Properties

Label 1372.2.e.d.1353.4
Level $1372$
Weight $2$
Character 1372.1353
Analytic conductor $10.955$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1372,2,Mod(361,1372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1372.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1372, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1372 = 2^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1372.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,7,0,7,0,0,0,-9,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9554751573\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 10 x^{10} - 7 x^{9} + 68 x^{8} - 44 x^{7} + 225 x^{6} - 77 x^{5} + 490 x^{4} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1353.4
Root \(-1.15344 + 1.99781i\) of defining polynomial
Character \(\chi\) \(=\) 1372.1353
Dual form 1372.2.e.d.361.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02995 + 1.78392i) q^{3} +(1.41759 - 2.45533i) q^{5} +(-0.621582 + 1.07661i) q^{9} +(-3.23925 - 5.61055i) q^{11} -1.96477 q^{13} +5.84016 q^{15} +(-1.39258 - 2.41201i) q^{17} +(0.151939 - 0.263166i) q^{19} +(2.69518 - 4.66819i) q^{23} +(-1.51911 - 2.63118i) q^{25} +3.61890 q^{27} -2.13019 q^{29} +(-3.28970 - 5.69793i) q^{31} +(6.67252 - 11.5571i) q^{33} +(-3.87278 + 6.70785i) q^{37} +(-2.02361 - 3.50499i) q^{39} +6.51081 q^{41} -10.6807 q^{43} +(1.76229 + 3.05238i) q^{45} +(5.48283 - 9.49654i) q^{47} +(2.86856 - 4.96849i) q^{51} +(4.43366 + 7.67932i) q^{53} -18.3677 q^{55} +0.625956 q^{57} +(5.91250 + 10.2408i) q^{59} +(4.80658 - 8.32525i) q^{61} +(-2.78524 + 4.82417i) q^{65} +(1.02193 + 1.77003i) q^{67} +11.1036 q^{69} -5.91185 q^{71} +(1.56711 + 2.71431i) q^{73} +(3.12921 - 5.41995i) q^{75} +(-1.40716 + 2.43728i) q^{79} +(5.59202 + 9.68566i) q^{81} -0.482973 q^{83} -7.89640 q^{85} +(-2.19398 - 3.80009i) q^{87} +(-7.00477 + 12.1326i) q^{89} +(6.77644 - 11.7371i) q^{93} +(-0.430773 - 0.746121i) q^{95} +5.17392 q^{97} +8.05385 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 7 q^{3} + 7 q^{5} - 9 q^{9} - 3 q^{11} - 14 q^{13} + 22 q^{15} + 7 q^{19} - 11 q^{23} - 3 q^{25} - 56 q^{27} + 12 q^{29} + 14 q^{31} + 6 q^{37} - 5 q^{39} - 6 q^{43} + 21 q^{45} + 42 q^{47} + 17 q^{51}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1372\mathbb{Z}\right)^\times\).

\(n\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.02995 + 1.78392i 0.594640 + 1.02995i 0.993598 + 0.112978i \(0.0360388\pi\)
−0.398957 + 0.916969i \(0.630628\pi\)
\(4\) 0 0
\(5\) 1.41759 2.45533i 0.633965 1.09806i −0.352769 0.935711i \(-0.614760\pi\)
0.986733 0.162349i \(-0.0519069\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.621582 + 1.07661i −0.207194 + 0.358870i
\(10\) 0 0
\(11\) −3.23925 5.61055i −0.976672 1.69165i −0.674303 0.738454i \(-0.735556\pi\)
−0.302369 0.953191i \(-0.597777\pi\)
\(12\) 0 0
\(13\) −1.96477 −0.544929 −0.272465 0.962166i \(-0.587839\pi\)
−0.272465 + 0.962166i \(0.587839\pi\)
\(14\) 0 0
\(15\) 5.84016 1.50792
\(16\) 0 0
\(17\) −1.39258 2.41201i −0.337750 0.584999i 0.646260 0.763118i \(-0.276332\pi\)
−0.984009 + 0.178118i \(0.942999\pi\)
\(18\) 0 0
\(19\) 0.151939 0.263166i 0.0348572 0.0603744i −0.848071 0.529883i \(-0.822236\pi\)
0.882928 + 0.469509i \(0.155569\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.69518 4.66819i 0.561984 0.973385i −0.435339 0.900267i \(-0.643371\pi\)
0.997323 0.0731186i \(-0.0232952\pi\)
\(24\) 0 0
\(25\) −1.51911 2.63118i −0.303823 0.526236i
\(26\) 0 0
\(27\) 3.61890 0.696457
\(28\) 0 0
\(29\) −2.13019 −0.395566 −0.197783 0.980246i \(-0.563374\pi\)
−0.197783 + 0.980246i \(0.563374\pi\)
\(30\) 0 0
\(31\) −3.28970 5.69793i −0.590848 1.02338i −0.994118 0.108298i \(-0.965460\pi\)
0.403271 0.915081i \(-0.367873\pi\)
\(32\) 0 0
\(33\) 6.67252 11.5571i 1.16154 2.01184i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.87278 + 6.70785i −0.636681 + 1.10276i 0.349475 + 0.936946i \(0.386360\pi\)
−0.986156 + 0.165818i \(0.946973\pi\)
\(38\) 0 0
\(39\) −2.02361 3.50499i −0.324037 0.561248i
\(40\) 0 0
\(41\) 6.51081 1.01682 0.508409 0.861116i \(-0.330234\pi\)
0.508409 + 0.861116i \(0.330234\pi\)
\(42\) 0 0
\(43\) −10.6807 −1.62880 −0.814399 0.580305i \(-0.802933\pi\)
−0.814399 + 0.580305i \(0.802933\pi\)
\(44\) 0 0
\(45\) 1.76229 + 3.05238i 0.262707 + 0.455022i
\(46\) 0 0
\(47\) 5.48283 9.49654i 0.799753 1.38521i −0.120024 0.992771i \(-0.538297\pi\)
0.919777 0.392441i \(-0.128369\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.86856 4.96849i 0.401679 0.695728i
\(52\) 0 0
\(53\) 4.43366 + 7.67932i 0.609009 + 1.05484i 0.991404 + 0.130836i \(0.0417662\pi\)
−0.382395 + 0.923999i \(0.624901\pi\)
\(54\) 0 0
\(55\) −18.3677 −2.47670
\(56\) 0 0
\(57\) 0.625956 0.0829099
\(58\) 0 0
\(59\) 5.91250 + 10.2408i 0.769742 + 1.33323i 0.937703 + 0.347439i \(0.112949\pi\)
−0.167960 + 0.985794i \(0.553718\pi\)
\(60\) 0 0
\(61\) 4.80658 8.32525i 0.615420 1.06594i −0.374891 0.927069i \(-0.622320\pi\)
0.990311 0.138870i \(-0.0443470\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.78524 + 4.82417i −0.345466 + 0.598365i
\(66\) 0 0
\(67\) 1.02193 + 1.77003i 0.124848 + 0.216243i 0.921674 0.387966i \(-0.126822\pi\)
−0.796825 + 0.604210i \(0.793489\pi\)
\(68\) 0 0
\(69\) 11.1036 1.33671
\(70\) 0 0
\(71\) −5.91185 −0.701608 −0.350804 0.936449i \(-0.614092\pi\)
−0.350804 + 0.936449i \(0.614092\pi\)
\(72\) 0 0
\(73\) 1.56711 + 2.71431i 0.183416 + 0.317686i 0.943042 0.332675i \(-0.107951\pi\)
−0.759626 + 0.650361i \(0.774618\pi\)
\(74\) 0 0
\(75\) 3.12921 5.41995i 0.361330 0.625842i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.40716 + 2.43728i −0.158318 + 0.274215i −0.934262 0.356586i \(-0.883941\pi\)
0.775944 + 0.630802i \(0.217274\pi\)
\(80\) 0 0
\(81\) 5.59202 + 9.68566i 0.621335 + 1.07618i
\(82\) 0 0
\(83\) −0.482973 −0.0530131 −0.0265066 0.999649i \(-0.508438\pi\)
−0.0265066 + 0.999649i \(0.508438\pi\)
\(84\) 0 0
\(85\) −7.89640 −0.856485
\(86\) 0 0
\(87\) −2.19398 3.80009i −0.235219 0.407412i
\(88\) 0 0
\(89\) −7.00477 + 12.1326i −0.742504 + 1.28606i 0.208847 + 0.977948i \(0.433029\pi\)
−0.951352 + 0.308107i \(0.900304\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.77644 11.7371i 0.702684 1.21708i
\(94\) 0 0
\(95\) −0.430773 0.746121i −0.0441964 0.0765504i
\(96\) 0 0
\(97\) 5.17392 0.525332 0.262666 0.964887i \(-0.415398\pi\)
0.262666 + 0.964887i \(0.415398\pi\)
\(98\) 0 0
\(99\) 8.05385 0.809442
\(100\) 0 0
\(101\) −0.397737 0.688900i −0.0395763 0.0685481i 0.845559 0.533882i \(-0.179267\pi\)
−0.885135 + 0.465334i \(0.845934\pi\)
\(102\) 0 0
\(103\) 8.05028 13.9435i 0.793218 1.37389i −0.130747 0.991416i \(-0.541737\pi\)
0.923965 0.382478i \(-0.124929\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.07751 7.06245i 0.394188 0.682753i −0.598809 0.800892i \(-0.704359\pi\)
0.992997 + 0.118138i \(0.0376927\pi\)
\(108\) 0 0
\(109\) 6.98060 + 12.0907i 0.668620 + 1.15808i 0.978290 + 0.207240i \(0.0664480\pi\)
−0.309670 + 0.950844i \(0.600219\pi\)
\(110\) 0 0
\(111\) −15.9550 −1.51438
\(112\) 0 0
\(113\) 5.53024 0.520241 0.260120 0.965576i \(-0.416238\pi\)
0.260120 + 0.965576i \(0.416238\pi\)
\(114\) 0 0
\(115\) −7.64132 13.2351i −0.712556 1.23418i
\(116\) 0 0
\(117\) 1.22127 2.11529i 0.112906 0.195559i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −15.4855 + 26.8217i −1.40778 + 2.43834i
\(122\) 0 0
\(123\) 6.70579 + 11.6148i 0.604641 + 1.04727i
\(124\) 0 0
\(125\) 5.56198 0.497478
\(126\) 0 0
\(127\) 16.6326 1.47590 0.737952 0.674854i \(-0.235793\pi\)
0.737952 + 0.674854i \(0.235793\pi\)
\(128\) 0 0
\(129\) −11.0006 19.0536i −0.968549 1.67758i
\(130\) 0 0
\(131\) 8.75856 15.1703i 0.765239 1.32543i −0.174881 0.984590i \(-0.555954\pi\)
0.940120 0.340844i \(-0.110713\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.13011 8.88560i 0.441529 0.764751i
\(136\) 0 0
\(137\) 0.278941 + 0.483140i 0.0238315 + 0.0412774i 0.877695 0.479219i \(-0.159080\pi\)
−0.853864 + 0.520497i \(0.825747\pi\)
\(138\) 0 0
\(139\) 8.92595 0.757090 0.378545 0.925583i \(-0.376425\pi\)
0.378545 + 0.925583i \(0.376425\pi\)
\(140\) 0 0
\(141\) 22.5881 1.90226
\(142\) 0 0
\(143\) 6.36439 + 11.0234i 0.532217 + 0.921827i
\(144\) 0 0
\(145\) −3.01973 + 5.23032i −0.250775 + 0.434355i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.09490 12.2887i 0.581237 1.00673i −0.414096 0.910233i \(-0.635902\pi\)
0.995333 0.0964985i \(-0.0307643\pi\)
\(150\) 0 0
\(151\) 3.43906 + 5.95662i 0.279866 + 0.484743i 0.971351 0.237648i \(-0.0763765\pi\)
−0.691485 + 0.722391i \(0.743043\pi\)
\(152\) 0 0
\(153\) 3.46240 0.279919
\(154\) 0 0
\(155\) −18.6538 −1.49831
\(156\) 0 0
\(157\) 10.6540 + 18.4533i 0.850281 + 1.47273i 0.880954 + 0.473201i \(0.156902\pi\)
−0.0306731 + 0.999529i \(0.509765\pi\)
\(158\) 0 0
\(159\) −9.13286 + 15.8186i −0.724283 + 1.25449i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.45931 2.52760i 0.114302 0.197977i −0.803198 0.595711i \(-0.796870\pi\)
0.917501 + 0.397735i \(0.130204\pi\)
\(164\) 0 0
\(165\) −18.9178 32.7665i −1.47275 2.55087i
\(166\) 0 0
\(167\) −9.59517 −0.742497 −0.371248 0.928534i \(-0.621070\pi\)
−0.371248 + 0.928534i \(0.621070\pi\)
\(168\) 0 0
\(169\) −9.13968 −0.703052
\(170\) 0 0
\(171\) 0.188885 + 0.327158i 0.0144444 + 0.0250184i
\(172\) 0 0
\(173\) 0.553059 0.957926i 0.0420483 0.0728298i −0.844235 0.535973i \(-0.819945\pi\)
0.886284 + 0.463143i \(0.153278\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.1791 + 21.0949i −0.915439 + 1.58559i
\(178\) 0 0
\(179\) 2.14925 + 3.72262i 0.160643 + 0.278242i 0.935099 0.354386i \(-0.115310\pi\)
−0.774457 + 0.632627i \(0.781977\pi\)
\(180\) 0 0
\(181\) 16.0928 1.19617 0.598086 0.801432i \(-0.295928\pi\)
0.598086 + 0.801432i \(0.295928\pi\)
\(182\) 0 0
\(183\) 19.8021 1.46381
\(184\) 0 0
\(185\) 10.9800 + 19.0179i 0.807267 + 1.39823i
\(186\) 0 0
\(187\) −9.02182 + 15.6263i −0.659741 + 1.14271i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.18116 + 3.77788i −0.157823 + 0.273358i −0.934083 0.357055i \(-0.883781\pi\)
0.776260 + 0.630413i \(0.217114\pi\)
\(192\) 0 0
\(193\) −10.3793 17.9775i −0.747119 1.29405i −0.949198 0.314679i \(-0.898103\pi\)
0.202079 0.979369i \(-0.435230\pi\)
\(194\) 0 0
\(195\) −11.4746 −0.821712
\(196\) 0 0
\(197\) −5.03072 −0.358424 −0.179212 0.983811i \(-0.557355\pi\)
−0.179212 + 0.983811i \(0.557355\pi\)
\(198\) 0 0
\(199\) −1.36569 2.36545i −0.0968115 0.167682i 0.813552 0.581493i \(-0.197531\pi\)
−0.910363 + 0.413810i \(0.864198\pi\)
\(200\) 0 0
\(201\) −2.10506 + 3.64607i −0.148479 + 0.257174i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 9.22965 15.9862i 0.644626 1.11653i
\(206\) 0 0
\(207\) 3.35055 + 5.80333i 0.232879 + 0.403359i
\(208\) 0 0
\(209\) −1.96867 −0.136176
\(210\) 0 0
\(211\) −4.23961 −0.291867 −0.145933 0.989294i \(-0.546619\pi\)
−0.145933 + 0.989294i \(0.546619\pi\)
\(212\) 0 0
\(213\) −6.08890 10.5463i −0.417204 0.722619i
\(214\) 0 0
\(215\) −15.1409 + 26.2248i −1.03260 + 1.78852i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.22808 + 5.59119i −0.218133 + 0.377818i
\(220\) 0 0
\(221\) 2.73609 + 4.73905i 0.184050 + 0.318783i
\(222\) 0 0
\(223\) 0.0535924 0.00358881 0.00179441 0.999998i \(-0.499429\pi\)
0.00179441 + 0.999998i \(0.499429\pi\)
\(224\) 0 0
\(225\) 3.77701 0.251801
\(226\) 0 0
\(227\) 7.21238 + 12.4922i 0.478702 + 0.829136i 0.999702 0.0244204i \(-0.00777404\pi\)
−0.521000 + 0.853557i \(0.674441\pi\)
\(228\) 0 0
\(229\) −7.13610 + 12.3601i −0.471567 + 0.816778i −0.999471 0.0325264i \(-0.989645\pi\)
0.527904 + 0.849304i \(0.322978\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.48877 14.7030i 0.556118 0.963224i −0.441698 0.897164i \(-0.645624\pi\)
0.997816 0.0660604i \(-0.0210430\pi\)
\(234\) 0 0
\(235\) −15.5448 26.9244i −1.01403 1.75635i
\(236\) 0 0
\(237\) −5.79722 −0.376570
\(238\) 0 0
\(239\) −13.7721 −0.890846 −0.445423 0.895320i \(-0.646947\pi\)
−0.445423 + 0.895320i \(0.646947\pi\)
\(240\) 0 0
\(241\) −12.2391 21.1987i −0.788388 1.36553i −0.926954 0.375176i \(-0.877582\pi\)
0.138565 0.990353i \(-0.455751\pi\)
\(242\) 0 0
\(243\) −6.09062 + 10.5493i −0.390713 + 0.676735i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.298525 + 0.517060i −0.0189947 + 0.0328998i
\(248\) 0 0
\(249\) −0.497436 0.861585i −0.0315237 0.0546007i
\(250\) 0 0
\(251\) −26.4105 −1.66702 −0.833509 0.552505i \(-0.813672\pi\)
−0.833509 + 0.552505i \(0.813672\pi\)
\(252\) 0 0
\(253\) −34.9215 −2.19550
\(254\) 0 0
\(255\) −8.13288 14.0866i −0.509301 0.882134i
\(256\) 0 0
\(257\) 4.98567 8.63544i 0.310998 0.538664i −0.667581 0.744537i \(-0.732670\pi\)
0.978579 + 0.205873i \(0.0660035\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.32409 2.29338i 0.0819589 0.141957i
\(262\) 0 0
\(263\) −7.37665 12.7767i −0.454864 0.787847i 0.543817 0.839204i \(-0.316979\pi\)
−0.998680 + 0.0513569i \(0.983645\pi\)
\(264\) 0 0
\(265\) 25.1404 1.54436
\(266\) 0 0
\(267\) −28.8582 −1.76609
\(268\) 0 0
\(269\) 10.2899 + 17.8226i 0.627384 + 1.08666i 0.988075 + 0.153976i \(0.0492078\pi\)
−0.360690 + 0.932686i \(0.617459\pi\)
\(270\) 0 0
\(271\) −3.93814 + 6.82105i −0.239225 + 0.414350i −0.960492 0.278307i \(-0.910227\pi\)
0.721267 + 0.692657i \(0.243560\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.84159 + 17.0461i −0.593470 + 1.02792i
\(276\) 0 0
\(277\) −1.01357 1.75556i −0.0608998 0.105482i 0.833968 0.551813i \(-0.186064\pi\)
−0.894868 + 0.446331i \(0.852730\pi\)
\(278\) 0 0
\(279\) 8.17928 0.489680
\(280\) 0 0
\(281\) −9.12693 −0.544467 −0.272233 0.962231i \(-0.587762\pi\)
−0.272233 + 0.962231i \(0.587762\pi\)
\(282\) 0 0
\(283\) −15.3211 26.5370i −0.910746 1.57746i −0.813013 0.582246i \(-0.802174\pi\)
−0.0977331 0.995213i \(-0.531159\pi\)
\(284\) 0 0
\(285\) 0.887348 1.53693i 0.0525619 0.0910399i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.62146 8.00460i 0.271850 0.470859i
\(290\) 0 0
\(291\) 5.32886 + 9.22986i 0.312383 + 0.541064i
\(292\) 0 0
\(293\) −2.54763 −0.148834 −0.0744170 0.997227i \(-0.523710\pi\)
−0.0744170 + 0.997227i \(0.523710\pi\)
\(294\) 0 0
\(295\) 33.5260 1.95196
\(296\) 0 0
\(297\) −11.7225 20.3040i −0.680210 1.17816i
\(298\) 0 0
\(299\) −5.29541 + 9.17192i −0.306242 + 0.530426i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.819296 1.41906i 0.0470673 0.0815230i
\(304\) 0 0
\(305\) −13.6275 23.6036i −0.780309 1.35154i
\(306\) 0 0
\(307\) −3.66780 −0.209332 −0.104666 0.994507i \(-0.533377\pi\)
−0.104666 + 0.994507i \(0.533377\pi\)
\(308\) 0 0
\(309\) 33.1655 1.88672
\(310\) 0 0
\(311\) 14.6672 + 25.4043i 0.831699 + 1.44054i 0.896690 + 0.442659i \(0.145965\pi\)
−0.0649916 + 0.997886i \(0.520702\pi\)
\(312\) 0 0
\(313\) −5.55183 + 9.61605i −0.313808 + 0.543531i −0.979183 0.202977i \(-0.934938\pi\)
0.665375 + 0.746509i \(0.268272\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.11524 + 10.5919i −0.343466 + 0.594900i −0.985074 0.172132i \(-0.944934\pi\)
0.641608 + 0.767033i \(0.278268\pi\)
\(318\) 0 0
\(319\) 6.90022 + 11.9515i 0.386338 + 0.669157i
\(320\) 0 0
\(321\) 16.7985 0.937599
\(322\) 0 0
\(323\) −0.846346 −0.0470920
\(324\) 0 0
\(325\) 2.98471 + 5.16967i 0.165562 + 0.286761i
\(326\) 0 0
\(327\) −14.3793 + 24.9057i −0.795177 + 1.37729i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.4277 + 23.2574i −0.738052 + 1.27834i 0.215320 + 0.976544i \(0.430921\pi\)
−0.953371 + 0.301799i \(0.902413\pi\)
\(332\) 0 0
\(333\) −4.81450 8.33896i −0.263833 0.456972i
\(334\) 0 0
\(335\) 5.79468 0.316597
\(336\) 0 0
\(337\) −23.9447 −1.30435 −0.652177 0.758067i \(-0.726144\pi\)
−0.652177 + 0.758067i \(0.726144\pi\)
\(338\) 0 0
\(339\) 5.69585 + 9.86550i 0.309356 + 0.535821i
\(340\) 0 0
\(341\) −21.3124 + 36.9141i −1.15413 + 1.99901i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 15.7403 27.2630i 0.847429 1.46779i
\(346\) 0 0
\(347\) 16.2626 + 28.1677i 0.873022 + 1.51212i 0.858855 + 0.512219i \(0.171176\pi\)
0.0141675 + 0.999900i \(0.495490\pi\)
\(348\) 0 0
\(349\) 29.3997 1.57373 0.786864 0.617126i \(-0.211703\pi\)
0.786864 + 0.617126i \(0.211703\pi\)
\(350\) 0 0
\(351\) −7.11030 −0.379520
\(352\) 0 0
\(353\) −3.32940 5.76669i −0.177206 0.306930i 0.763716 0.645552i \(-0.223373\pi\)
−0.940923 + 0.338622i \(0.890039\pi\)
\(354\) 0 0
\(355\) −8.38057 + 14.5156i −0.444795 + 0.770407i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.52828 + 16.5035i −0.502883 + 0.871019i 0.497111 + 0.867687i \(0.334394\pi\)
−0.999994 + 0.00333235i \(0.998939\pi\)
\(360\) 0 0
\(361\) 9.45383 + 16.3745i 0.497570 + 0.861816i
\(362\) 0 0
\(363\) −63.7971 −3.34848
\(364\) 0 0
\(365\) 8.88606 0.465117
\(366\) 0 0
\(367\) 8.17563 + 14.1606i 0.426765 + 0.739178i 0.996583 0.0825925i \(-0.0263200\pi\)
−0.569819 + 0.821770i \(0.692987\pi\)
\(368\) 0 0
\(369\) −4.04700 + 7.00961i −0.210678 + 0.364906i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.9845 25.9540i 0.775870 1.34385i −0.158434 0.987370i \(-0.550645\pi\)
0.934304 0.356477i \(-0.116022\pi\)
\(374\) 0 0
\(375\) 5.72854 + 9.92212i 0.295821 + 0.512376i
\(376\) 0 0
\(377\) 4.18533 0.215555
\(378\) 0 0
\(379\) −12.4996 −0.642062 −0.321031 0.947069i \(-0.604029\pi\)
−0.321031 + 0.947069i \(0.604029\pi\)
\(380\) 0 0
\(381\) 17.1307 + 29.6712i 0.877631 + 1.52010i
\(382\) 0 0
\(383\) 11.1435 19.3011i 0.569405 0.986238i −0.427220 0.904148i \(-0.640507\pi\)
0.996625 0.0820906i \(-0.0261597\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.63896 11.4990i 0.337477 0.584528i
\(388\) 0 0
\(389\) 0.289492 + 0.501416i 0.0146779 + 0.0254228i 0.873271 0.487235i \(-0.161994\pi\)
−0.858593 + 0.512658i \(0.828661\pi\)
\(390\) 0 0
\(391\) −15.0130 −0.759240
\(392\) 0 0
\(393\) 36.0834 1.82017
\(394\) 0 0
\(395\) 3.98956 + 6.91012i 0.200736 + 0.347686i
\(396\) 0 0
\(397\) −0.551375 + 0.955009i −0.0276727 + 0.0479305i −0.879530 0.475843i \(-0.842143\pi\)
0.851857 + 0.523774i \(0.175476\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.70956 + 8.15720i −0.235184 + 0.407351i −0.959326 0.282300i \(-0.908903\pi\)
0.724142 + 0.689651i \(0.242236\pi\)
\(402\) 0 0
\(403\) 6.46351 + 11.1951i 0.321970 + 0.557669i
\(404\) 0 0
\(405\) 31.7087 1.57562
\(406\) 0 0
\(407\) 50.1797 2.48731
\(408\) 0 0
\(409\) −6.97808 12.0864i −0.345044 0.597633i 0.640318 0.768110i \(-0.278803\pi\)
−0.985362 + 0.170477i \(0.945469\pi\)
\(410\) 0 0
\(411\) −0.574589 + 0.995217i −0.0283424 + 0.0490904i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.684656 + 1.18586i −0.0336085 + 0.0582116i
\(416\) 0 0
\(417\) 9.19326 + 15.9232i 0.450196 + 0.779762i
\(418\) 0 0
\(419\) 8.82670 0.431212 0.215606 0.976480i \(-0.430827\pi\)
0.215606 + 0.976480i \(0.430827\pi\)
\(420\) 0 0
\(421\) 15.4458 0.752783 0.376392 0.926461i \(-0.377165\pi\)
0.376392 + 0.926461i \(0.377165\pi\)
\(422\) 0 0
\(423\) 6.81605 + 11.8058i 0.331408 + 0.574015i
\(424\) 0 0
\(425\) −4.23096 + 7.32824i −0.205232 + 0.355472i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −13.1100 + 22.7071i −0.632955 + 1.09631i
\(430\) 0 0
\(431\) −5.50396 9.53315i −0.265117 0.459195i 0.702478 0.711706i \(-0.252077\pi\)
−0.967594 + 0.252510i \(0.918744\pi\)
\(432\) 0 0
\(433\) −32.2767 −1.55112 −0.775559 0.631274i \(-0.782532\pi\)
−0.775559 + 0.631274i \(0.782532\pi\)
\(434\) 0 0
\(435\) −12.4406 −0.596483
\(436\) 0 0
\(437\) −0.819006 1.41856i −0.0391783 0.0678589i
\(438\) 0 0
\(439\) 14.6753 25.4184i 0.700415 1.21315i −0.267906 0.963445i \(-0.586332\pi\)
0.968321 0.249710i \(-0.0803351\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.1070 20.9699i 0.575221 0.996311i −0.420797 0.907155i \(-0.638250\pi\)
0.996018 0.0891564i \(-0.0284171\pi\)
\(444\) 0 0
\(445\) 19.8598 + 34.3981i 0.941443 + 1.63063i
\(446\) 0 0
\(447\) 29.2295 1.38251
\(448\) 0 0
\(449\) 10.1820 0.480517 0.240259 0.970709i \(-0.422768\pi\)
0.240259 + 0.970709i \(0.422768\pi\)
\(450\) 0 0
\(451\) −21.0902 36.5292i −0.993097 1.72009i
\(452\) 0 0
\(453\) −7.08409 + 12.2700i −0.332840 + 0.576495i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.63503 11.4922i 0.310373 0.537583i −0.668070 0.744099i \(-0.732879\pi\)
0.978443 + 0.206516i \(0.0662126\pi\)
\(458\) 0 0
\(459\) −5.03959 8.72883i −0.235228 0.407427i
\(460\) 0 0
\(461\) −0.360129 −0.0167729 −0.00838643 0.999965i \(-0.502670\pi\)
−0.00838643 + 0.999965i \(0.502670\pi\)
\(462\) 0 0
\(463\) −4.44765 −0.206700 −0.103350 0.994645i \(-0.532956\pi\)
−0.103350 + 0.994645i \(0.532956\pi\)
\(464\) 0 0
\(465\) −19.2124 33.2768i −0.890954 1.54318i
\(466\) 0 0
\(467\) 8.52427 14.7645i 0.394456 0.683218i −0.598576 0.801066i \(-0.704266\pi\)
0.993032 + 0.117849i \(0.0375997\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −21.9461 + 38.0118i −1.01122 + 1.75149i
\(472\) 0 0
\(473\) 34.5977 + 59.9249i 1.59080 + 2.75535i
\(474\) 0 0
\(475\) −0.923249 −0.0423616
\(476\) 0 0
\(477\) −11.0235 −0.504732
\(478\) 0 0
\(479\) −2.55713 4.42908i −0.116838 0.202370i 0.801675 0.597760i \(-0.203943\pi\)
−0.918513 + 0.395390i \(0.870609\pi\)
\(480\) 0 0
\(481\) 7.60912 13.1794i 0.346946 0.600928i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.33449 12.7037i 0.333042 0.576845i
\(486\) 0 0
\(487\) −10.4819 18.1552i −0.474982 0.822693i 0.524608 0.851344i \(-0.324212\pi\)
−0.999589 + 0.0286516i \(0.990879\pi\)
\(488\) 0 0
\(489\) 6.01205 0.271874
\(490\) 0 0
\(491\) −25.0780 −1.13175 −0.565877 0.824489i \(-0.691462\pi\)
−0.565877 + 0.824489i \(0.691462\pi\)
\(492\) 0 0
\(493\) 2.96645 + 5.13804i 0.133602 + 0.231406i
\(494\) 0 0
\(495\) 11.4170 19.7749i 0.513158 0.888815i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.40055 16.2822i 0.420827 0.728893i −0.575194 0.818017i \(-0.695073\pi\)
0.996021 + 0.0891241i \(0.0284068\pi\)
\(500\) 0 0
\(501\) −9.88252 17.1170i −0.441519 0.764732i
\(502\) 0 0
\(503\) 7.64963 0.341080 0.170540 0.985351i \(-0.445449\pi\)
0.170540 + 0.985351i \(0.445449\pi\)
\(504\) 0 0
\(505\) −2.25531 −0.100360
\(506\) 0 0
\(507\) −9.41338 16.3045i −0.418063 0.724106i
\(508\) 0 0
\(509\) 10.9032 18.8849i 0.483276 0.837058i −0.516540 0.856263i \(-0.672780\pi\)
0.999816 + 0.0192050i \(0.00611353\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.549851 0.952370i 0.0242765 0.0420482i
\(514\) 0 0
\(515\) −22.8240 39.5323i −1.00574 1.74200i
\(516\) 0 0
\(517\) −71.0411 −3.12438
\(518\) 0 0
\(519\) 2.27849 0.100014
\(520\) 0 0
\(521\) 12.2898 + 21.2866i 0.538427 + 0.932582i 0.998989 + 0.0449550i \(0.0143144\pi\)
−0.460562 + 0.887627i \(0.652352\pi\)
\(522\) 0 0
\(523\) −15.6689 + 27.1393i −0.685153 + 1.18672i 0.288235 + 0.957560i \(0.406932\pi\)
−0.973389 + 0.229161i \(0.926402\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.16233 + 15.8696i −0.399117 + 0.691291i
\(528\) 0 0
\(529\) −3.02801 5.24466i −0.131652 0.228029i
\(530\) 0 0
\(531\) −14.7004 −0.637944
\(532\) 0 0
\(533\) −12.7922 −0.554094
\(534\) 0 0
\(535\) −11.5605 20.0233i −0.499802 0.865683i
\(536\) 0 0
\(537\) −4.42724 + 7.66820i −0.191049 + 0.330907i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.0575 19.1522i 0.475400 0.823417i −0.524203 0.851593i \(-0.675637\pi\)
0.999603 + 0.0281764i \(0.00897001\pi\)
\(542\) 0 0
\(543\) 16.5748 + 28.7084i 0.711292 + 1.23199i
\(544\) 0 0
\(545\) 39.5824 1.69553
\(546\) 0 0
\(547\) 15.7584 0.673783 0.336891 0.941544i \(-0.390625\pi\)
0.336891 + 0.941544i \(0.390625\pi\)
\(548\) 0 0
\(549\) 5.97537 + 10.3496i 0.255023 + 0.441712i
\(550\) 0 0
\(551\) −0.323658 + 0.560592i −0.0137883 + 0.0238820i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −22.6177 + 39.1750i −0.960067 + 1.66288i
\(556\) 0 0
\(557\) −6.73065 11.6578i −0.285187 0.493958i 0.687468 0.726215i \(-0.258722\pi\)
−0.972654 + 0.232257i \(0.925389\pi\)
\(558\) 0 0
\(559\) 20.9852 0.887580
\(560\) 0 0
\(561\) −37.1680 −1.56923
\(562\) 0 0
\(563\) 14.2863 + 24.7447i 0.602097 + 1.04286i 0.992503 + 0.122220i \(0.0390013\pi\)
−0.390406 + 0.920643i \(0.627665\pi\)
\(564\) 0 0
\(565\) 7.83960 13.5786i 0.329814 0.571255i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.8357 + 23.9641i −0.580023 + 1.00463i 0.415453 + 0.909615i \(0.363623\pi\)
−0.995476 + 0.0950142i \(0.969710\pi\)
\(570\) 0 0
\(571\) −5.35461 9.27446i −0.224083 0.388124i 0.731961 0.681347i \(-0.238605\pi\)
−0.956044 + 0.293223i \(0.905272\pi\)
\(572\) 0 0
\(573\) −8.98593 −0.375392
\(574\) 0 0
\(575\) −16.3771 −0.682974
\(576\) 0 0
\(577\) −12.3328 21.3610i −0.513420 0.889269i −0.999879 0.0155655i \(-0.995045\pi\)
0.486459 0.873703i \(-0.338288\pi\)
\(578\) 0 0
\(579\) 21.3803 37.0317i 0.888534 1.53899i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 28.7235 49.7505i 1.18960 2.06046i
\(584\) 0 0
\(585\) −3.46250 5.99723i −0.143157 0.247955i
\(586\) 0 0
\(587\) 20.7654 0.857081 0.428541 0.903523i \(-0.359028\pi\)
0.428541 + 0.903523i \(0.359028\pi\)
\(588\) 0 0
\(589\) −1.99933 −0.0823811
\(590\) 0 0
\(591\) −5.18137 8.97440i −0.213133 0.369158i
\(592\) 0 0
\(593\) −20.1928 + 34.9750i −0.829220 + 1.43625i 0.0694313 + 0.997587i \(0.477882\pi\)
−0.898651 + 0.438664i \(0.855452\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.81318 4.87258i 0.115136 0.199421i
\(598\) 0 0
\(599\) 3.82876 + 6.63161i 0.156439 + 0.270960i 0.933582 0.358364i \(-0.116665\pi\)
−0.777143 + 0.629324i \(0.783332\pi\)
\(600\) 0 0
\(601\) −7.76541 −0.316758 −0.158379 0.987378i \(-0.550627\pi\)
−0.158379 + 0.987378i \(0.550627\pi\)
\(602\) 0 0
\(603\) −2.54084 −0.103471
\(604\) 0 0
\(605\) 43.9042 + 76.0444i 1.78496 + 3.09164i
\(606\) 0 0
\(607\) 10.7797 18.6710i 0.437535 0.757832i −0.559964 0.828517i \(-0.689185\pi\)
0.997499 + 0.0706846i \(0.0225184\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.7725 + 18.6585i −0.435809 + 0.754843i
\(612\) 0 0
\(613\) 7.12534 + 12.3415i 0.287790 + 0.498467i 0.973282 0.229613i \(-0.0737462\pi\)
−0.685492 + 0.728080i \(0.740413\pi\)
\(614\) 0 0
\(615\) 38.0242 1.53328
\(616\) 0 0
\(617\) −2.37248 −0.0955126 −0.0477563 0.998859i \(-0.515207\pi\)
−0.0477563 + 0.998859i \(0.515207\pi\)
\(618\) 0 0
\(619\) 16.5349 + 28.6392i 0.664593 + 1.15111i 0.979396 + 0.201951i \(0.0647283\pi\)
−0.314803 + 0.949157i \(0.601938\pi\)
\(620\) 0 0
\(621\) 9.75358 16.8937i 0.391398 0.677921i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.4802 26.8124i 0.619206 1.07250i
\(626\) 0 0
\(627\) −2.02763 3.51196i −0.0809758 0.140254i
\(628\) 0 0
\(629\) 21.5726 0.860155
\(630\) 0 0
\(631\) 20.6627 0.822568 0.411284 0.911507i \(-0.365080\pi\)
0.411284 + 0.911507i \(0.365080\pi\)
\(632\) 0 0
\(633\) −4.36657 7.56313i −0.173556 0.300607i
\(634\) 0 0
\(635\) 23.5782 40.8386i 0.935671 1.62063i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.67470 6.36477i 0.145369 0.251786i
\(640\) 0 0
\(641\) −17.5858 30.4595i −0.694597 1.20308i −0.970316 0.241839i \(-0.922249\pi\)
0.275719 0.961238i \(-0.411084\pi\)
\(642\) 0 0
\(643\) −17.9112 −0.706348 −0.353174 0.935558i \(-0.614898\pi\)
−0.353174 + 0.935558i \(0.614898\pi\)
\(644\) 0 0
\(645\) −62.3773 −2.45610
\(646\) 0 0
\(647\) 2.20859 + 3.82539i 0.0868287 + 0.150392i 0.906169 0.422916i \(-0.138993\pi\)
−0.819340 + 0.573308i \(0.805660\pi\)
\(648\) 0 0
\(649\) 38.3042 66.3448i 1.50357 2.60426i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.790743 + 1.36961i −0.0309442 + 0.0535969i −0.881083 0.472962i \(-0.843185\pi\)
0.850139 + 0.526559i \(0.176518\pi\)
\(654\) 0 0
\(655\) −24.8321 43.0104i −0.970269 1.68056i
\(656\) 0 0
\(657\) −3.89634 −0.152011
\(658\) 0 0
\(659\) −27.5009 −1.07128 −0.535641 0.844446i \(-0.679930\pi\)
−0.535641 + 0.844446i \(0.679930\pi\)
\(660\) 0 0
\(661\) −10.7157 18.5602i −0.416794 0.721908i 0.578821 0.815454i \(-0.303513\pi\)
−0.995615 + 0.0935468i \(0.970180\pi\)
\(662\) 0 0
\(663\) −5.63606 + 9.76195i −0.218887 + 0.379123i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.74124 + 9.94412i −0.222302 + 0.385038i
\(668\) 0 0
\(669\) 0.0551973 + 0.0956046i 0.00213405 + 0.00369629i
\(670\) 0 0
\(671\) −62.2790 −2.40425
\(672\) 0 0
\(673\) 22.6801 0.874254 0.437127 0.899400i \(-0.355996\pi\)
0.437127 + 0.899400i \(0.355996\pi\)
\(674\) 0 0
\(675\) −5.49751 9.52197i −0.211599 0.366501i
\(676\) 0 0
\(677\) 12.9637 22.4538i 0.498235 0.862968i −0.501763 0.865005i \(-0.667315\pi\)
0.999998 + 0.00203722i \(0.000648466\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −14.8567 + 25.7326i −0.569311 + 0.986076i
\(682\) 0 0
\(683\) −17.8640 30.9414i −0.683548 1.18394i −0.973891 0.227018i \(-0.927102\pi\)
0.290342 0.956923i \(-0.406231\pi\)
\(684\) 0 0
\(685\) 1.58169 0.0604334
\(686\) 0 0
\(687\) −29.3992 −1.12165
\(688\) 0 0
\(689\) −8.71111 15.0881i −0.331867 0.574811i
\(690\) 0 0
\(691\) −11.5790 + 20.0555i −0.440488 + 0.762947i −0.997726 0.0674059i \(-0.978528\pi\)
0.557238 + 0.830353i \(0.311861\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.6533 21.9162i 0.479968 0.831329i
\(696\) 0 0
\(697\) −9.06680 15.7042i −0.343430 0.594838i
\(698\) 0 0
\(699\) 34.9719 1.32276
\(700\) 0 0
\(701\) 30.0408 1.13462 0.567312 0.823503i \(-0.307983\pi\)
0.567312 + 0.823503i \(0.307983\pi\)
\(702\) 0 0
\(703\) 1.17685 + 2.03837i 0.0443858 + 0.0768785i
\(704\) 0 0
\(705\) 32.0206 55.4613i 1.20597 2.08879i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −22.4038 + 38.8044i −0.841391 + 1.45733i 0.0473285 + 0.998879i \(0.484929\pi\)
−0.888719 + 0.458452i \(0.848404\pi\)
\(710\) 0 0
\(711\) −1.74934 3.02994i −0.0656052 0.113632i
\(712\) 0 0
\(713\) −35.4654 −1.32819
\(714\) 0 0
\(715\) 36.0883 1.34963
\(716\) 0 0
\(717\) −14.1846 24.5684i −0.529733 0.917525i
\(718\) 0 0
\(719\) 5.62326 9.73978i 0.209712 0.363233i −0.741912 0.670498i \(-0.766081\pi\)
0.951624 + 0.307265i \(0.0994139\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 25.2112 43.6671i 0.937615 1.62400i
\(724\) 0 0
\(725\) 3.23599 + 5.60491i 0.120182 + 0.208161i
\(726\) 0 0
\(727\) −0.171318 −0.00635382 −0.00317691 0.999995i \(-0.501011\pi\)
−0.00317691 + 0.999995i \(0.501011\pi\)
\(728\) 0 0
\(729\) 8.46004 0.313335
\(730\) 0 0
\(731\) 14.8738 + 25.7621i 0.550126 + 0.952846i
\(732\) 0 0
\(733\) 2.80436 4.85729i 0.103581 0.179408i −0.809576 0.587015i \(-0.800303\pi\)
0.913158 + 0.407606i \(0.133636\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.62055 11.4671i 0.243871 0.422397i
\(738\) 0 0
\(739\) −3.96790 6.87261i −0.145962 0.252813i 0.783770 0.621052i \(-0.213294\pi\)
−0.929731 + 0.368239i \(0.879961\pi\)
\(740\) 0 0
\(741\) −1.22986 −0.0451800
\(742\) 0 0
\(743\) 17.9533 0.658644 0.329322 0.944218i \(-0.393180\pi\)
0.329322 + 0.944218i \(0.393180\pi\)
\(744\) 0 0
\(745\) −20.1153 34.8407i −0.736967 1.27646i
\(746\) 0 0
\(747\) 0.300207 0.519974i 0.0109840 0.0190249i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.54137 2.66973i 0.0562454 0.0974199i −0.836532 0.547918i \(-0.815420\pi\)
0.892777 + 0.450499i \(0.148754\pi\)
\(752\) 0 0
\(753\) −27.2015 47.1143i −0.991276 1.71694i
\(754\) 0 0
\(755\) 19.5007 0.709702
\(756\) 0 0
\(757\) 21.9791 0.798844 0.399422 0.916767i \(-0.369211\pi\)
0.399422 + 0.916767i \(0.369211\pi\)
\(758\) 0 0
\(759\) −35.9673 62.2972i −1.30553 2.26125i
\(760\) 0 0
\(761\) 5.91924 10.2524i 0.214572 0.371650i −0.738568 0.674179i \(-0.764498\pi\)
0.953140 + 0.302529i \(0.0978309\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.90826 8.50136i 0.177459 0.307367i
\(766\) 0 0
\(767\) −11.6167 20.1207i −0.419455 0.726518i
\(768\) 0 0
\(769\) 10.6729 0.384875 0.192437 0.981309i \(-0.438361\pi\)
0.192437 + 0.981309i \(0.438361\pi\)
\(770\) 0 0
\(771\) 20.5399 0.739727
\(772\) 0 0
\(773\) 12.4934 + 21.6392i 0.449357 + 0.778310i 0.998344 0.0575213i \(-0.0183197\pi\)
−0.548987 + 0.835831i \(0.684986\pi\)
\(774\) 0 0
\(775\) −9.99486 + 17.3116i −0.359026 + 0.621851i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.989245 1.71342i 0.0354434 0.0613897i
\(780\) 0 0
\(781\) 19.1500 + 33.1688i 0.685241 + 1.18687i
\(782\) 0 0
\(783\) −7.70893 −0.275495
\(784\) 0 0
\(785\) 60.4119 2.15619
\(786\) 0 0
\(787\) 27.0865 + 46.9153i 0.965531 + 1.67235i 0.708182 + 0.706030i \(0.249516\pi\)
0.257349 + 0.966319i \(0.417151\pi\)
\(788\) 0 0
\(789\) 15.1951 26.3187i 0.540961 0.936971i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −9.44384 + 16.3572i −0.335360 + 0.580861i
\(794\) 0 0
\(795\) 25.8933 + 44.8485i 0.918340 + 1.59061i
\(796\) 0 0
\(797\) −3.11643 −0.110390 −0.0551948 0.998476i \(-0.517578\pi\)
−0.0551948 + 0.998476i \(0.517578\pi\)
\(798\) 0 0
\(799\) −30.5410 −1.08046
\(800\) 0 0
\(801\) −8.70808 15.0828i −0.307685 0.532926i
\(802\) 0 0
\(803\) 10.1525 17.5847i 0.358275 0.620550i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −21.1960 + 36.7126i −0.746136 + 1.29234i
\(808\) 0 0
\(809\) 22.6387 + 39.2113i 0.795933 + 1.37860i 0.922245 + 0.386605i \(0.126352\pi\)
−0.126313 + 0.991990i \(0.540314\pi\)
\(810\) 0 0
\(811\) −12.8719 −0.451993 −0.225997 0.974128i \(-0.572564\pi\)
−0.225997 + 0.974128i \(0.572564\pi\)
\(812\) 0 0
\(813\) −16.2243 −0.569011
\(814\) 0 0
\(815\) −4.13740 7.16619i −0.144927 0.251021i
\(816\) 0 0
\(817\) −1.62282 + 2.81081i −0.0567753 + 0.0983377i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.2576 + 48.9436i −0.986197 + 1.70814i −0.349707 + 0.936859i \(0.613719\pi\)
−0.636491 + 0.771284i \(0.719615\pi\)
\(822\) 0 0
\(823\) −12.6190 21.8568i −0.439872 0.761881i 0.557807 0.829971i \(-0.311643\pi\)
−0.997679 + 0.0680898i \(0.978310\pi\)
\(824\) 0 0
\(825\) −40.5453 −1.41160
\(826\) 0 0
\(827\) 13.9362 0.484608 0.242304 0.970200i \(-0.422097\pi\)
0.242304 + 0.970200i \(0.422097\pi\)
\(828\) 0 0
\(829\) −4.34080 7.51849i −0.150762 0.261128i 0.780746 0.624849i \(-0.214839\pi\)
−0.931508 + 0.363721i \(0.881506\pi\)
\(830\) 0 0
\(831\) 2.08786 3.61627i 0.0724270 0.125447i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.6020 + 23.5594i −0.470717 + 0.815305i
\(836\) 0 0
\(837\) −11.9051 20.6202i −0.411500 0.712739i
\(838\) 0 0
\(839\) 20.5609 0.709843 0.354921 0.934896i \(-0.384508\pi\)
0.354921 + 0.934896i \(0.384508\pi\)
\(840\) 0 0
\(841\) −24.4623 −0.843528
\(842\) 0 0
\(843\) −9.40025 16.2817i −0.323762 0.560772i
\(844\) 0 0
\(845\) −12.9563 + 22.4410i −0.445710 + 0.771993i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 31.5599 54.6633i 1.08313 1.87604i
\(850\) 0 0
\(851\) 20.8757 + 36.1578i 0.715610 + 1.23947i
\(852\) 0 0
\(853\) 29.1377 0.997655 0.498828 0.866701i \(-0.333764\pi\)
0.498828 + 0.866701i \(0.333764\pi\)
\(854\) 0 0
\(855\) 1.07104 0.0366289
\(856\) 0 0
\(857\) −8.60008 14.8958i −0.293773 0.508830i 0.680926 0.732353i \(-0.261578\pi\)
−0.974699 + 0.223522i \(0.928244\pi\)
\(858\) 0 0
\(859\) −16.7681 + 29.0432i −0.572121 + 0.990942i 0.424227 + 0.905556i \(0.360546\pi\)
−0.996348 + 0.0853863i \(0.972788\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.06279 15.6972i 0.308501 0.534339i −0.669534 0.742782i \(-0.733506\pi\)
0.978035 + 0.208442i \(0.0668394\pi\)
\(864\) 0 0
\(865\) −1.56802 2.71589i −0.0533143 0.0923430i
\(866\) 0 0
\(867\) 19.0394 0.646613
\(868\) 0 0
\(869\) 18.2326 0.618500
\(870\) 0 0
\(871\) −2.00785 3.47770i −0.0680334 0.117837i
\(872\) 0 0
\(873\) −3.21601 + 5.57030i −0.108846 + 0.188526i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15.4502 + 26.7605i −0.521716 + 0.903639i 0.477965 + 0.878379i \(0.341375\pi\)
−0.999681 + 0.0252598i \(0.991959\pi\)
\(878\) 0 0
\(879\) −2.62392 4.54476i −0.0885026 0.153291i
\(880\) 0 0
\(881\) 6.51958 0.219650 0.109825 0.993951i \(-0.464971\pi\)
0.109825 + 0.993951i \(0.464971\pi\)
\(882\) 0 0
\(883\) 32.8703 1.10617 0.553086 0.833124i \(-0.313450\pi\)
0.553086 + 0.833124i \(0.313450\pi\)
\(884\) 0 0
\(885\) 34.5300 + 59.8077i 1.16071 + 2.01041i
\(886\) 0 0
\(887\) −3.66798 + 6.35312i −0.123159 + 0.213317i −0.921012 0.389535i \(-0.872636\pi\)
0.797853 + 0.602852i \(0.205969\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 36.2279 62.7486i 1.21368 2.10216i
\(892\) 0 0
\(893\) −1.66611 2.88579i −0.0557542 0.0965691i
\(894\) 0 0
\(895\) 12.1870 0.407368
\(896\) 0 0
\(897\) −21.8160 −0.728414
\(898\) 0 0
\(899\) 7.00768 + 12.1377i 0.233719 + 0.404814i
\(900\) 0 0
\(901\) 12.3484 21.3881i 0.411385 0.712540i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.8130 39.5133i 0.758331 1.31347i
\(906\) 0 0
\(907\) 15.7381 + 27.2592i 0.522575 + 0.905126i 0.999655 + 0.0262662i \(0.00836177\pi\)
−0.477080 + 0.878860i \(0.658305\pi\)
\(908\) 0 0
\(909\) 0.988904 0.0327999
\(910\) 0 0
\(911\) 17.1627 0.568626 0.284313 0.958732i \(-0.408235\pi\)
0.284313 + 0.958732i \(0.408235\pi\)
\(912\) 0 0
\(913\) 1.56447 + 2.70974i 0.0517765 + 0.0896794i
\(914\) 0 0
\(915\) 28.0712 48.6208i 0.928007 1.60735i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 18.6177 32.2468i 0.614141 1.06372i −0.376394 0.926460i \(-0.622836\pi\)
0.990535 0.137263i \(-0.0438306\pi\)
\(920\) 0 0
\(921\) −3.77764 6.54306i −0.124477 0.215601i
\(922\) 0 0
\(923\) 11.6154 0.382327
\(924\) 0 0
\(925\) 23.5328 0.773752
\(926\) 0 0
\(927\) 10.0078 + 17.3341i 0.328700 + 0.569325i
\(928\) 0 0
\(929\) 14.7570 25.5599i 0.484162 0.838593i −0.515672 0.856786i \(-0.672458\pi\)
0.999835 + 0.0181925i \(0.00579117\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −30.2128 + 52.3301i −0.989123 + 1.71321i
\(934\) 0 0
\(935\) 25.5785 + 44.3032i 0.836505 + 1.44887i
\(936\) 0 0
\(937\) −20.2805 −0.662535 −0.331267 0.943537i \(-0.607476\pi\)
−0.331267 + 0.943537i \(0.607476\pi\)
\(938\) 0 0
\(939\) −22.8724 −0.746412
\(940\) 0 0
\(941\) 29.0043 + 50.2369i 0.945513 + 1.63768i 0.754721 + 0.656046i \(0.227772\pi\)
0.190792 + 0.981630i \(0.438894\pi\)
\(942\) 0 0
\(943\) 17.5478 30.3937i 0.571435 0.989755i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.86313 + 6.69113i −0.125535 + 0.217433i −0.921942 0.387328i \(-0.873398\pi\)
0.796407 + 0.604761i \(0.206731\pi\)
\(948\) 0 0
\(949\) −3.07901 5.33300i −0.0999488 0.173116i
\(950\) 0 0
\(951\) −25.1935 −0.816955
\(952\) 0 0
\(953\) 9.24776 0.299564 0.149782 0.988719i \(-0.452143\pi\)
0.149782 + 0.988719i \(0.452143\pi\)
\(954\) 0 0
\(955\) 6.18398 + 10.7110i 0.200109 + 0.346599i
\(956\) 0 0
\(957\) −14.2137 + 24.6189i −0.459464 + 0.795816i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.14428 + 10.6422i −0.198203 + 0.343297i
\(962\) 0 0
\(963\) 5.06901 + 8.77979i 0.163347 + 0.282925i
\(964\) 0 0
\(965\) −58.8544 −1.89459
\(966\) 0 0
\(967\) 10.5604 0.339600 0.169800 0.985479i \(-0.445688\pi\)
0.169800 + 0.985479i \(0.445688\pi\)
\(968\) 0 0
\(969\) −0.871692 1.50981i −0.0280028 0.0485022i
\(970\) 0 0
\(971\) 8.18252 14.1725i 0.262590 0.454819i −0.704340 0.709863i \(-0.748757\pi\)
0.966929 + 0.255044i \(0.0820901\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.14818 + 10.6490i −0.196899 + 0.341040i
\(976\) 0 0
\(977\) 13.9943 + 24.2389i 0.447719 + 0.775471i 0.998237 0.0593516i \(-0.0189033\pi\)
−0.550519 + 0.834823i \(0.685570\pi\)
\(978\) 0 0
\(979\) 90.7610 2.90073
\(980\) 0 0
\(981\) −17.3560 −0.554136
\(982\) 0 0
\(983\) 6.38258 + 11.0550i 0.203573 + 0.352598i 0.949677 0.313231i \(-0.101411\pi\)
−0.746104 + 0.665829i \(0.768078\pi\)
\(984\) 0 0
\(985\) −7.13149 + 12.3521i −0.227228 + 0.393570i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −28.7865 + 49.8598i −0.915359 + 1.58545i
\(990\) 0 0
\(991\) 22.0561 + 38.2022i 0.700634 + 1.21353i 0.968244 + 0.250007i \(0.0804329\pi\)
−0.267610 + 0.963527i \(0.586234\pi\)
\(992\) 0 0
\(993\) −55.3192 −1.75550
\(994\) 0 0
\(995\) −7.74397 −0.245500
\(996\) 0 0
\(997\) −1.29448 2.24211i −0.0409966 0.0710082i 0.844799 0.535084i \(-0.179720\pi\)
−0.885796 + 0.464076i \(0.846387\pi\)
\(998\) 0 0
\(999\) −14.0152 + 24.2750i −0.443421 + 0.768028i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1372.2.e.d.1353.4 12
7.2 even 3 1372.2.a.a.1.3 6
7.3 odd 6 1372.2.e.a.361.3 12
7.4 even 3 inner 1372.2.e.d.361.4 12
7.5 odd 6 1372.2.a.d.1.4 yes 6
7.6 odd 2 1372.2.e.a.1353.3 12
28.19 even 6 5488.2.a.g.1.3 6
28.23 odd 6 5488.2.a.q.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1372.2.a.a.1.3 6 7.2 even 3
1372.2.a.d.1.4 yes 6 7.5 odd 6
1372.2.e.a.361.3 12 7.3 odd 6
1372.2.e.a.1353.3 12 7.6 odd 2
1372.2.e.d.361.4 12 7.4 even 3 inner
1372.2.e.d.1353.4 12 1.1 even 1 trivial
5488.2.a.g.1.3 6 28.19 even 6
5488.2.a.q.1.4 6 28.23 odd 6