Properties

Label 1372.2.a.c.1.6
Level $1372$
Weight $2$
Character 1372.1
Self dual yes
Analytic conductor $10.955$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1372,2,Mod(1,1372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1372.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1372, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1372 = 2^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1372.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,2,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9554751573\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1229312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} + 24x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.54832\) of defining polynomial
Character \(\chi\) \(=\) 1372.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.54832 q^{3} +0.349282 q^{5} +3.49396 q^{9} +1.55496 q^{11} +0.784829 q^{13} +0.890084 q^{15} +5.72603 q^{17} -1.69432 q^{19} +4.35690 q^{23} -4.87800 q^{25} +1.25877 q^{27} -6.45473 q^{29} +6.70470 q^{31} +3.96254 q^{33} +9.65279 q^{37} +2.00000 q^{39} -5.41514 q^{41} +1.97823 q^{43} +1.22038 q^{45} -7.96347 q^{47} +14.5918 q^{51} +4.02177 q^{53} +0.543119 q^{55} -4.31767 q^{57} -6.29994 q^{59} +12.7279 q^{61} +0.274127 q^{65} +2.25906 q^{67} +11.1028 q^{69} +12.9119 q^{71} -14.7468 q^{73} -12.4307 q^{75} +2.02177 q^{79} -7.27413 q^{81} -13.2464 q^{83} +2.00000 q^{85} -16.4487 q^{87} +11.8568 q^{89} +17.0858 q^{93} -0.591794 q^{95} -8.80378 q^{97} +5.43296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{9} + 10 q^{11} + 4 q^{15} + 18 q^{23} + 10 q^{25} + 6 q^{29} + 22 q^{37} + 12 q^{39} + 18 q^{43} + 32 q^{51} + 18 q^{53} + 8 q^{57} - 20 q^{65} + 42 q^{67} + 70 q^{71} + 6 q^{79} - 22 q^{81}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.54832 1.47128 0.735638 0.677375i \(-0.236882\pi\)
0.735638 + 0.677375i \(0.236882\pi\)
\(4\) 0 0
\(5\) 0.349282 0.156204 0.0781018 0.996945i \(-0.475114\pi\)
0.0781018 + 0.996945i \(0.475114\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.49396 1.16465
\(10\) 0 0
\(11\) 1.55496 0.468838 0.234419 0.972136i \(-0.424681\pi\)
0.234419 + 0.972136i \(0.424681\pi\)
\(12\) 0 0
\(13\) 0.784829 0.217672 0.108836 0.994060i \(-0.465288\pi\)
0.108836 + 0.994060i \(0.465288\pi\)
\(14\) 0 0
\(15\) 0.890084 0.229819
\(16\) 0 0
\(17\) 5.72603 1.38877 0.694384 0.719605i \(-0.255677\pi\)
0.694384 + 0.719605i \(0.255677\pi\)
\(18\) 0 0
\(19\) −1.69432 −0.388703 −0.194351 0.980932i \(-0.562260\pi\)
−0.194351 + 0.980932i \(0.562260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.35690 0.908476 0.454238 0.890880i \(-0.349912\pi\)
0.454238 + 0.890880i \(0.349912\pi\)
\(24\) 0 0
\(25\) −4.87800 −0.975600
\(26\) 0 0
\(27\) 1.25877 0.242250
\(28\) 0 0
\(29\) −6.45473 −1.19861 −0.599307 0.800520i \(-0.704557\pi\)
−0.599307 + 0.800520i \(0.704557\pi\)
\(30\) 0 0
\(31\) 6.70470 1.20420 0.602100 0.798421i \(-0.294331\pi\)
0.602100 + 0.798421i \(0.294331\pi\)
\(32\) 0 0
\(33\) 3.96254 0.689789
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.65279 1.58691 0.793455 0.608629i \(-0.208280\pi\)
0.793455 + 0.608629i \(0.208280\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −5.41514 −0.845703 −0.422852 0.906199i \(-0.638971\pi\)
−0.422852 + 0.906199i \(0.638971\pi\)
\(42\) 0 0
\(43\) 1.97823 0.301677 0.150839 0.988558i \(-0.451803\pi\)
0.150839 + 0.988558i \(0.451803\pi\)
\(44\) 0 0
\(45\) 1.22038 0.181923
\(46\) 0 0
\(47\) −7.96347 −1.16159 −0.580796 0.814049i \(-0.697258\pi\)
−0.580796 + 0.814049i \(0.697258\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 14.5918 2.04326
\(52\) 0 0
\(53\) 4.02177 0.552433 0.276216 0.961095i \(-0.410919\pi\)
0.276216 + 0.961095i \(0.410919\pi\)
\(54\) 0 0
\(55\) 0.543119 0.0732341
\(56\) 0 0
\(57\) −4.31767 −0.571889
\(58\) 0 0
\(59\) −6.29994 −0.820182 −0.410091 0.912045i \(-0.634503\pi\)
−0.410091 + 0.912045i \(0.634503\pi\)
\(60\) 0 0
\(61\) 12.7279 1.62964 0.814822 0.579712i \(-0.196835\pi\)
0.814822 + 0.579712i \(0.196835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.274127 0.0340012
\(66\) 0 0
\(67\) 2.25906 0.275988 0.137994 0.990433i \(-0.455934\pi\)
0.137994 + 0.990433i \(0.455934\pi\)
\(68\) 0 0
\(69\) 11.1028 1.33662
\(70\) 0 0
\(71\) 12.9119 1.53236 0.766178 0.642629i \(-0.222156\pi\)
0.766178 + 0.642629i \(0.222156\pi\)
\(72\) 0 0
\(73\) −14.7468 −1.72599 −0.862993 0.505216i \(-0.831413\pi\)
−0.862993 + 0.505216i \(0.831413\pi\)
\(74\) 0 0
\(75\) −12.4307 −1.43538
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.02177 0.227467 0.113733 0.993511i \(-0.463719\pi\)
0.113733 + 0.993511i \(0.463719\pi\)
\(80\) 0 0
\(81\) −7.27413 −0.808236
\(82\) 0 0
\(83\) −13.2464 −1.45398 −0.726988 0.686650i \(-0.759080\pi\)
−0.726988 + 0.686650i \(0.759080\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) −16.4487 −1.76349
\(88\) 0 0
\(89\) 11.8568 1.25682 0.628411 0.777882i \(-0.283706\pi\)
0.628411 + 0.777882i \(0.283706\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 17.0858 1.77171
\(94\) 0 0
\(95\) −0.591794 −0.0607168
\(96\) 0 0
\(97\) −8.80378 −0.893888 −0.446944 0.894562i \(-0.647488\pi\)
−0.446944 + 0.894562i \(0.647488\pi\)
\(98\) 0 0
\(99\) 5.43296 0.546033
\(100\) 0 0
\(101\) −8.94213 −0.889776 −0.444888 0.895586i \(-0.646756\pi\)
−0.444888 + 0.895586i \(0.646756\pi\)
\(102\) 0 0
\(103\) −13.6127 −1.34130 −0.670651 0.741773i \(-0.733985\pi\)
−0.670651 + 0.741773i \(0.733985\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.53319 0.438240 0.219120 0.975698i \(-0.429681\pi\)
0.219120 + 0.975698i \(0.429681\pi\)
\(108\) 0 0
\(109\) 7.99761 0.766032 0.383016 0.923742i \(-0.374885\pi\)
0.383016 + 0.923742i \(0.374885\pi\)
\(110\) 0 0
\(111\) 24.5985 2.33478
\(112\) 0 0
\(113\) −8.26875 −0.777859 −0.388929 0.921268i \(-0.627155\pi\)
−0.388929 + 0.921268i \(0.627155\pi\)
\(114\) 0 0
\(115\) 1.52178 0.141907
\(116\) 0 0
\(117\) 2.74216 0.253513
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.58211 −0.780191
\(122\) 0 0
\(123\) −13.7995 −1.24426
\(124\) 0 0
\(125\) −3.45021 −0.308596
\(126\) 0 0
\(127\) −2.88471 −0.255976 −0.127988 0.991776i \(-0.540852\pi\)
−0.127988 + 0.991776i \(0.540852\pi\)
\(128\) 0 0
\(129\) 5.04117 0.443850
\(130\) 0 0
\(131\) 6.67391 0.583102 0.291551 0.956555i \(-0.405829\pi\)
0.291551 + 0.956555i \(0.405829\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.439665 0.0378403
\(136\) 0 0
\(137\) 19.0465 1.62725 0.813627 0.581387i \(-0.197490\pi\)
0.813627 + 0.581387i \(0.197490\pi\)
\(138\) 0 0
\(139\) −22.8733 −1.94009 −0.970046 0.242921i \(-0.921894\pi\)
−0.970046 + 0.242921i \(0.921894\pi\)
\(140\) 0 0
\(141\) −20.2935 −1.70902
\(142\) 0 0
\(143\) 1.22038 0.102053
\(144\) 0 0
\(145\) −2.25452 −0.187228
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.29159 0.105811 0.0529054 0.998600i \(-0.483152\pi\)
0.0529054 + 0.998600i \(0.483152\pi\)
\(150\) 0 0
\(151\) −21.3545 −1.73780 −0.868902 0.494983i \(-0.835174\pi\)
−0.868902 + 0.494983i \(0.835174\pi\)
\(152\) 0 0
\(153\) 20.0065 1.61743
\(154\) 0 0
\(155\) 2.34183 0.188100
\(156\) 0 0
\(157\) −6.92932 −0.553020 −0.276510 0.961011i \(-0.589178\pi\)
−0.276510 + 0.961011i \(0.589178\pi\)
\(158\) 0 0
\(159\) 10.2488 0.812781
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.57002 −0.514604 −0.257302 0.966331i \(-0.582834\pi\)
−0.257302 + 0.966331i \(0.582834\pi\)
\(164\) 0 0
\(165\) 1.38404 0.107748
\(166\) 0 0
\(167\) 12.6033 0.975270 0.487635 0.873048i \(-0.337860\pi\)
0.487635 + 0.873048i \(0.337860\pi\)
\(168\) 0 0
\(169\) −12.3840 −0.952619
\(170\) 0 0
\(171\) −5.91987 −0.452704
\(172\) 0 0
\(173\) −20.3729 −1.54892 −0.774461 0.632621i \(-0.781979\pi\)
−0.774461 + 0.632621i \(0.781979\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −16.0543 −1.20671
\(178\) 0 0
\(179\) 17.8756 1.33609 0.668043 0.744123i \(-0.267132\pi\)
0.668043 + 0.744123i \(0.267132\pi\)
\(180\) 0 0
\(181\) −16.9535 −1.26014 −0.630071 0.776538i \(-0.716974\pi\)
−0.630071 + 0.776538i \(0.716974\pi\)
\(182\) 0 0
\(183\) 32.4349 2.39766
\(184\) 0 0
\(185\) 3.37155 0.247881
\(186\) 0 0
\(187\) 8.90374 0.651106
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.96316 0.359122 0.179561 0.983747i \(-0.442532\pi\)
0.179561 + 0.983747i \(0.442532\pi\)
\(192\) 0 0
\(193\) −12.3327 −0.887730 −0.443865 0.896094i \(-0.646393\pi\)
−0.443865 + 0.896094i \(0.646393\pi\)
\(194\) 0 0
\(195\) 0.698564 0.0500252
\(196\) 0 0
\(197\) 6.49827 0.462983 0.231491 0.972837i \(-0.425640\pi\)
0.231491 + 0.972837i \(0.425640\pi\)
\(198\) 0 0
\(199\) 16.1823 1.14714 0.573568 0.819158i \(-0.305559\pi\)
0.573568 + 0.819158i \(0.305559\pi\)
\(200\) 0 0
\(201\) 5.75682 0.406055
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.89141 −0.132102
\(206\) 0 0
\(207\) 15.2228 1.05806
\(208\) 0 0
\(209\) −2.63459 −0.182238
\(210\) 0 0
\(211\) 7.44265 0.512373 0.256187 0.966627i \(-0.417534\pi\)
0.256187 + 0.966627i \(0.417534\pi\)
\(212\) 0 0
\(213\) 32.9036 2.25452
\(214\) 0 0
\(215\) 0.690960 0.0471231
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −37.5797 −2.53940
\(220\) 0 0
\(221\) 4.49396 0.302296
\(222\) 0 0
\(223\) 2.49623 0.167160 0.0835800 0.996501i \(-0.473365\pi\)
0.0835800 + 0.996501i \(0.473365\pi\)
\(224\) 0 0
\(225\) −17.0435 −1.13624
\(226\) 0 0
\(227\) 24.4985 1.62602 0.813011 0.582249i \(-0.197827\pi\)
0.813011 + 0.582249i \(0.197827\pi\)
\(228\) 0 0
\(229\) −1.29716 −0.0857188 −0.0428594 0.999081i \(-0.513647\pi\)
−0.0428594 + 0.999081i \(0.513647\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.2838 −0.870252 −0.435126 0.900370i \(-0.643296\pi\)
−0.435126 + 0.900370i \(0.643296\pi\)
\(234\) 0 0
\(235\) −2.78150 −0.181445
\(236\) 0 0
\(237\) 5.15213 0.334667
\(238\) 0 0
\(239\) −10.9487 −0.708212 −0.354106 0.935205i \(-0.615215\pi\)
−0.354106 + 0.935205i \(0.615215\pi\)
\(240\) 0 0
\(241\) 18.2506 1.17563 0.587813 0.808997i \(-0.299989\pi\)
0.587813 + 0.808997i \(0.299989\pi\)
\(242\) 0 0
\(243\) −22.3131 −1.43139
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.32975 −0.0846099
\(248\) 0 0
\(249\) −33.7560 −2.13920
\(250\) 0 0
\(251\) −19.9450 −1.25891 −0.629457 0.777035i \(-0.716723\pi\)
−0.629457 + 0.777035i \(0.716723\pi\)
\(252\) 0 0
\(253\) 6.77479 0.425927
\(254\) 0 0
\(255\) 5.09665 0.319165
\(256\) 0 0
\(257\) 6.79097 0.423609 0.211804 0.977312i \(-0.432066\pi\)
0.211804 + 0.977312i \(0.432066\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −22.5526 −1.39597
\(262\) 0 0
\(263\) 24.8713 1.53363 0.766815 0.641868i \(-0.221840\pi\)
0.766815 + 0.641868i \(0.221840\pi\)
\(264\) 0 0
\(265\) 1.40473 0.0862920
\(266\) 0 0
\(267\) 30.2150 1.84913
\(268\) 0 0
\(269\) −5.67056 −0.345740 −0.172870 0.984945i \(-0.555304\pi\)
−0.172870 + 0.984945i \(0.555304\pi\)
\(270\) 0 0
\(271\) 20.4729 1.24364 0.621819 0.783161i \(-0.286394\pi\)
0.621819 + 0.783161i \(0.286394\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.58509 −0.457398
\(276\) 0 0
\(277\) −1.13946 −0.0684633 −0.0342316 0.999414i \(-0.510898\pi\)
−0.0342316 + 0.999414i \(0.510898\pi\)
\(278\) 0 0
\(279\) 23.4259 1.40247
\(280\) 0 0
\(281\) 7.02608 0.419141 0.209570 0.977794i \(-0.432793\pi\)
0.209570 + 0.977794i \(0.432793\pi\)
\(282\) 0 0
\(283\) −0.0137019 −0.000814491 0 −0.000407246 1.00000i \(-0.500130\pi\)
−0.000407246 1.00000i \(0.500130\pi\)
\(284\) 0 0
\(285\) −1.50808 −0.0893311
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.7875 0.928674
\(290\) 0 0
\(291\) −22.4349 −1.31516
\(292\) 0 0
\(293\) −13.3539 −0.780144 −0.390072 0.920784i \(-0.627550\pi\)
−0.390072 + 0.920784i \(0.627550\pi\)
\(294\) 0 0
\(295\) −2.20046 −0.128115
\(296\) 0 0
\(297\) 1.95733 0.113576
\(298\) 0 0
\(299\) 3.41942 0.197750
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −22.7875 −1.30911
\(304\) 0 0
\(305\) 4.44563 0.254556
\(306\) 0 0
\(307\) −6.32463 −0.360966 −0.180483 0.983578i \(-0.557766\pi\)
−0.180483 + 0.983578i \(0.557766\pi\)
\(308\) 0 0
\(309\) −34.6896 −1.97342
\(310\) 0 0
\(311\) −8.08813 −0.458636 −0.229318 0.973352i \(-0.573649\pi\)
−0.229318 + 0.973352i \(0.573649\pi\)
\(312\) 0 0
\(313\) −31.3169 −1.77013 −0.885067 0.465464i \(-0.845887\pi\)
−0.885067 + 0.465464i \(0.845887\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.0441 −1.68745 −0.843723 0.536778i \(-0.819641\pi\)
−0.843723 + 0.536778i \(0.819641\pi\)
\(318\) 0 0
\(319\) −10.0368 −0.561955
\(320\) 0 0
\(321\) 11.5520 0.644772
\(322\) 0 0
\(323\) −9.70171 −0.539818
\(324\) 0 0
\(325\) −3.82840 −0.212361
\(326\) 0 0
\(327\) 20.3805 1.12704
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.97152 −0.548085 −0.274042 0.961718i \(-0.588361\pi\)
−0.274042 + 0.961718i \(0.588361\pi\)
\(332\) 0 0
\(333\) 33.7265 1.84820
\(334\) 0 0
\(335\) 0.789049 0.0431104
\(336\) 0 0
\(337\) −24.1903 −1.31773 −0.658865 0.752262i \(-0.728963\pi\)
−0.658865 + 0.752262i \(0.728963\pi\)
\(338\) 0 0
\(339\) −21.0715 −1.14444
\(340\) 0 0
\(341\) 10.4255 0.564574
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.87800 0.208785
\(346\) 0 0
\(347\) 17.2078 0.923760 0.461880 0.886942i \(-0.347175\pi\)
0.461880 + 0.886942i \(0.347175\pi\)
\(348\) 0 0
\(349\) 3.94884 0.211376 0.105688 0.994399i \(-0.466295\pi\)
0.105688 + 0.994399i \(0.466295\pi\)
\(350\) 0 0
\(351\) 0.987918 0.0527312
\(352\) 0 0
\(353\) −11.7663 −0.626259 −0.313130 0.949710i \(-0.601377\pi\)
−0.313130 + 0.949710i \(0.601377\pi\)
\(354\) 0 0
\(355\) 4.50988 0.239359
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.7888 −1.25552 −0.627762 0.778405i \(-0.716029\pi\)
−0.627762 + 0.778405i \(0.716029\pi\)
\(360\) 0 0
\(361\) −16.1293 −0.848910
\(362\) 0 0
\(363\) −21.8700 −1.14788
\(364\) 0 0
\(365\) −5.15080 −0.269605
\(366\) 0 0
\(367\) −0.761645 −0.0397576 −0.0198788 0.999802i \(-0.506328\pi\)
−0.0198788 + 0.999802i \(0.506328\pi\)
\(368\) 0 0
\(369\) −18.9203 −0.984951
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −21.6732 −1.12220 −0.561099 0.827749i \(-0.689621\pi\)
−0.561099 + 0.827749i \(0.689621\pi\)
\(374\) 0 0
\(375\) −8.79225 −0.454030
\(376\) 0 0
\(377\) −5.06586 −0.260905
\(378\) 0 0
\(379\) 18.5569 0.953203 0.476601 0.879120i \(-0.341869\pi\)
0.476601 + 0.879120i \(0.341869\pi\)
\(380\) 0 0
\(381\) −7.35117 −0.376612
\(382\) 0 0
\(383\) −14.9236 −0.762559 −0.381280 0.924460i \(-0.624517\pi\)
−0.381280 + 0.924460i \(0.624517\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.91185 0.351349
\(388\) 0 0
\(389\) 19.1075 0.968790 0.484395 0.874849i \(-0.339040\pi\)
0.484395 + 0.874849i \(0.339040\pi\)
\(390\) 0 0
\(391\) 24.9477 1.26166
\(392\) 0 0
\(393\) 17.0073 0.857905
\(394\) 0 0
\(395\) 0.706168 0.0355312
\(396\) 0 0
\(397\) 4.42278 0.221973 0.110986 0.993822i \(-0.464599\pi\)
0.110986 + 0.993822i \(0.464599\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.91053 0.395033 0.197516 0.980300i \(-0.436712\pi\)
0.197516 + 0.980300i \(0.436712\pi\)
\(402\) 0 0
\(403\) 5.26205 0.262121
\(404\) 0 0
\(405\) −2.54072 −0.126249
\(406\) 0 0
\(407\) 15.0097 0.744003
\(408\) 0 0
\(409\) −29.2979 −1.44869 −0.724345 0.689438i \(-0.757858\pi\)
−0.724345 + 0.689438i \(0.757858\pi\)
\(410\) 0 0
\(411\) 48.5367 2.39414
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.62671 −0.227116
\(416\) 0 0
\(417\) −58.2887 −2.85441
\(418\) 0 0
\(419\) −12.7184 −0.621336 −0.310668 0.950518i \(-0.600553\pi\)
−0.310668 + 0.950518i \(0.600553\pi\)
\(420\) 0 0
\(421\) −10.8334 −0.527987 −0.263994 0.964524i \(-0.585040\pi\)
−0.263994 + 0.964524i \(0.585040\pi\)
\(422\) 0 0
\(423\) −27.8240 −1.35285
\(424\) 0 0
\(425\) −27.9316 −1.35488
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.10992 0.150148
\(430\) 0 0
\(431\) 26.0519 1.25488 0.627438 0.778667i \(-0.284104\pi\)
0.627438 + 0.778667i \(0.284104\pi\)
\(432\) 0 0
\(433\) 22.1995 1.06684 0.533419 0.845851i \(-0.320907\pi\)
0.533419 + 0.845851i \(0.320907\pi\)
\(434\) 0 0
\(435\) −5.74525 −0.275464
\(436\) 0 0
\(437\) −7.38196 −0.353127
\(438\) 0 0
\(439\) 2.59432 0.123820 0.0619101 0.998082i \(-0.480281\pi\)
0.0619101 + 0.998082i \(0.480281\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 38.0301 1.80687 0.903433 0.428729i \(-0.141039\pi\)
0.903433 + 0.428729i \(0.141039\pi\)
\(444\) 0 0
\(445\) 4.14138 0.196320
\(446\) 0 0
\(447\) 3.29138 0.155677
\(448\) 0 0
\(449\) −4.11960 −0.194416 −0.0972081 0.995264i \(-0.530991\pi\)
−0.0972081 + 0.995264i \(0.530991\pi\)
\(450\) 0 0
\(451\) −8.42032 −0.396497
\(452\) 0 0
\(453\) −54.4182 −2.55679
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.5453 −0.540065 −0.270032 0.962851i \(-0.587034\pi\)
−0.270032 + 0.962851i \(0.587034\pi\)
\(458\) 0 0
\(459\) 7.20775 0.336429
\(460\) 0 0
\(461\) 0.798531 0.0371913 0.0185957 0.999827i \(-0.494080\pi\)
0.0185957 + 0.999827i \(0.494080\pi\)
\(462\) 0 0
\(463\) 32.7385 1.52149 0.760745 0.649051i \(-0.224834\pi\)
0.760745 + 0.649051i \(0.224834\pi\)
\(464\) 0 0
\(465\) 5.96774 0.276748
\(466\) 0 0
\(467\) 41.0301 1.89865 0.949324 0.314300i \(-0.101770\pi\)
0.949324 + 0.314300i \(0.101770\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −17.6582 −0.813646
\(472\) 0 0
\(473\) 3.07606 0.141438
\(474\) 0 0
\(475\) 8.26488 0.379219
\(476\) 0 0
\(477\) 14.0519 0.643392
\(478\) 0 0
\(479\) 8.48528 0.387702 0.193851 0.981031i \(-0.437902\pi\)
0.193851 + 0.981031i \(0.437902\pi\)
\(480\) 0 0
\(481\) 7.57579 0.345427
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.07500 −0.139629
\(486\) 0 0
\(487\) −24.4349 −1.10725 −0.553625 0.832766i \(-0.686756\pi\)
−0.553625 + 0.832766i \(0.686756\pi\)
\(488\) 0 0
\(489\) −16.7426 −0.757124
\(490\) 0 0
\(491\) 33.9734 1.53320 0.766600 0.642125i \(-0.221947\pi\)
0.766600 + 0.642125i \(0.221947\pi\)
\(492\) 0 0
\(493\) −36.9600 −1.66459
\(494\) 0 0
\(495\) 1.89763 0.0852923
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.32304 0.372591 0.186295 0.982494i \(-0.440352\pi\)
0.186295 + 0.982494i \(0.440352\pi\)
\(500\) 0 0
\(501\) 32.1172 1.43489
\(502\) 0 0
\(503\) 4.99668 0.222791 0.111396 0.993776i \(-0.464468\pi\)
0.111396 + 0.993776i \(0.464468\pi\)
\(504\) 0 0
\(505\) −3.12333 −0.138986
\(506\) 0 0
\(507\) −31.5586 −1.40157
\(508\) 0 0
\(509\) −8.82358 −0.391098 −0.195549 0.980694i \(-0.562649\pi\)
−0.195549 + 0.980694i \(0.562649\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.13275 −0.0941633
\(514\) 0 0
\(515\) −4.75468 −0.209516
\(516\) 0 0
\(517\) −12.3829 −0.544598
\(518\) 0 0
\(519\) −51.9168 −2.27889
\(520\) 0 0
\(521\) −37.6586 −1.64985 −0.824926 0.565241i \(-0.808783\pi\)
−0.824926 + 0.565241i \(0.808783\pi\)
\(522\) 0 0
\(523\) −20.3634 −0.890430 −0.445215 0.895424i \(-0.646873\pi\)
−0.445215 + 0.895424i \(0.646873\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 38.3913 1.67235
\(528\) 0 0
\(529\) −4.01746 −0.174672
\(530\) 0 0
\(531\) −22.0117 −0.955228
\(532\) 0 0
\(533\) −4.24996 −0.184086
\(534\) 0 0
\(535\) 1.58336 0.0684546
\(536\) 0 0
\(537\) 45.5529 1.96575
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.32544 0.400932 0.200466 0.979701i \(-0.435754\pi\)
0.200466 + 0.979701i \(0.435754\pi\)
\(542\) 0 0
\(543\) −43.2030 −1.85402
\(544\) 0 0
\(545\) 2.79342 0.119657
\(546\) 0 0
\(547\) −35.0863 −1.50018 −0.750092 0.661334i \(-0.769991\pi\)
−0.750092 + 0.661334i \(0.769991\pi\)
\(548\) 0 0
\(549\) 44.4708 1.89797
\(550\) 0 0
\(551\) 10.9364 0.465904
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.59179 0.364701
\(556\) 0 0
\(557\) 31.4601 1.33301 0.666504 0.745502i \(-0.267790\pi\)
0.666504 + 0.745502i \(0.267790\pi\)
\(558\) 0 0
\(559\) 1.55257 0.0656668
\(560\) 0 0
\(561\) 22.6896 0.957957
\(562\) 0 0
\(563\) 36.9353 1.55664 0.778319 0.627869i \(-0.216073\pi\)
0.778319 + 0.627869i \(0.216073\pi\)
\(564\) 0 0
\(565\) −2.88812 −0.121504
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.4620 0.815891 0.407945 0.913006i \(-0.366245\pi\)
0.407945 + 0.913006i \(0.366245\pi\)
\(570\) 0 0
\(571\) −14.6920 −0.614842 −0.307421 0.951574i \(-0.599466\pi\)
−0.307421 + 0.951574i \(0.599466\pi\)
\(572\) 0 0
\(573\) 12.6478 0.528368
\(574\) 0 0
\(575\) −21.2529 −0.886309
\(576\) 0 0
\(577\) 42.4785 1.76840 0.884202 0.467106i \(-0.154703\pi\)
0.884202 + 0.467106i \(0.154703\pi\)
\(578\) 0 0
\(579\) −31.4278 −1.30610
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.25368 0.259001
\(584\) 0 0
\(585\) 0.957787 0.0395996
\(586\) 0 0
\(587\) 25.6539 1.05885 0.529425 0.848357i \(-0.322408\pi\)
0.529425 + 0.848357i \(0.322408\pi\)
\(588\) 0 0
\(589\) −11.3599 −0.468076
\(590\) 0 0
\(591\) 16.5597 0.681175
\(592\) 0 0
\(593\) −11.9644 −0.491319 −0.245659 0.969356i \(-0.579005\pi\)
−0.245659 + 0.969356i \(0.579005\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 41.2379 1.68775
\(598\) 0 0
\(599\) 33.0944 1.35220 0.676100 0.736810i \(-0.263669\pi\)
0.676100 + 0.736810i \(0.263669\pi\)
\(600\) 0 0
\(601\) −31.0785 −1.26772 −0.633860 0.773448i \(-0.718530\pi\)
−0.633860 + 0.773448i \(0.718530\pi\)
\(602\) 0 0
\(603\) 7.89307 0.321431
\(604\) 0 0
\(605\) −2.99757 −0.121869
\(606\) 0 0
\(607\) 1.36822 0.0555342 0.0277671 0.999614i \(-0.491160\pi\)
0.0277671 + 0.999614i \(0.491160\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.24996 −0.252846
\(612\) 0 0
\(613\) −17.7458 −0.716748 −0.358374 0.933578i \(-0.616669\pi\)
−0.358374 + 0.933578i \(0.616669\pi\)
\(614\) 0 0
\(615\) −4.81993 −0.194358
\(616\) 0 0
\(617\) −15.4252 −0.620995 −0.310497 0.950574i \(-0.600496\pi\)
−0.310497 + 0.950574i \(0.600496\pi\)
\(618\) 0 0
\(619\) 23.4985 0.944485 0.472242 0.881469i \(-0.343445\pi\)
0.472242 + 0.881469i \(0.343445\pi\)
\(620\) 0 0
\(621\) 5.48432 0.220078
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.1849 0.927397
\(626\) 0 0
\(627\) −6.71379 −0.268123
\(628\) 0 0
\(629\) 55.2722 2.20385
\(630\) 0 0
\(631\) 25.4534 1.01328 0.506642 0.862157i \(-0.330887\pi\)
0.506642 + 0.862157i \(0.330887\pi\)
\(632\) 0 0
\(633\) 18.9663 0.753842
\(634\) 0 0
\(635\) −1.00758 −0.0399844
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 45.1135 1.78466
\(640\) 0 0
\(641\) 28.9245 1.14245 0.571225 0.820793i \(-0.306468\pi\)
0.571225 + 0.820793i \(0.306468\pi\)
\(642\) 0 0
\(643\) −26.9974 −1.06467 −0.532337 0.846532i \(-0.678686\pi\)
−0.532337 + 0.846532i \(0.678686\pi\)
\(644\) 0 0
\(645\) 1.76079 0.0693310
\(646\) 0 0
\(647\) 24.3841 0.958640 0.479320 0.877640i \(-0.340883\pi\)
0.479320 + 0.877640i \(0.340883\pi\)
\(648\) 0 0
\(649\) −9.79614 −0.384532
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.2519 −0.988183 −0.494091 0.869410i \(-0.664499\pi\)
−0.494091 + 0.869410i \(0.664499\pi\)
\(654\) 0 0
\(655\) 2.33108 0.0910827
\(656\) 0 0
\(657\) −51.5248 −2.01017
\(658\) 0 0
\(659\) −27.3836 −1.06671 −0.533356 0.845891i \(-0.679069\pi\)
−0.533356 + 0.845891i \(0.679069\pi\)
\(660\) 0 0
\(661\) 45.7296 1.77868 0.889338 0.457251i \(-0.151166\pi\)
0.889338 + 0.457251i \(0.151166\pi\)
\(662\) 0 0
\(663\) 11.4521 0.444761
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −28.1226 −1.08891
\(668\) 0 0
\(669\) 6.36121 0.245938
\(670\) 0 0
\(671\) 19.7914 0.764038
\(672\) 0 0
\(673\) 38.4782 1.48322 0.741612 0.670829i \(-0.234062\pi\)
0.741612 + 0.670829i \(0.234062\pi\)
\(674\) 0 0
\(675\) −6.14028 −0.236339
\(676\) 0 0
\(677\) 16.1961 0.622465 0.311232 0.950334i \(-0.399258\pi\)
0.311232 + 0.950334i \(0.399258\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 62.4301 2.39233
\(682\) 0 0
\(683\) 8.30367 0.317731 0.158865 0.987300i \(-0.449216\pi\)
0.158865 + 0.987300i \(0.449216\pi\)
\(684\) 0 0
\(685\) 6.65261 0.254183
\(686\) 0 0
\(687\) −3.30559 −0.126116
\(688\) 0 0
\(689\) 3.15640 0.120249
\(690\) 0 0
\(691\) 8.45111 0.321495 0.160748 0.986996i \(-0.448609\pi\)
0.160748 + 0.986996i \(0.448609\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.98925 −0.303049
\(696\) 0 0
\(697\) −31.0073 −1.17449
\(698\) 0 0
\(699\) −33.8515 −1.28038
\(700\) 0 0
\(701\) 2.96316 0.111917 0.0559586 0.998433i \(-0.482179\pi\)
0.0559586 + 0.998433i \(0.482179\pi\)
\(702\) 0 0
\(703\) −16.3549 −0.616836
\(704\) 0 0
\(705\) −7.08815 −0.266955
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 36.5760 1.37364 0.686820 0.726827i \(-0.259006\pi\)
0.686820 + 0.726827i \(0.259006\pi\)
\(710\) 0 0
\(711\) 7.06398 0.264920
\(712\) 0 0
\(713\) 29.2117 1.09399
\(714\) 0 0
\(715\) 0.426256 0.0159411
\(716\) 0 0
\(717\) −27.9008 −1.04198
\(718\) 0 0
\(719\) −18.8279 −0.702163 −0.351082 0.936345i \(-0.614186\pi\)
−0.351082 + 0.936345i \(0.614186\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 46.5086 1.72967
\(724\) 0 0
\(725\) 31.4862 1.16937
\(726\) 0 0
\(727\) 40.7979 1.51311 0.756555 0.653930i \(-0.226881\pi\)
0.756555 + 0.653930i \(0.226881\pi\)
\(728\) 0 0
\(729\) −35.0388 −1.29773
\(730\) 0 0
\(731\) 11.3274 0.418959
\(732\) 0 0
\(733\) 14.9175 0.550990 0.275495 0.961303i \(-0.411158\pi\)
0.275495 + 0.961303i \(0.411158\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.51275 0.129394
\(738\) 0 0
\(739\) −31.9232 −1.17431 −0.587157 0.809473i \(-0.699753\pi\)
−0.587157 + 0.809473i \(0.699753\pi\)
\(740\) 0 0
\(741\) −3.38863 −0.124484
\(742\) 0 0
\(743\) 29.3056 1.07512 0.537559 0.843226i \(-0.319347\pi\)
0.537559 + 0.843226i \(0.319347\pi\)
\(744\) 0 0
\(745\) 0.451127 0.0165280
\(746\) 0 0
\(747\) −46.2822 −1.69338
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 31.1105 1.13524 0.567619 0.823291i \(-0.307865\pi\)
0.567619 + 0.823291i \(0.307865\pi\)
\(752\) 0 0
\(753\) −50.8262 −1.85221
\(754\) 0 0
\(755\) −7.45874 −0.271451
\(756\) 0 0
\(757\) 35.2121 1.27980 0.639902 0.768456i \(-0.278975\pi\)
0.639902 + 0.768456i \(0.278975\pi\)
\(758\) 0 0
\(759\) 17.2644 0.626657
\(760\) 0 0
\(761\) 42.9600 1.55730 0.778650 0.627458i \(-0.215905\pi\)
0.778650 + 0.627458i \(0.215905\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.98792 0.252649
\(766\) 0 0
\(767\) −4.94438 −0.178531
\(768\) 0 0
\(769\) 7.97717 0.287664 0.143832 0.989602i \(-0.454057\pi\)
0.143832 + 0.989602i \(0.454057\pi\)
\(770\) 0 0
\(771\) 17.3056 0.623245
\(772\) 0 0
\(773\) 33.4775 1.20410 0.602051 0.798458i \(-0.294350\pi\)
0.602051 + 0.798458i \(0.294350\pi\)
\(774\) 0 0
\(775\) −32.7055 −1.17482
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.17496 0.328727
\(780\) 0 0
\(781\) 20.0774 0.718426
\(782\) 0 0
\(783\) −8.12501 −0.290364
\(784\) 0 0
\(785\) −2.42029 −0.0863838
\(786\) 0 0
\(787\) 13.6743 0.487436 0.243718 0.969846i \(-0.421633\pi\)
0.243718 + 0.969846i \(0.421633\pi\)
\(788\) 0 0
\(789\) 63.3801 2.25639
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 9.98925 0.354729
\(794\) 0 0
\(795\) 3.57971 0.126959
\(796\) 0 0
\(797\) −35.4321 −1.25507 −0.627535 0.778588i \(-0.715936\pi\)
−0.627535 + 0.778588i \(0.715936\pi\)
\(798\) 0 0
\(799\) −45.5991 −1.61318
\(800\) 0 0
\(801\) 41.4273 1.46376
\(802\) 0 0
\(803\) −22.9307 −0.809207
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −14.4504 −0.508679
\(808\) 0 0
\(809\) −21.5851 −0.758891 −0.379446 0.925214i \(-0.623885\pi\)
−0.379446 + 0.925214i \(0.623885\pi\)
\(810\) 0 0
\(811\) 13.7682 0.483466 0.241733 0.970343i \(-0.422284\pi\)
0.241733 + 0.970343i \(0.422284\pi\)
\(812\) 0 0
\(813\) 52.1715 1.82973
\(814\) 0 0
\(815\) −2.29479 −0.0803830
\(816\) 0 0
\(817\) −3.35175 −0.117263
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −32.5846 −1.13721 −0.568605 0.822610i \(-0.692517\pi\)
−0.568605 + 0.822610i \(0.692517\pi\)
\(822\) 0 0
\(823\) 17.5144 0.610514 0.305257 0.952270i \(-0.401258\pi\)
0.305257 + 0.952270i \(0.401258\pi\)
\(824\) 0 0
\(825\) −19.3293 −0.672959
\(826\) 0 0
\(827\) −2.81163 −0.0977698 −0.0488849 0.998804i \(-0.515567\pi\)
−0.0488849 + 0.998804i \(0.515567\pi\)
\(828\) 0 0
\(829\) −46.9321 −1.63002 −0.815009 0.579448i \(-0.803268\pi\)
−0.815009 + 0.579448i \(0.803268\pi\)
\(830\) 0 0
\(831\) −2.90370 −0.100728
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.40209 0.152341
\(836\) 0 0
\(837\) 8.43967 0.291717
\(838\) 0 0
\(839\) −20.8145 −0.718598 −0.359299 0.933223i \(-0.616984\pi\)
−0.359299 + 0.933223i \(0.616984\pi\)
\(840\) 0 0
\(841\) 12.6635 0.436674
\(842\) 0 0
\(843\) 17.9047 0.616672
\(844\) 0 0
\(845\) −4.32552 −0.148802
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.0349168 −0.00119834
\(850\) 0 0
\(851\) 42.0562 1.44167
\(852\) 0 0
\(853\) 29.2903 1.00288 0.501441 0.865192i \(-0.332803\pi\)
0.501441 + 0.865192i \(0.332803\pi\)
\(854\) 0 0
\(855\) −2.06770 −0.0707140
\(856\) 0 0
\(857\) −28.9103 −0.987556 −0.493778 0.869588i \(-0.664384\pi\)
−0.493778 + 0.869588i \(0.664384\pi\)
\(858\) 0 0
\(859\) 26.6975 0.910908 0.455454 0.890259i \(-0.349477\pi\)
0.455454 + 0.890259i \(0.349477\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43.4494 1.47903 0.739517 0.673138i \(-0.235054\pi\)
0.739517 + 0.673138i \(0.235054\pi\)
\(864\) 0 0
\(865\) −7.11588 −0.241947
\(866\) 0 0
\(867\) 40.2316 1.36634
\(868\) 0 0
\(869\) 3.14377 0.106645
\(870\) 0 0
\(871\) 1.77298 0.0600750
\(872\) 0 0
\(873\) −30.7600 −1.04107
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.4741 1.09657 0.548286 0.836291i \(-0.315280\pi\)
0.548286 + 0.836291i \(0.315280\pi\)
\(878\) 0 0
\(879\) −34.0301 −1.14781
\(880\) 0 0
\(881\) 31.6353 1.06582 0.532911 0.846171i \(-0.321098\pi\)
0.532911 + 0.846171i \(0.321098\pi\)
\(882\) 0 0
\(883\) −11.3002 −0.380282 −0.190141 0.981757i \(-0.560895\pi\)
−0.190141 + 0.981757i \(0.560895\pi\)
\(884\) 0 0
\(885\) −5.60747 −0.188493
\(886\) 0 0
\(887\) −27.5192 −0.924006 −0.462003 0.886878i \(-0.652869\pi\)
−0.462003 + 0.886878i \(0.652869\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −11.3110 −0.378931
\(892\) 0 0
\(893\) 13.4926 0.451514
\(894\) 0 0
\(895\) 6.24363 0.208701
\(896\) 0 0
\(897\) 8.71379 0.290945
\(898\) 0 0
\(899\) −43.2770 −1.44337
\(900\) 0 0
\(901\) 23.0288 0.767200
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.92154 −0.196839
\(906\) 0 0
\(907\) 37.5018 1.24523 0.622614 0.782529i \(-0.286071\pi\)
0.622614 + 0.782529i \(0.286071\pi\)
\(908\) 0 0
\(909\) −31.2435 −1.03628
\(910\) 0 0
\(911\) −33.8678 −1.12209 −0.561046 0.827785i \(-0.689601\pi\)
−0.561046 + 0.827785i \(0.689601\pi\)
\(912\) 0 0
\(913\) −20.5975 −0.681678
\(914\) 0 0
\(915\) 11.3289 0.374522
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −33.5254 −1.10590 −0.552951 0.833214i \(-0.686498\pi\)
−0.552951 + 0.833214i \(0.686498\pi\)
\(920\) 0 0
\(921\) −16.1172 −0.531080
\(922\) 0 0
\(923\) 10.1336 0.333552
\(924\) 0 0
\(925\) −47.0863 −1.54819
\(926\) 0 0
\(927\) −47.5623 −1.56215
\(928\) 0 0
\(929\) 33.8917 1.11195 0.555976 0.831198i \(-0.312345\pi\)
0.555976 + 0.831198i \(0.312345\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −20.6112 −0.674779
\(934\) 0 0
\(935\) 3.10992 0.101705
\(936\) 0 0
\(937\) 18.2412 0.595913 0.297956 0.954580i \(-0.403695\pi\)
0.297956 + 0.954580i \(0.403695\pi\)
\(938\) 0 0
\(939\) −79.8055 −2.60435
\(940\) 0 0
\(941\) −51.2960 −1.67220 −0.836101 0.548576i \(-0.815170\pi\)
−0.836101 + 0.548576i \(0.815170\pi\)
\(942\) 0 0
\(943\) −23.5932 −0.768301
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 46.6980 1.51748 0.758740 0.651393i \(-0.225815\pi\)
0.758740 + 0.651393i \(0.225815\pi\)
\(948\) 0 0
\(949\) −11.5737 −0.375700
\(950\) 0 0
\(951\) −76.5622 −2.48270
\(952\) 0 0
\(953\) 1.69633 0.0549496 0.0274748 0.999622i \(-0.491253\pi\)
0.0274748 + 0.999622i \(0.491253\pi\)
\(954\) 0 0
\(955\) 1.73354 0.0560961
\(956\) 0 0
\(957\) −25.5771 −0.826791
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 13.9530 0.450097
\(962\) 0 0
\(963\) 15.8388 0.510397
\(964\) 0 0
\(965\) −4.30760 −0.138667
\(966\) 0 0
\(967\) −21.8495 −0.702633 −0.351317 0.936257i \(-0.614266\pi\)
−0.351317 + 0.936257i \(0.614266\pi\)
\(968\) 0 0
\(969\) −24.7231 −0.794221
\(970\) 0 0
\(971\) −21.0894 −0.676790 −0.338395 0.941004i \(-0.609884\pi\)
−0.338395 + 0.941004i \(0.609884\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −9.75600 −0.312442
\(976\) 0 0
\(977\) −28.7385 −0.919428 −0.459714 0.888067i \(-0.652048\pi\)
−0.459714 + 0.888067i \(0.652048\pi\)
\(978\) 0 0
\(979\) 18.4369 0.589245
\(980\) 0 0
\(981\) 27.9433 0.892161
\(982\) 0 0
\(983\) −7.37248 −0.235145 −0.117573 0.993064i \(-0.537511\pi\)
−0.117573 + 0.993064i \(0.537511\pi\)
\(984\) 0 0
\(985\) 2.26973 0.0723196
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.61894 0.274066
\(990\) 0 0
\(991\) 20.9729 0.666225 0.333112 0.942887i \(-0.391901\pi\)
0.333112 + 0.942887i \(0.391901\pi\)
\(992\) 0 0
\(993\) −25.4107 −0.806384
\(994\) 0 0
\(995\) 5.65220 0.179187
\(996\) 0 0
\(997\) −2.35298 −0.0745197 −0.0372598 0.999306i \(-0.511863\pi\)
−0.0372598 + 0.999306i \(0.511863\pi\)
\(998\) 0 0
\(999\) 12.1506 0.384429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1372.2.a.c.1.6 yes 6
4.3 odd 2 5488.2.a.j.1.1 6
7.2 even 3 1372.2.e.b.361.1 12
7.3 odd 6 1372.2.e.b.1353.6 12
7.4 even 3 1372.2.e.b.1353.1 12
7.5 odd 6 1372.2.e.b.361.6 12
7.6 odd 2 inner 1372.2.a.c.1.1 6
28.27 even 2 5488.2.a.j.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1372.2.a.c.1.1 6 7.6 odd 2 inner
1372.2.a.c.1.6 yes 6 1.1 even 1 trivial
1372.2.e.b.361.1 12 7.2 even 3
1372.2.e.b.361.6 12 7.5 odd 6
1372.2.e.b.1353.1 12 7.4 even 3
1372.2.e.b.1353.6 12 7.3 odd 6
5488.2.a.j.1.1 6 4.3 odd 2
5488.2.a.j.1.6 6 28.27 even 2