 0 0
\(113\) −16.5314 −1.55514 −0.777572 0.628793i \(-0.783549\pi\)
−0.777572 + 0.628793i \(0.783549\pi\)
\(114\) 0 0
\(115\) 3.59528 + 6.22721i 0.335262 + 0.580690i
\(116\) 0 0
\(117\) −12.3762 + 21.4363i −1.14418 + 1.98179i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.79588 3.11056i 0.163262 0.282778i
\(122\) 0 0
\(123\) 12.3969 + 21.4720i 1.11779 + 1.93607i
\(124\) 0 0
\(125\) −25.2780 −2.26093
\(126\) 0 0
\(127\) −9.32693 −0.827631 −0.413815 0.910361i \(-0.635804\pi\)
−0.413815 + 0.910361i \(0.635804\pi\)
\(128\) 0 0
\(129\) 9.61214 + 16.6487i 0.846302 + 1.46584i
\(130\) 0 0
\(131\) −5.64849 + 9.78347i −0.493511 + 0.854785i −0.999972 0.00747720i \(-0.997620\pi\)
0.506461 + 0.862263i \(0.330953\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −25.0073 + 43.3139i −2.15228 + 3.72786i
\(136\) 0 0
\(137\) −8.61292 14.9180i −0.735852 1.27453i −0.954349 0.298695i \(-0.903449\pi\)
0.218497 0.975838i \(-0.429885\pi\)
\(138\) 0 0
\(139\) −3.46595 −0.293978 −0.146989 0.989138i \(-0.546958\pi\)
−0.146989 + 0.989138i \(0.546958\pi\)
\(140\) 0 0
\(141\) 5.39847 0.454633
\(142\) 0 0
\(143\) 4.85784 + 8.41402i 0.406233 + 0.703616i
\(144\) 0 0
\(145\) 0.822586 1.42476i 0.0683121 0.118320i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.69452 + 4.66705i −0.220744 + 0.382340i −0.955034 0.296496i \(-0.904182\pi\)
0.734290 + 0.678836i \(0.237515\pi\)
\(150\) 0 0
\(151\) −11.0994 19.2248i −0.903260 1.56449i −0.823236 0.567699i \(-0.807834\pi\)
−0.0800242 0.996793i \(-0.525500\pi\)
\(152\) 0 0
\(153\) 11.7273 0.948095
\(154\) 0 0
\(155\) 26.5686 2.13404
\(156\) 0 0
\(157\) 5.56757 + 9.64331i 0.444340 + 0.769620i 0.998006 0.0631190i \(-0.0201048\pi\)
−0.553666 + 0.832739i \(0.686771\pi\)
\(158\) 0 0
\(159\) −9.33355 + 16.1662i −0.740199 + 1.28206i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.80380 6.58837i 0.297936 0.516041i −0.677727 0.735313i \(-0.737035\pi\)
0.975664 + 0.219272i \(0.0703683\pi\)
\(164\) 0 0
\(165\) 17.3003 + 29.9651i 1.34683 + 2.33278i
\(166\) 0 0
\(167\) −22.4957 −1.74077 −0.870383 0.492375i \(-0.836129\pi\)
−0.870383 + 0.492375i \(0.836129\pi\)
\(168\) 0 0
\(169\) −0.258201 −0.0198616
\(170\) 0 0
\(171\) −15.0747 26.1101i −1.15279 1.99669i
\(172\) 0 0
\(173\) 2.05794 3.56446i 0.156463 0.271001i −0.777128 0.629342i \(-0.783324\pi\)
0.933591 + 0.358341i \(0.116658\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.1061 + 20.9684i −0.909953 + 1.57608i
\(178\) 0 0
\(179\) 0.667927 + 1.15688i 0.0499232 + 0.0864695i 0.889907 0.456142i \(-0.150769\pi\)
−0.839984 + 0.542611i \(0.817436\pi\)
\(180\) 0 0
\(181\) 7.17301 0.533166 0.266583 0.963812i \(-0.414105\pi\)
0.266583 + 0.963812i \(0.414105\pi\)
\(182\) 0 0
\(183\) −14.2482 −1.05326
\(184\) 0 0
\(185\) −20.1356 34.8758i −1.48040 2.56412i
\(186\) 0 0
\(187\) 2.30156 3.98641i 0.168306 0.291515i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.86476 3.22986i 0.134930 0.233705i −0.790641 0.612280i \(-0.790253\pi\)
0.925571 + 0.378575i \(0.123586\pi\)
\(192\) 0 0
\(193\) 3.64170 + 6.30761i 0.262135 + 0.454032i 0.966809 0.255500i \(-0.0822400\pi\)
−0.704674 + 0.709531i \(0.748907\pi\)
\(194\) 0 0
\(195\) 45.3777 3.24957
\(196\) 0 0
\(197\) 24.3500 1.73487 0.867433 0.497554i \(-0.165768\pi\)
0.867433 + 0.497554i \(0.165768\pi\)
\(198\) 0 0
\(199\) −8.87473 15.3715i −0.629113 1.08966i −0.987730 0.156171i \(-0.950085\pi\)
0.358617 0.933485i \(-0.383249\pi\)
\(200\) 0 0
\(201\) 6.55748 11.3579i 0.462529 0.801124i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 15.8636 27.4766i 1.10796 1.91905i
\(206\) 0 0
\(207\) −6.18127 10.7063i −0.429628 0.744137i
\(208\) 0 0
\(209\) −11.8340 −0.818576
\(210\) 0 0
\(211\) 6.53230 0.449702 0.224851 0.974393i \(-0.427810\pi\)
0.224851 + 0.974393i \(0.427810\pi\)
\(212\) 0 0
\(213\) −12.5114 21.6703i −0.857265 1.48483i
\(214\) 0 0
\(215\) 12.3001 21.3044i 0.838862 1.45295i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 19.1977 33.2513i 1.29726 2.24692i
\(220\) 0 0
\(221\) −3.01842 5.22805i −0.203041 0.351677i
\(222\) 0 0
\(223\) −17.2181 −1.15301 −0.576503 0.817095i \(-0.695583\pi\)
−0.576503 + 0.817095i \(0.695583\pi\)
\(224\) 0 0
\(225\) 78.1314 5.20876
\(226\) 0 0
\(227\) 3.89868 + 6.75271i 0.258764 + 0.448193i 0.965911 0.258874i \(-0.0833514\pi\)
−0.707147 + 0.707067i \(0.750018\pi\)
\(228\) 0 0
\(229\) 3.18162 5.51073i 0.210247 0.364159i −0.741544 0.670904i \(-0.765906\pi\)
0.951792 + 0.306744i \(0.0992397\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.97775 5.15761i 0.195079 0.337886i −0.751848 0.659337i \(-0.770837\pi\)
0.946926 + 0.321451i \(0.104170\pi\)
\(234\) 0 0
\(235\) −3.45406 5.98261i −0.225318 0.390263i
\(236\) 0 0
\(237\) 0.899167 0.0584071
\(238\) 0 0
\(239\) −2.45790 −0.158988 −0.0794941 0.996835i \(-0.525330\pi\)
−0.0794941 + 0.996835i \(0.525330\pi\)
\(240\) 0 0
\(241\) 2.50265 + 4.33471i 0.161210 + 0.279223i 0.935303 0.353848i \(-0.115127\pi\)
−0.774093 + 0.633072i \(0.781794\pi\)
\(242\) 0 0
\(243\) 10.2102 17.6846i 0.654986 1.13447i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.75997 + 13.4407i −0.493755 + 0.855209i
\(248\) 0 0
\(249\) −14.7619 25.5683i −0.935497 1.62033i
\(250\) 0 0
\(251\) −5.82496 −0.367668 −0.183834 0.982957i \(-0.558851\pi\)
−0.183834 + 0.982957i \(0.558851\pi\)
\(252\) 0 0
\(253\) −4.85246 −0.305071
\(254\) 0 0
\(255\) −10.7496 18.6188i −0.673165 1.16596i
\(256\) 0 0
\(257\) −0.216636 + 0.375224i −0.0135134 + 0.0234059i −0.872703 0.488251i \(-0.837635\pi\)
0.859190 + 0.511657i \(0.170968\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.41425 + 2.44955i −0.0875399 + 0.151624i
\(262\) 0 0
\(263\) 10.7239 + 18.5744i 0.661267 + 1.14535i 0.980283 + 0.197598i \(0.0633142\pi\)
−0.319016 + 0.947749i \(0.603352\pi\)
\(264\) 0 0
\(265\) 23.8873 1.46738
\(266\) 0 0
\(267\) −28.2085 −1.72633
\(268\) 0 0
\(269\) 9.96373 + 17.2577i 0.607500 + 1.05222i 0.991651 + 0.128950i \(0.0411607\pi\)
−0.384152 + 0.923270i \(0.625506\pi\)
\(270\) 0 0
\(271\) 4.48673 7.77125i 0.272549 0.472070i −0.696964 0.717106i \(-0.745466\pi\)
0.969514 + 0.245036i \(0.0787998\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.3338 26.5589i 0.924662 1.60156i
\(276\) 0 0
\(277\) 8.90965 + 15.4320i 0.535329 + 0.927217i 0.999147 + 0.0412866i \(0.0131457\pi\)
−0.463818 + 0.885930i \(0.653521\pi\)
\(278\) 0 0
\(279\) −45.6787 −2.73471
\(280\) 0 0
\(281\) −2.18474 −0.130331 −0.0651653 0.997874i \(-0.520757\pi\)
−0.0651653 + 0.997874i \(0.520757\pi\)
\(282\) 0 0
\(283\) 6.93718 + 12.0155i 0.412372 + 0.714250i 0.995149 0.0983826i \(-0.0313669\pi\)
−0.582776 + 0.812633i \(0.698034\pi\)
\(284\) 0 0
\(285\) −27.6358 + 47.8666i −1.63700 + 2.83537i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.06993 12.2455i 0.415878 0.720322i
\(290\) 0 0
\(291\) −11.0363 19.1155i −0.646960 1.12057i
\(292\) 0 0
\(293\) −21.3205 −1.24556 −0.622779 0.782398i \(-0.713996\pi\)
−0.622779 + 0.782398i \(0.713996\pi\)
\(294\) 0 0
\(295\) 30.9831 1.80391
\(296\) 0 0
\(297\) −16.8758 29.2298i −0.979235 1.69609i
\(298\) 0 0
\(299\) −3.18192 + 5.51125i −0.184015 + 0.318724i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.80515 + 3.12661i −0.103703 + 0.179619i
\(304\) 0 0
\(305\) 9.11631 + 15.7899i 0.521999 + 0.904128i
\(306\) 0 0
\(307\) 0.702447 0.0400908 0.0200454 0.999799i \(-0.493619\pi\)
0.0200454 + 0.999799i \(0.493619\pi\)
\(308\) 0 0
\(309\) 26.0799 1.48364
\(310\) 0 0
\(311\) 4.59396 + 7.95698i 0.260500 + 0.451199i 0.966375 0.257138i \(-0.0827793\pi\)
−0.705875 + 0.708336i \(0.749446\pi\)
\(312\) 0 0
\(313\) −9.94766 + 17.2298i −0.562275 + 0.973889i 0.435023 + 0.900420i \(0.356740\pi\)
−0.997297 + 0.0734692i \(0.976593\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.56416 + 4.44126i −0.144018 + 0.249446i −0.929006 0.370065i \(-0.879336\pi\)
0.784988 + 0.619510i \(0.212669\pi\)
\(318\) 0 0
\(319\) 0.555112 + 0.961481i 0.0310803 + 0.0538326i
\(320\) 0 0
\(321\) 50.0307 2.79244
\(322\) 0 0
\(323\) 7.35307 0.409136
\(324\) 0 0
\(325\) −20.1098 34.8312i −1.11549 1.93209i
\(326\) 0 0
\(327\) 21.0799 36.5114i 1.16572 2.01909i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.12296 5.40912i 0.171653 0.297312i −0.767345 0.641235i \(-0.778422\pi\)
0.938998 + 0.343923i \(0.111756\pi\)
\(332\) 0 0
\(333\) 34.6186 + 59.9611i 1.89709 + 3.28585i
\(334\) 0 0
\(335\) −16.7825 −0.916926
\(336\) 0 0
\(337\) 0.644555 0.0351112 0.0175556 0.999846i \(-0.494412\pi\)
0.0175556 + 0.999846i \(0.494412\pi\)
\(338\) 0 0
\(339\) −26.0525 45.1242i −1.41498 2.45081i
\(340\) 0 0
\(341\) −8.96474 + 15.5274i −0.485468 + 0.840855i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −11.3319 + 19.6274i −0.610087 + 1.05670i
\(346\) 0 0
\(347\) −15.6899 27.1757i −0.842278 1.45887i −0.887964 0.459913i \(-0.847881\pi\)
0.0456858 0.998956i \(-0.485453\pi\)
\(348\) 0 0
\(349\) 37.2595 1.99445 0.997226 0.0744289i \(-0.0237134\pi\)
0.997226 + 0.0744289i \(0.0237134\pi\)
\(350\) 0 0
\(351\) −44.2643 −2.36265
\(352\) 0 0
\(353\) −7.89314 13.6713i −0.420110 0.727651i 0.575840 0.817562i \(-0.304675\pi\)
−0.995950 + 0.0899110i \(0.971342\pi\)
\(354\) 0 0
\(355\) −16.0101 + 27.7303i −0.849728 + 1.47177i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.83855 + 8.38062i −0.255369 + 0.442312i −0.964996 0.262266i \(-0.915530\pi\)
0.709627 + 0.704578i \(0.248864\pi\)
\(360\) 0 0
\(361\) 0.0480962 + 0.0833051i 0.00253138 + 0.00438448i
\(362\) 0 0
\(363\) 11.3208 0.594187
\(364\) 0 0
\(365\) −49.1324 −2.57171
\(366\) 0 0
\(367\) −5.12314 8.87355i −0.267426 0.463195i 0.700770 0.713387i \(-0.252840\pi\)
−0.968196 + 0.250192i \(0.919506\pi\)
\(368\) 0 0
\(369\) −27.2739 + 47.2398i −1.41982 + 2.45920i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00915 3.47995i 0.104030 0.180185i −0.809312 0.587380i \(-0.800160\pi\)
0.913341 + 0.407195i \(0.133493\pi\)
\(374\) 0 0
\(375\) −39.8365 68.9989i −2.05715 3.56309i
\(376\) 0 0
\(377\) 1.45602 0.0749890
\(378\) 0 0
\(379\) −28.4114 −1.45939 −0.729697 0.683771i \(-0.760339\pi\)
−0.729697 + 0.683771i \(0.760339\pi\)
\(380\) 0 0
\(381\) −14.6987 25.4588i −0.753035 1.30429i
\(382\) 0 0
\(383\) 9.81142 16.9939i 0.501340 0.868347i −0.498659 0.866798i \(-0.666174\pi\)
0.999999 0.00154825i \(-0.000492824\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −21.1473 + 36.6282i −1.07498 + 1.86191i
\(388\) 0 0
\(389\) 1.17070 + 2.02771i 0.0593569 + 0.102809i 0.894177 0.447714i \(-0.147762\pi\)
−0.834820 + 0.550523i \(0.814428\pi\)
\(390\) 0 0
\(391\) 3.01508 0.152479
\(392\) 0 0
\(393\) −35.6066 −1.79612
\(394\) 0 0
\(395\) −0.575307 0.996461i −0.0289468 0.0501374i
\(396\) 0 0
\(397\) 12.1026 20.9624i 0.607414 1.05207i −0.384251 0.923229i \(-0.625540\pi\)
0.991665 0.128844i \(-0.0411266\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.38574 + 2.40017i −0.0692006 + 0.119859i −0.898550 0.438872i \(-0.855378\pi\)
0.829349 + 0.558731i \(0.188712\pi\)
\(402\) 0 0
\(403\) 11.7570 + 20.3637i 0.585657 + 1.01439i
\(404\) 0 0
\(405\) −73.7355 −3.66395
\(406\) 0 0
\(407\) 27.1765 1.34709
\(408\) 0 0
\(409\) 19.1815 + 33.2233i 0.948463 + 1.64279i 0.748663 + 0.662950i \(0.230696\pi\)
0.199800 + 0.979837i \(0.435971\pi\)
\(410\) 0 0
\(411\) 27.1469 47.0197i 1.33906 2.31931i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −18.8900 + 32.7184i −0.927273 + 1.60608i
\(416\) 0 0
\(417\) −5.46211 9.46066i −0.267481 0.463290i
\(418\) 0 0
\(419\) 11.1510 0.544762 0.272381 0.962189i \(-0.412189\pi\)
0.272381 + 0.962189i \(0.412189\pi\)
\(420\) 0 0
\(421\) −23.9079 −1.16520 −0.582600 0.812759i \(-0.697964\pi\)
−0.582600 + 0.812759i \(0.697964\pi\)
\(422\) 0 0
\(423\) 5.93848 + 10.2857i 0.288739 + 0.500110i
\(424\) 0 0
\(425\) −9.52765 + 16.5024i −0.462159 + 0.800483i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −15.3113 + 26.5199i −0.739236 + 1.28039i
\(430\) 0 0
\(431\) −9.04663 15.6692i −0.435761 0.754760i 0.561597 0.827411i \(-0.310187\pi\)
−0.997357 + 0.0726515i \(0.976854\pi\)
\(432\) 0 0
\(433\) 19.2070 0.923028 0.461514 0.887133i \(-0.347306\pi\)
0.461514 + 0.887133i \(0.347306\pi\)
\(434\) 0 0
\(435\) 5.18538 0.248620
\(436\) 0 0
\(437\) −3.87569 6.71289i −0.185399 0.321121i
\(438\) 0 0
\(439\) 12.8728 22.2963i 0.614383 1.06414i −0.376109 0.926575i \(-0.622738\pi\)
0.990492 0.137568i \(-0.0439284\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.2727 17.7928i 0.488071 0.845364i −0.511835 0.859084i \(-0.671034\pi\)
0.999906 + 0.0137201i \(0.00436737\pi\)
\(444\) 0 0
\(445\) 18.0484 + 31.2608i 0.855577 + 1.48190i
\(446\) 0 0
\(447\) −16.9856 −0.803391
\(448\) 0 0
\(449\) −27.5024 −1.29792 −0.648960 0.760823i \(-0.724796\pi\)
−0.648960 + 0.760823i \(0.724796\pi\)
\(450\) 0 0
\(451\) 10.7054 + 18.5422i 0.504095 + 0.873119i
\(452\) 0 0
\(453\) 34.9841 60.5942i 1.64369 2.84696i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.9566 34.5659i 0.933531 1.61692i 0.156299 0.987710i \(-0.450044\pi\)
0.777232 0.629214i \(-0.216623\pi\)
\(458\) 0 0
\(459\) 10.4858 + 18.1620i 0.489436 + 0.847727i
\(460\) 0 0
\(461\) −27.7528 −1.29258 −0.646289 0.763093i \(-0.723680\pi\)
−0.646289 + 0.763093i \(0.723680\pi\)
\(462\) 0 0
\(463\) 5.25880 0.244397 0.122199 0.992506i \(-0.461006\pi\)
0.122199 + 0.992506i \(0.461006\pi\)
\(464\) 0 0
\(465\) 41.8705 + 72.5218i 1.94170 + 3.36312i
\(466\) 0 0
\(467\) −9.01918 + 15.6217i −0.417358 + 0.722885i −0.995673 0.0929287i \(-0.970377\pi\)
0.578315 + 0.815814i \(0.303710\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −17.5483 + 30.3945i −0.808582 + 1.40050i
\(472\) 0 0
\(473\) 8.30058 + 14.3770i 0.381661 + 0.661057i
\(474\) 0 0
\(475\) 48.9888 2.24776
\(476\) 0 0
\(477\) −41.0687 −1.88041
\(478\) 0 0
\(479\) −5.60992 9.71667i −0.256324 0.443966i 0.708930 0.705278i \(-0.249178\pi\)
−0.965254 + 0.261312i \(0.915845\pi\)
\(480\) 0 0
\(481\) 17.8205 30.8661i 0.812547 1.40737i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.1226 + 24.4610i −0.641273 + 1.11072i
\(486\) 0 0
\(487\) 19.5749 + 33.9048i 0.887025 + 1.53637i 0.843375 + 0.537326i \(0.180565\pi\)
0.0436502 + 0.999047i \(0.486101\pi\)
\(488\) 0 0
\(489\) 23.9782 1.08433
\(490\) 0 0
\(491\) −33.6735 −1.51966 −0.759831 0.650120i \(-0.774718\pi\)
−0.759831 + 0.650120i \(0.774718\pi\)
\(492\) 0 0
\(493\) −0.344919 0.597417i −0.0155344 0.0269063i
\(494\) 0 0
\(495\) −38.0618 + 65.9250i −1.71075 + 2.96311i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −10.2653 + 17.7800i −0.459537 + 0.795942i −0.998936 0.0461082i \(-0.985318\pi\)
0.539399 + 0.842050i \(0.318651\pi\)
\(500\) 0 0
\(501\) −35.4518 61.4042i −1.58387 2.74334i
\(502\) 0 0
\(503\) 14.7480 0.657582 0.328791 0.944403i \(-0.393359\pi\)
0.328791 + 0.944403i \(0.393359\pi\)
\(504\) 0 0
\(505\) 4.61991 0.205583
\(506\) 0 0
\(507\) −0.406909 0.704787i −0.0180715 0.0313007i
\(508\) 0 0
\(509\) 4.83687 8.37771i 0.214391 0.371335i −0.738693 0.674042i \(-0.764557\pi\)
0.953084 + 0.302706i \(0.0978901\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 26.9577 46.6921i 1.19021 2.06151i
\(514\) 0 0
\(515\) −16.6865 28.9019i −0.735296 1.27357i
\(516\) 0 0
\(517\) 4.66186 0.205028
\(518\) 0 0
\(519\) 12.9728 0.569441
\(520\) 0 0
\(521\) 3.45775 + 5.98901i 0.151487 + 0.262383i 0.931774 0.363038i \(-0.118261\pi\)
−0.780287 + 0.625421i \(0.784927\pi\)
\(522\) 0 0
\(523\) 4.46100 7.72668i 0.195066 0.337864i −0.751856 0.659327i \(-0.770841\pi\)
0.946922 + 0.321463i \(0.104175\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.57025 9.64795i 0.242644 0.420271i
\(528\) 0 0
\(529\) 9.91080 + 17.1660i 0.430904 + 0.746348i
\(530\) 0 0
\(531\) −53.2684 −2.31165
\(532\) 0 0
\(533\) 28.0795 1.21626
\(534\) 0 0
\(535\) −32.0108 55.4443i −1.38395 2.39707i
\(536\) 0 0
\(537\) −2.10522 + 3.64635i −0.0908470 + 0.157352i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.73834 8.20705i 0.203717 0.352849i −0.746006 0.665939i \(-0.768031\pi\)
0.949723 + 0.313091i \(0.101364\pi\)
\(542\) 0 0
\(543\) 11.3042 + 19.5795i 0.485110 + 0.840236i
\(544\) 0 0
\(545\) −53.9495 −2.31094
\(546\) 0 0
\(547\) 22.8869 0.978573 0.489287 0.872123i \(-0.337257\pi\)
0.489287 + 0.872123i \(0.337257\pi\)
\(548\) 0 0
\(549\) −15.6734 27.1472i −0.668926 1.15861i
\(550\) 0 0
\(551\) −0.886742 + 1.53588i −0.0377765 + 0.0654308i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 63.4648 109.924i 2.69393 4.66603i
\(556\) 0 0
\(557\) −11.8415 20.5101i −0.501742 0.869043i −0.999998 0.00201276i \(-0.999359\pi\)
0.498256 0.867030i \(-0.333974\pi\)
\(558\) 0 0
\(559\) 21.7719 0.920854
\(560\) 0 0
\(561\) 14.5084 0.612546
\(562\) 0 0
\(563\) 2.10139 + 3.63972i 0.0885632 + 0.153396i 0.906904 0.421337i \(-0.138439\pi\)
−0.818341 + 0.574733i \(0.805106\pi\)
\(564\) 0 0
\(565\) −33.3379 + 57.7430i −1.40254 + 2.42927i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0905 + 34.7978i −0.842237 + 1.45880i 0.0457613 + 0.998952i \(0.485429\pi\)
−0.887999 + 0.459846i \(0.847905\pi\)
\(570\) 0 0
\(571\) −13.3821 23.1785i −0.560024 0.969989i −0.997494 0.0707565i \(-0.977459\pi\)
0.437470 0.899233i \(-0.355875\pi\)
\(572\) 0 0
\(573\) 11.7550 0.491072
\(574\) 0 0
\(575\) 20.0875 0.837707
\(576\) 0 0
\(577\) 17.8754 + 30.9610i 0.744161 + 1.28892i 0.950586 + 0.310462i \(0.100484\pi\)
−0.206425 + 0.978462i \(0.566183\pi\)
\(578\) 0 0
\(579\) −11.4782 + 19.8808i −0.477017 + 0.826218i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.06001 + 13.9603i −0.333811 + 0.578178i
\(584\) 0 0
\(585\) 49.9169 + 86.4586i 2.06381 + 3.57462i
\(586\) 0 0
\(587\) −13.3219 −0.549852 −0.274926 0.961465i \(-0.588653\pi\)
−0.274926 + 0.961465i \(0.588653\pi\)
\(588\) 0 0
\(589\) −28.6408 −1.18012
\(590\) 0 0
\(591\) 38.3741 + 66.4659i 1.57850 + 2.73404i
\(592\) 0 0
\(593\) 13.5164 23.4111i 0.555052 0.961378i −0.442848 0.896597i \(-0.646032\pi\)
0.997899 0.0647812i \(-0.0206349\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 27.9721 48.4490i 1.14482 1.98289i
\(598\) 0 0
\(599\) −10.7714 18.6567i −0.440109 0.762292i 0.557588 0.830118i \(-0.311727\pi\)
−0.997697 + 0.0678262i \(0.978394\pi\)
\(600\) 0 0
\(601\) −21.5781 −0.880190 −0.440095 0.897951i \(-0.645055\pi\)
−0.440095 + 0.897951i \(0.645055\pi\)
\(602\) 0 0
\(603\) 28.8537 1.17501
\(604\) 0 0
\(605\) −7.24330 12.5458i −0.294482 0.510057i
\(606\) 0 0
\(607\) −14.7102 + 25.4788i −0.597067 + 1.03415i 0.396184 + 0.918171i \(0.370334\pi\)
−0.993252 + 0.115980i \(0.962999\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.05694 5.29478i 0.123671 0.214204i
\(612\) 0 0
\(613\) 9.52392 + 16.4959i 0.384668 + 0.666264i 0.991723 0.128396i \(-0.0409827\pi\)
−0.607055 + 0.794659i \(0.707649\pi\)
\(614\) 0 0
\(615\) 100.000 4.03240
\(616\) 0 0
\(617\) −42.6375 −1.71652 −0.858261 0.513213i \(-0.828455\pi\)
−0.858261 + 0.513213i \(0.828455\pi\)
\(618\) 0 0
\(619\) −9.88519 17.1217i −0.397319 0.688177i 0.596075 0.802929i \(-0.296726\pi\)
−0.993394 + 0.114752i \(0.963393\pi\)
\(620\) 0 0
\(621\) 11.0538 19.1458i 0.443574 0.768293i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −22.8082 + 39.5050i −0.912330 + 1.58020i
\(626\) 0 0
\(627\) −18.6497 32.3022i −0.744796 1.29002i
\(628\) 0 0
\(629\) −16.8861 −0.673293
\(630\) 0 0
\(631\) 40.3578 1.60662 0.803310 0.595562i \(-0.203070\pi\)
0.803310 + 0.595562i \(0.203070\pi\)
\(632\) 0 0
\(633\) 10.2945 + 17.8306i 0.409169 + 0.708702i
\(634\) 0 0
\(635\) −18.8091 + 32.5782i −0.746415 + 1.29283i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 27.5258 47.6760i 1.08890 1.88603i
\(640\) 0 0
\(641\) −16.6565 28.8498i −0.657891 1.13950i −0.981161 0.193193i \(-0.938116\pi\)
0.323270 0.946307i \(-0.395218\pi\)
\(642\) 0 0
\(643\) −15.1943 −0.599204 −0.299602 0.954064i \(-0.596854\pi\)
−0.299602 + 0.954064i \(0.596854\pi\)
\(644\) 0 0
\(645\) 77.5369 3.05301
\(646\) 0 0
\(647\) 18.6961 + 32.3826i 0.735019 + 1.27309i 0.954715 + 0.297522i \(0.0961601\pi\)
−0.219696 + 0.975568i \(0.570507\pi\)
\(648\) 0 0
\(649\) −10.4543 + 18.1073i −0.410366 + 0.710775i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.2111 + 21.1502i −0.477856 + 0.827670i −0.999678 0.0253840i \(-0.991919\pi\)
0.521822 + 0.853054i \(0.325252\pi\)
\(654\) 0 0
\(655\) 22.7819 + 39.4595i 0.890164 + 1.54181i
\(656\) 0 0
\(657\) 84.4720 3.29557
\(658\) 0 0
\(659\) 45.0721 1.75576 0.877880 0.478881i \(-0.158957\pi\)
0.877880 + 0.478881i \(0.158957\pi\)
\(660\) 0 0
\(661\) 3.55597 + 6.15912i 0.138311 + 0.239562i 0.926857 0.375413i \(-0.122499\pi\)
−0.788546 + 0.614975i \(0.789166\pi\)
\(662\) 0 0
\(663\) 9.51367 16.4782i 0.369481 0.639959i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.363603 + 0.629778i −0.0140788 + 0.0243851i
\(668\) 0 0
\(669\) −27.1346 46.9985i −1.04908 1.81707i
\(670\) 0 0
\(671\) −12.3041 −0.474993
\(672\) 0 0
\(673\) 17.1198 0.659922 0.329961 0.943995i \(-0.392964\pi\)
0.329961 + 0.943995i \(0.392964\pi\)
\(674\) 0 0
\(675\) 69.8602 + 121.001i 2.68892 + 4.65735i
\(676\) 0 0
\(677\) 16.1703 28.0078i 0.621475 1.07643i −0.367737 0.929930i \(-0.619867\pi\)
0.989211 0.146496i \(-0.0467995\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.2881 + 21.2837i −0.470883 + 0.815593i
\(682\) 0 0
\(683\) −4.11255 7.12315i −0.157362 0.272560i 0.776554 0.630050i \(-0.216966\pi\)
−0.933917 + 0.357491i \(0.883632\pi\)
\(684\) 0 0
\(685\) −69.4767 −2.65457
\(686\) 0 0
\(687\) 20.0561 0.765190
\(688\) 0 0
\(689\) 10.5704 + 18.3085i 0.402702 + 0.697500i
\(690\) 0 0
\(691\) −9.39992 + 16.2811i −0.357590 + 0.619364i −0.987558 0.157258i \(-0.949735\pi\)
0.629968 + 0.776621i \(0.283068\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.98957 + 12.1063i −0.265129 + 0.459218i
\(696\) 0 0
\(697\) −6.65178 11.5212i −0.251954 0.436397i
\(698\) 0 0
\(699\) 18.7710 0.709983
\(700\) 0 0
\(701\) 3.70843 0.140065 0.0700327 0.997545i \(-0.477690\pi\)
0.0700327 + 0.997545i \(0.477690\pi\)
\(702\) 0 0
\(703\) 21.7060 + 37.5959i 0.818658 + 1.41796i
\(704\) 0 0
\(705\) 10.8868 18.8564i 0.410020 0.710175i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.25899 16.0370i 0.347729 0.602283i −0.638117 0.769939i \(-0.720286\pi\)
0.985846 + 0.167656i \(0.0536198\pi\)
\(710\) 0 0
\(711\) 0.989110 + 1.71319i 0.0370945 + 0.0642496i
\(712\) 0 0
\(713\) −11.7440 −0.439815
\(714\) 0 0
\(715\) 39.1860 1.46547
\(716\) 0 0
\(717\) −3.87349 6.70909i −0.144658 0.250555i
\(718\) 0 0
\(719\) 8.93697 15.4793i 0.333293 0.577280i −0.649863 0.760052i \(-0.725174\pi\)
0.983155 + 0.182772i \(0.0585069\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −7.88803 + 13.6625i −0.293359 + 0.508113i
\(724\) 0 0
\(725\) −2.29797 3.98020i −0.0853445 0.147821i
\(726\) 0 0
\(727\) 40.0663 1.48598 0.742988 0.669305i \(-0.233408\pi\)
0.742988 + 0.669305i \(0.233408\pi\)
\(728\) 0 0
\(729\) 9.51739 0.352496
\(730\) 0 0
\(731\) −5.15757 8.93317i −0.190760 0.330405i
\(732\) 0 0
\(733\) 1.12538 1.94921i 0.0415667 0.0719956i −0.844494 0.535566i \(-0.820098\pi\)
0.886060 + 0.463570i \(0.153432\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.66273 9.80813i 0.208589 0.361287i
\(738\) 0 0
\(739\) 16.0545 + 27.8072i 0.590575 + 1.02291i 0.994155 + 0.107962i \(0.0344324\pi\)
−0.403580 + 0.914944i \(0.632234\pi\)
\(740\) 0 0
\(741\) −48.9169 −1.79701
\(742\) 0 0
\(743\) −49.2743 −1.80770 −0.903849 0.427851i \(-0.859271\pi\)
−0.903849 + 0.427851i \(0.859271\pi\)
\(744\) 0 0
\(745\) 10.8678 + 18.8235i 0.398164 + 0.689640i
\(746\) 0 0
\(747\) 32.4770 56.2519i 1.18827 2.05815i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.7672 + 18.6494i −0.392902 + 0.680525i −0.992831 0.119528i \(-0.961862\pi\)
0.599929 + 0.800053i \(0.295195\pi\)
\(752\) 0 0
\(753\) −9.17978 15.8998i −0.334530 0.579423i
\(754\) 0 0
\(755\) −89.5344 −3.25849
\(756\) 0 0
\(757\) −8.03758 −0.292131 −0.146065 0.989275i \(-0.546661\pi\)
−0.146065 + 0.989275i \(0.546661\pi\)
\(758\) 0 0
\(759\) −7.64717 13.2453i −0.277575 0.480773i
\(760\) 0 0
\(761\) 15.5913 27.0048i 0.565182 0.978925i −0.431850 0.901945i \(-0.642139\pi\)
0.997033 0.0769793i \(-0.0245275\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 23.6497 40.9625i 0.855057 1.48100i
\(766\) 0 0
\(767\) 13.7105 + 23.7472i 0.495056 + 0.857462i
\(768\) 0 0
\(769\) 28.4420 1.02565 0.512823 0.858494i \(-0.328600\pi\)
0.512823 + 0.858494i \(0.328600\pi\)
\(770\) 0 0
\(771\) −1.36562 −0.0491815
\(772\) 0 0
\(773\) 8.93296 + 15.4723i 0.321296 + 0.556501i 0.980756 0.195239i \(-0.0625482\pi\)
−0.659460 + 0.751740i \(0.729215\pi\)
\(774\) 0 0
\(775\) 37.1110 64.2781i 1.33307 2.30894i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −17.1009 + 29.6196i −0.612702 + 1.06123i
\(780\) 0 0
\(781\) −10.8042 18.7135i −0.386605 0.669620i
\(782\) 0 0
\(783\) −5.05814 −0.180763
\(784\) 0 0
\(785\) 44.9111 1.60295
\(786\) 0 0
\(787\) −23.1168 40.0395i −0.824025 1.42725i −0.902662 0.430350i \(-0.858390\pi\)
0.0786370 0.996903i \(-0.474943\pi\)
\(788\) 0 0
\(789\) −33.8005 + 58.5442i −1.20333 + 2.08423i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.06819 + 13.9745i −0.286510 + 0.496250i
\(794\) 0 0
\(795\) 37.6448 + 65.2028i 1.33512 + 2.31250i
\(796\) 0 0
\(797\) 9.70433 0.343745 0.171873 0.985119i \(-0.445018\pi\)
0.171873 + 0.985119i \(0.445018\pi\)
\(798\) 0 0
\(799\) −2.89665 −0.102476
\(800\) 0 0
\(801\) −31.0302 53.7459i −1.09640 1.89902i
\(802\) 0 0
\(803\) 16.5782 28.7143i 0.585031 1.01330i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −31.4044 + 54.3941i −1.10549 + 1.91476i
\(808\) 0 0
\(809\) 23.0115 + 39.8571i 0.809041 + 1.40130i 0.913529 + 0.406773i \(0.133346\pi\)
−0.104489 + 0.994526i \(0.533321\pi\)
\(810\) 0 0
\(811\) −39.0194 −1.37016 −0.685078 0.728470i \(-0.740232\pi\)
−0.685078 + 0.728470i \(0.740232\pi\)
\(812\) 0 0
\(813\) 28.2832 0.991936
\(814\) 0 0
\(815\) −15.3418 26.5728i −0.537399 0.930803i
\(816\) 0 0
\(817\) −13.2595 + 22.9661i −0.463890 + 0.803481i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.3066 + 17.8515i −0.359702 + 0.623022i −0.987911 0.155022i \(-0.950455\pi\)
0.628209 + 0.778045i \(0.283788\pi\)
\(822\) 0 0
\(823\) 17.3427 + 30.0384i 0.604528 + 1.04707i 0.992126 + 0.125245i \(0.0399716\pi\)
−0.387598 + 0.921829i \(0.626695\pi\)
\(824\) 0 0
\(825\) 96.6603 3.36528
\(826\) 0 0
\(827\) 51.7310 1.79886 0.899432 0.437061i \(-0.143981\pi\)
0.899432 + 0.437061i \(0.143981\pi\)
\(828\) 0 0
\(829\) 20.8069 + 36.0386i 0.722652 + 1.25167i 0.959933 + 0.280230i \(0.0904106\pi\)
−0.237281 + 0.971441i \(0.576256\pi\)
\(830\) 0 0
\(831\) −28.0821 + 48.6396i −0.974157 + 1.68729i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −45.3657 + 78.5756i −1.56994 + 2.71922i
\(836\) 0 0
\(837\) −40.8431 70.7423i −1.41174 2.44521i
\(838\) 0 0
\(839\) −32.2174 −1.11227 −0.556133 0.831093i \(-0.687716\pi\)
−0.556133 + 0.831093i \(0.687716\pi\)
\(840\) 0 0
\(841\) −28.8336 −0.994263
\(842\) 0 0
\(843\) −3.44301 5.96347i −0.118584 0.205393i
\(844\) 0 0
\(845\) −0.520699 + 0.901877i −0.0179126 + 0.0310255i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −21.8651 + 37.8715i −0.750409 + 1.29975i
\(850\) 0 0
\(851\) 8.90041 + 15.4160i 0.305102 + 0.528452i
\(852\) 0 0
\(853\) 20.8951 0.715434 0.357717 0.933830i \(-0.383555\pi\)
0.357717 + 0.933830i \(0.383555\pi\)
\(854\) 0 0
\(855\) −121.601 −4.15866
\(856\) 0 0
\(857\) 9.97712 + 17.2809i 0.340812 + 0.590304i 0.984584 0.174914i \(-0.0559647\pi\)
−0.643772 + 0.765218i \(0.722631\pi\)
\(858\) 0 0
\(859\) −13.9738 + 24.2034i −0.476782 + 0.825810i −0.999646 0.0266059i \(-0.991530\pi\)
0.522864 + 0.852416i \(0.324863\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.30931 14.3922i 0.282852 0.489915i −0.689234 0.724539i \(-0.742053\pi\)
0.972086 + 0.234624i \(0.0753860\pi\)
\(864\) 0 0
\(865\) −8.30026 14.3765i −0.282217 0.488815i
\(866\) 0 0
\(867\) 44.5671 1.51358
\(868\) 0 0
\(869\) 0.776477 0.0263402
\(870\) 0 0
\(871\) −7.42649 12.8631i −0.251637 0.435848i
\(872\) 0 0
\(873\) 24.2806 42.0552i 0.821773 1.42335i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.80421 10.0532i 0.195994 0.339472i −0.751232 0.660038i \(-0.770540\pi\)
0.947226 + 0.320567i \(0.103873\pi\)
\(878\) 0 0
\(879\) −33.5998 58.1966i −1.13329 1.96292i
\(880\) 0 0
\(881\) −21.1358 −0.712084 −0.356042 0.934470i \(-0.615874\pi\)
−0.356042 + 0.934470i \(0.615874\pi\)
\(882\) 0 0
\(883\) −36.5352 −1.22951 −0.614753 0.788720i \(-0.710744\pi\)
−0.614753 + 0.788720i \(0.710744\pi\)
\(884\) 0 0
\(885\) 48.8274 + 84.5716i 1.64132 + 2.84284i
\(886\) 0 0
\(887\) −10.9644 + 18.9908i −0.368147 + 0.637649i −0.989276 0.146059i \(-0.953341\pi\)
0.621129 + 0.783708i \(0.286674\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 24.8797 43.0929i 0.833502 1.44367i
\(892\) 0 0
\(893\) 3.72346 + 6.44922i 0.124601 + 0.215815i
\(894\) 0 0
\(895\) 5.38787 0.180097
\(896\) 0 0
\(897\) −20.0580 −0.669718
\(898\) 0 0
\(899\) 1.34349 + 2.32699i 0.0448078 + 0.0776094i
\(900\) 0 0
\(901\) 5.00809 8.67426i 0.166844 0.288982i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.4654 25.0548i 0.480846 0.832849i
\(906\) 0 0
\(907\) −15.7479 27.2761i −0.522900 0.905689i −0.999645 0.0266474i \(-0.991517\pi\)
0.476745 0.879042i \(-0.341816\pi\)
\(908\) 0 0
\(909\) −7.94289 −0.263449
\(910\) 0 0
\(911\) 42.3039 1.40159 0.700796 0.713362i \(-0.252828\pi\)
0.700796 + 0.713362i \(0.252828\pi\)
\(912\) 0 0
\(913\) −12.7477 22.0796i −0.421886 0.730728i
\(914\) 0 0
\(915\) −28.7335 + 49.7678i −0.949900 + 1.64527i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 9.71438 16.8258i 0.320448 0.555032i −0.660133 0.751149i \(-0.729500\pi\)
0.980580 + 0.196117i \(0.0628333\pi\)
\(920\) 0 0
\(921\) 1.10701 + 1.91740i 0.0364773 + 0.0631806i
\(922\) 0 0
\(923\) −28.3388 −0.932782
\(924\) 0 0
\(925\) −112.501 −3.69902
\(926\) 0 0
\(927\) 28.6887 + 49.6903i 0.942261 + 1.63204i
\(928\) 0 0
\(929\) −28.1847 + 48.8173i −0.924710 + 1.60165i −0.132684 + 0.991158i \(0.542360\pi\)
−0.792026 + 0.610487i \(0.790974\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −14.4796 + 25.0794i −0.474041 + 0.821063i
\(934\) 0 0
\(935\) −9.28282 16.0783i −0.303581 0.525817i
\(936\) 0 0
\(937\) 54.4190 1.77779 0.888895 0.458111i \(-0.151474\pi\)
0.888895 + 0.458111i \(0.151474\pi\)
\(938\) 0 0
\(939\) −62.7075 −2.04638
\(940\) 0 0
\(941\) −12.6574 21.9233i −0.412620 0.714679i 0.582555 0.812791i \(-0.302053\pi\)
−0.995175 + 0.0981123i \(0.968720\pi\)
\(942\) 0 0
\(943\) −7.01210 + 12.1453i −0.228345 + 0.395506i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.8684 + 48.2695i −0.905601 + 1.56855i −0.0854923 + 0.996339i \(0.527246\pi\)
−0.820109 + 0.572208i \(0.806087\pi\)
\(948\) 0 0
\(949\) −21.7418 37.6579i −0.705768 1.22243i
\(950\) 0 0
\(951\) −16.1638 −0.524148
\(952\) 0 0
\(953\) −14.4928 −0.469468 −0.234734 0.972060i \(-0.575422\pi\)
−0.234734 + 0.972060i \(0.575422\pi\)
\(954\) 0 0
\(955\) −7.52111 13.0269i −0.243377 0.421542i
\(956\) 0 0
\(957\) −1.74964 + 3.03047i −0.0565579 + 0.0979612i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.19656 + 10.7328i −0.199889 + 0.346218i
\(962\) 0 0
\(963\) 55.0353 + 95.3239i 1.77349 + 3.07177i
\(964\) 0 0
\(965\) 29.3760 0.945647
\(966\) 0 0
\(967\) 0.662798 0.0213141 0.0106571 0.999943i \(-0.496608\pi\)
0.0106571 + 0.999943i \(0.496608\pi\)
\(968\) 0 0
\(969\) 11.5880 + 20.0710i 0.372259 + 0.644772i
\(970\) 0 0
\(971\) −15.3667 + 26.6158i −0.493139 + 0.854143i −0.999969 0.00790385i \(-0.997484\pi\)
0.506829 + 0.862046i \(0.330817\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 63.3835 109.783i 2.02990 3.51588i
\(976\) 0 0
\(977\) 0.416537 + 0.721464i 0.0133262 + 0.0230817i 0.872612 0.488415i \(-0.162425\pi\)
−0.859285 + 0.511496i \(0.829091\pi\)
\(978\) 0 0
\(979\) −24.3595 −0.778533
\(980\) 0 0
\(981\) 92.7539 2.96141
\(982\) 0 0
\(983\) 24.1163 + 41.7706i 0.769190 + 1.33228i 0.938003 + 0.346628i \(0.112673\pi\)
−0.168812 + 0.985648i \(0.553993\pi\)
\(984\) 0 0
\(985\) 49.1052 85.0527i 1.56462 2.71000i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.43695 + 9.41707i −0.172885 + 0.299446i
\(990\) 0 0
\(991\) −9.28566 16.0832i −0.294969 0.510901i 0.680009 0.733204i \(-0.261976\pi\)
−0.974978 + 0.222303i \(0.928643\pi\)
\(992\) 0 0
\(993\) 19.6863 0.624727
\(994\) 0 0
\(995\) −71.5886 −2.26951
\(996\) 0 0
\(997\) 17.9419 + 31.0762i 0.568225 + 0.984195i 0.996742 + 0.0806607i \(0.0257030\pi\)
−0.428517 + 0.903534i \(0.640964\pi\)
\(998\) 0 0
\(999\) −61.9075 + 107.227i −1.95867 + 3.39251i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1372.2.e.d.1353.5 12
7.2 even 3 1372.2.a.a.1.2 6
7.3 odd 6 1372.2.e.a.361.2 12
7.4 even 3 inner 1372.2.e.d.361.5 12
7.5 odd 6 1372.2.a.d.1.5 yes 6
7.6 odd 2 1372.2.e.a.1353.2 12
28.19 even 6 5488.2.a.g.1.2 6
28.23 odd 6 5488.2.a.q.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1372.2.a.a.1.2 6 7.2 even 3
1372.2.a.d.1.5 yes 6 7.5 odd 6
1372.2.e.a.361.2 12 7.3 odd 6
1372.2.e.a.1353.2 12 7.6 odd 2
1372.2.e.d.361.5 12 7.4 even 3 inner
1372.2.e.d.1353.5 12 1.1 even 1 trivial
5488.2.a.g.1.2 6 28.19 even 6
5488.2.a.q.1.5 6 28.23 odd 6