Properties

Label 1372.2.a.d
Level $1372$
Weight $2$
Character orbit 1372.a
Self dual yes
Analytic conductor $10.955$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1372,2,Mod(1,1372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1372.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1372, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1372 = 2^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1372.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,7,0,7,0,0,0,9,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9554751573\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2624293.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 8x^{3} + 21x^{2} - 14x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{4} - \beta_1 + 1) q^{3} + (\beta_{5} + 1) q^{5} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots + 2) q^{9} + (\beta_{5} + 2 \beta_{2}) q^{11} + (\beta_{4} + 2 \beta_{3} + \beta_{2} + 2) q^{13}+ \cdots + ( - \beta_{5} + 3 \beta_{4} - 6 \beta_{3} + \cdots - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 7 q^{3} + 7 q^{5} + 9 q^{9} + 3 q^{11} + 7 q^{13} + 11 q^{15} + 7 q^{19} + 11 q^{23} + 3 q^{25} + 28 q^{27} + 6 q^{29} + 14 q^{31} - 6 q^{37} + 5 q^{39} - 3 q^{43} + 21 q^{45} + 42 q^{47} - 17 q^{51}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 9x^{4} + 8x^{3} + 21x^{2} - 14x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} + \nu^{4} - 6\nu^{3} - 5\nu^{2} + 6\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} + \nu^{4} - 7\nu^{3} - 5\nu^{2} + 10\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\nu^{5} + 3\nu^{4} - 13\nu^{3} - 16\nu^{2} + 16\nu + 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} - \beta_{3} + 6\beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{5} - 5\beta_{4} + 8\beta_{3} - \beta_{2} + 18\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.05989
2.18503
2.15187
−2.30687
−0.349937
−1.73999
0 −1.30687 0 0.966761 0 0 0 −1.29208 0
1.2 0 −0.739991 0 1.95032 0 0 0 −2.45241 0
1.3 0 0.650063 0 −1.58824 0 0 0 −2.57742 0
1.4 0 2.05989 0 2.83518 0 0 0 1.24316 0
1.5 0 3.15187 0 4.03328 0 0 0 6.93431 0
1.6 0 3.18503 0 −1.19730 0 0 0 7.14443 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1372.2.a.d yes 6
4.b odd 2 1 5488.2.a.g 6
7.b odd 2 1 1372.2.a.a 6
7.c even 3 2 1372.2.e.a 12
7.d odd 6 2 1372.2.e.d 12
28.d even 2 1 5488.2.a.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1372.2.a.a 6 7.b odd 2 1
1372.2.a.d yes 6 1.a even 1 1 trivial
1372.2.e.a 12 7.c even 3 2
1372.2.e.d 12 7.d odd 6 2
5488.2.a.g 6 4.b odd 2 1
5488.2.a.q 6 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1372))\):

\( T_{3}^{6} - 7T_{3}^{5} + 11T_{3}^{4} + 14T_{3}^{3} - 32T_{3}^{2} - 7T_{3} + 13 \) Copy content Toggle raw display
\( T_{11}^{6} - 3T_{11}^{5} - 40T_{11}^{4} + 36T_{11}^{3} + 459T_{11}^{2} + 331T_{11} - 433 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 7 T^{5} + \cdots + 13 \) Copy content Toggle raw display
$5$ \( T^{6} - 7 T^{5} + \cdots + 41 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots - 433 \) Copy content Toggle raw display
$13$ \( T^{6} - 7 T^{5} + \cdots + 349 \) Copy content Toggle raw display
$17$ \( T^{6} - 34 T^{4} + \cdots + 349 \) Copy content Toggle raw display
$19$ \( T^{6} - 7 T^{5} + \cdots + 419 \) Copy content Toggle raw display
$23$ \( T^{6} - 11 T^{5} + \cdots + 1597 \) Copy content Toggle raw display
$29$ \( T^{6} - 6 T^{5} + \cdots + 351 \) Copy content Toggle raw display
$31$ \( T^{6} - 14 T^{5} + \cdots + 31507 \) Copy content Toggle raw display
$37$ \( T^{6} + 6 T^{5} + \cdots - 31401 \) Copy content Toggle raw display
$41$ \( T^{6} - 136 T^{4} + \cdots + 2113 \) Copy content Toggle raw display
$43$ \( T^{6} + 3 T^{5} + \cdots + 7631 \) Copy content Toggle raw display
$47$ \( T^{6} - 42 T^{5} + \cdots + 37729 \) Copy content Toggle raw display
$53$ \( T^{6} + 17 T^{5} + \cdots - 11367 \) Copy content Toggle raw display
$59$ \( T^{6} - 35 T^{5} + \cdots + 19837 \) Copy content Toggle raw display
$61$ \( T^{6} - 7 T^{5} + \cdots - 144257 \) Copy content Toggle raw display
$67$ \( T^{6} + 14 T^{5} + \cdots + 20531 \) Copy content Toggle raw display
$71$ \( (T^{3} + 14 T^{2} + 49 T + 7)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} - 269 T^{4} + \cdots - 138629 \) Copy content Toggle raw display
$79$ \( T^{6} - 6 T^{5} + \cdots + 491 \) Copy content Toggle raw display
$83$ \( T^{6} - 49 T^{5} + \cdots + 20327 \) Copy content Toggle raw display
$89$ \( T^{6} + 7 T^{5} + \cdots + 339499 \) Copy content Toggle raw display
$97$ \( T^{6} + 21 T^{5} + \cdots + 297317 \) Copy content Toggle raw display
show more
show less