Properties

Label 1372.2.a.b.1.6
Level $1372$
Weight $2$
Character 1372.1
Self dual yes
Analytic conductor $10.955$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1372,2,Mod(1,1372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1372.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1372, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1372 = 2^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1372.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,2,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9554751573\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1229312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} + 24x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.54832\) of defining polynomial
Character \(\chi\) \(=\) 1372.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.54832 q^{3} -3.96254 q^{5} +3.49396 q^{9} -4.69202 q^{11} -0.0691796 q^{13} -10.0978 q^{15} +6.19997 q^{17} -3.02226 q^{19} -9.15883 q^{23} +10.7017 q^{25} +1.25877 q^{27} -6.93900 q^{29} -2.39288 q^{31} -11.9568 q^{33} -2.02177 q^{37} -0.176292 q^{39} -7.07107 q^{41} +0.137063 q^{43} -13.8449 q^{45} +5.91987 q^{47} +15.7995 q^{51} -4.75302 q^{53} +18.5923 q^{55} -7.70171 q^{57} -3.73791 q^{59} +0.224625 q^{61} +0.274127 q^{65} -5.82908 q^{67} -23.3397 q^{69} -6.85086 q^{71} -3.61326 q^{73} +27.2714 q^{75} -4.57673 q^{79} -7.27413 q^{81} +6.03692 q^{83} -24.5676 q^{85} -17.6828 q^{87} +7.45114 q^{89} -6.09783 q^{93} +11.9758 q^{95} +15.8331 q^{97} -16.3937 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{9} - 18 q^{11} - 24 q^{15} - 38 q^{23} + 10 q^{25} - 22 q^{29} - 6 q^{37} - 16 q^{39} - 10 q^{43} + 4 q^{51} - 38 q^{53} + 8 q^{57} - 20 q^{65} - 14 q^{67} - 14 q^{71} - 22 q^{79} - 22 q^{81}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.54832 1.47128 0.735638 0.677375i \(-0.236882\pi\)
0.735638 + 0.677375i \(0.236882\pi\)
\(4\) 0 0
\(5\) −3.96254 −1.77210 −0.886051 0.463589i \(-0.846562\pi\)
−0.886051 + 0.463589i \(0.846562\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.49396 1.16465
\(10\) 0 0
\(11\) −4.69202 −1.41470 −0.707349 0.706865i \(-0.750109\pi\)
−0.707349 + 0.706865i \(0.750109\pi\)
\(12\) 0 0
\(13\) −0.0691796 −0.0191870 −0.00959348 0.999954i \(-0.503054\pi\)
−0.00959348 + 0.999954i \(0.503054\pi\)
\(14\) 0 0
\(15\) −10.0978 −2.60725
\(16\) 0 0
\(17\) 6.19997 1.50371 0.751857 0.659326i \(-0.229158\pi\)
0.751857 + 0.659326i \(0.229158\pi\)
\(18\) 0 0
\(19\) −3.02226 −0.693355 −0.346677 0.937984i \(-0.612690\pi\)
−0.346677 + 0.937984i \(0.612690\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −9.15883 −1.90975 −0.954874 0.297010i \(-0.904011\pi\)
−0.954874 + 0.297010i \(0.904011\pi\)
\(24\) 0 0
\(25\) 10.7017 2.14034
\(26\) 0 0
\(27\) 1.25877 0.242250
\(28\) 0 0
\(29\) −6.93900 −1.28854 −0.644270 0.764798i \(-0.722839\pi\)
−0.644270 + 0.764798i \(0.722839\pi\)
\(30\) 0 0
\(31\) −2.39288 −0.429774 −0.214887 0.976639i \(-0.568938\pi\)
−0.214887 + 0.976639i \(0.568938\pi\)
\(32\) 0 0
\(33\) −11.9568 −2.08141
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.02177 −0.332377 −0.166188 0.986094i \(-0.553146\pi\)
−0.166188 + 0.986094i \(0.553146\pi\)
\(38\) 0 0
\(39\) −0.176292 −0.0282293
\(40\) 0 0
\(41\) −7.07107 −1.10432 −0.552158 0.833740i \(-0.686195\pi\)
−0.552158 + 0.833740i \(0.686195\pi\)
\(42\) 0 0
\(43\) 0.137063 0.0209020 0.0104510 0.999945i \(-0.496673\pi\)
0.0104510 + 0.999945i \(0.496673\pi\)
\(44\) 0 0
\(45\) −13.8449 −2.06388
\(46\) 0 0
\(47\) 5.91987 0.863502 0.431751 0.901993i \(-0.357896\pi\)
0.431751 + 0.901993i \(0.357896\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 15.7995 2.21238
\(52\) 0 0
\(53\) −4.75302 −0.652878 −0.326439 0.945218i \(-0.605849\pi\)
−0.326439 + 0.945218i \(0.605849\pi\)
\(54\) 0 0
\(55\) 18.5923 2.50699
\(56\) 0 0
\(57\) −7.70171 −1.02012
\(58\) 0 0
\(59\) −3.73791 −0.486635 −0.243317 0.969947i \(-0.578236\pi\)
−0.243317 + 0.969947i \(0.578236\pi\)
\(60\) 0 0
\(61\) 0.224625 0.0287602 0.0143801 0.999897i \(-0.495423\pi\)
0.0143801 + 0.999897i \(0.495423\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.274127 0.0340012
\(66\) 0 0
\(67\) −5.82908 −0.712136 −0.356068 0.934460i \(-0.615883\pi\)
−0.356068 + 0.934460i \(0.615883\pi\)
\(68\) 0 0
\(69\) −23.3397 −2.80977
\(70\) 0 0
\(71\) −6.85086 −0.813047 −0.406523 0.913640i \(-0.633259\pi\)
−0.406523 + 0.913640i \(0.633259\pi\)
\(72\) 0 0
\(73\) −3.61326 −0.422900 −0.211450 0.977389i \(-0.567819\pi\)
−0.211450 + 0.977389i \(0.567819\pi\)
\(74\) 0 0
\(75\) 27.2714 3.14903
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.57673 −0.514922 −0.257461 0.966289i \(-0.582886\pi\)
−0.257461 + 0.966289i \(0.582886\pi\)
\(80\) 0 0
\(81\) −7.27413 −0.808236
\(82\) 0 0
\(83\) 6.03692 0.662638 0.331319 0.943519i \(-0.392506\pi\)
0.331319 + 0.943519i \(0.392506\pi\)
\(84\) 0 0
\(85\) −24.5676 −2.66473
\(86\) 0 0
\(87\) −17.6828 −1.89580
\(88\) 0 0
\(89\) 7.45114 0.789819 0.394909 0.918720i \(-0.370776\pi\)
0.394909 + 0.918720i \(0.370776\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.09783 −0.632316
\(94\) 0 0
\(95\) 11.9758 1.22869
\(96\) 0 0
\(97\) 15.8331 1.60760 0.803802 0.594897i \(-0.202807\pi\)
0.803802 + 0.594897i \(0.202807\pi\)
\(98\) 0 0
\(99\) −16.3937 −1.64763
\(100\) 0 0
\(101\) 13.9867 1.39173 0.695864 0.718174i \(-0.255022\pi\)
0.695864 + 0.718174i \(0.255022\pi\)
\(102\) 0 0
\(103\) 5.23839 0.516154 0.258077 0.966124i \(-0.416911\pi\)
0.258077 + 0.966124i \(0.416911\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.73125 −0.554061 −0.277030 0.960861i \(-0.589350\pi\)
−0.277030 + 0.960861i \(0.589350\pi\)
\(108\) 0 0
\(109\) 5.78448 0.554053 0.277026 0.960862i \(-0.410651\pi\)
0.277026 + 0.960862i \(0.410651\pi\)
\(110\) 0 0
\(111\) −5.15213 −0.489018
\(112\) 0 0
\(113\) 12.2174 1.14932 0.574660 0.818392i \(-0.305134\pi\)
0.574660 + 0.818392i \(0.305134\pi\)
\(114\) 0 0
\(115\) 36.2922 3.38427
\(116\) 0 0
\(117\) −0.241711 −0.0223462
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0151 1.00137
\(122\) 0 0
\(123\) −18.0194 −1.62475
\(124\) 0 0
\(125\) −22.5932 −2.02080
\(126\) 0 0
\(127\) 16.7657 1.48771 0.743857 0.668338i \(-0.232994\pi\)
0.743857 + 0.668338i \(0.232994\pi\)
\(128\) 0 0
\(129\) 0.349282 0.0307526
\(130\) 0 0
\(131\) −12.4170 −1.08488 −0.542441 0.840094i \(-0.682500\pi\)
−0.542441 + 0.840094i \(0.682500\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.98792 −0.429292
\(136\) 0 0
\(137\) 12.7627 1.09039 0.545196 0.838309i \(-0.316455\pi\)
0.545196 + 0.838309i \(0.316455\pi\)
\(138\) 0 0
\(139\) 12.0431 1.02148 0.510740 0.859736i \(-0.329372\pi\)
0.510740 + 0.859736i \(0.329372\pi\)
\(140\) 0 0
\(141\) 15.0858 1.27045
\(142\) 0 0
\(143\) 0.324592 0.0271437
\(144\) 0 0
\(145\) 27.4961 2.28342
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −16.9855 −1.39151 −0.695754 0.718280i \(-0.744930\pi\)
−0.695754 + 0.718280i \(0.744930\pi\)
\(150\) 0 0
\(151\) −11.7235 −0.954043 −0.477022 0.878892i \(-0.658284\pi\)
−0.477022 + 0.878892i \(0.658284\pi\)
\(152\) 0 0
\(153\) 21.6625 1.75131
\(154\) 0 0
\(155\) 9.48188 0.761603
\(156\) 0 0
\(157\) 11.6459 0.929444 0.464722 0.885457i \(-0.346154\pi\)
0.464722 + 0.885457i \(0.346154\pi\)
\(158\) 0 0
\(159\) −12.1122 −0.960563
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 15.9801 1.25166 0.625831 0.779959i \(-0.284760\pi\)
0.625831 + 0.779959i \(0.284760\pi\)
\(164\) 0 0
\(165\) 47.3793 3.68847
\(166\) 0 0
\(167\) −14.4496 −1.11815 −0.559073 0.829118i \(-0.688843\pi\)
−0.559073 + 0.829118i \(0.688843\pi\)
\(168\) 0 0
\(169\) −12.9952 −0.999632
\(170\) 0 0
\(171\) −10.5597 −0.807518
\(172\) 0 0
\(173\) 9.37768 0.712972 0.356486 0.934301i \(-0.383975\pi\)
0.356486 + 0.934301i \(0.383975\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.52542 −0.715974
\(178\) 0 0
\(179\) −13.2470 −0.990126 −0.495063 0.868857i \(-0.664855\pi\)
−0.495063 + 0.868857i \(0.664855\pi\)
\(180\) 0 0
\(181\) −12.5478 −0.932670 −0.466335 0.884608i \(-0.654426\pi\)
−0.466335 + 0.884608i \(0.654426\pi\)
\(182\) 0 0
\(183\) 0.572417 0.0423142
\(184\) 0 0
\(185\) 8.01134 0.589006
\(186\) 0 0
\(187\) −29.0904 −2.12730
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.7235 1.42714 0.713570 0.700583i \(-0.247077\pi\)
0.713570 + 0.700583i \(0.247077\pi\)
\(192\) 0 0
\(193\) −0.860544 −0.0619433 −0.0309716 0.999520i \(-0.509860\pi\)
−0.0309716 + 0.999520i \(0.509860\pi\)
\(194\) 0 0
\(195\) 0.698564 0.0500252
\(196\) 0 0
\(197\) −18.3773 −1.30933 −0.654666 0.755919i \(-0.727191\pi\)
−0.654666 + 0.755919i \(0.727191\pi\)
\(198\) 0 0
\(199\) 7.65258 0.542477 0.271238 0.962512i \(-0.412567\pi\)
0.271238 + 0.962512i \(0.412567\pi\)
\(200\) 0 0
\(201\) −14.8544 −1.04775
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 28.0194 1.95696
\(206\) 0 0
\(207\) −32.0006 −2.22419
\(208\) 0 0
\(209\) 14.1805 0.980888
\(210\) 0 0
\(211\) 0.323044 0.0222393 0.0111196 0.999938i \(-0.496460\pi\)
0.0111196 + 0.999938i \(0.496460\pi\)
\(212\) 0 0
\(213\) −17.4582 −1.19622
\(214\) 0 0
\(215\) −0.543119 −0.0370404
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.20775 −0.622202
\(220\) 0 0
\(221\) −0.428911 −0.0288517
\(222\) 0 0
\(223\) 8.66203 0.580053 0.290026 0.957019i \(-0.406336\pi\)
0.290026 + 0.957019i \(0.406336\pi\)
\(224\) 0 0
\(225\) 37.3913 2.49276
\(226\) 0 0
\(227\) 8.10521 0.537962 0.268981 0.963146i \(-0.413313\pi\)
0.268981 + 0.963146i \(0.413313\pi\)
\(228\) 0 0
\(229\) −17.1226 −1.13149 −0.565747 0.824579i \(-0.691412\pi\)
−0.565747 + 0.824579i \(0.691412\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.93661 −0.650969 −0.325484 0.945547i \(-0.605527\pi\)
−0.325484 + 0.945547i \(0.605527\pi\)
\(234\) 0 0
\(235\) −23.4577 −1.53021
\(236\) 0 0
\(237\) −11.6630 −0.757593
\(238\) 0 0
\(239\) 12.9584 0.838208 0.419104 0.907938i \(-0.362344\pi\)
0.419104 + 0.907938i \(0.362344\pi\)
\(240\) 0 0
\(241\) −23.2534 −1.49788 −0.748942 0.662635i \(-0.769438\pi\)
−0.748942 + 0.662635i \(0.769438\pi\)
\(242\) 0 0
\(243\) −22.3131 −1.43139
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.209079 0.0133034
\(248\) 0 0
\(249\) 15.3840 0.974924
\(250\) 0 0
\(251\) −19.2833 −1.21715 −0.608575 0.793497i \(-0.708258\pi\)
−0.608575 + 0.793497i \(0.708258\pi\)
\(252\) 0 0
\(253\) 42.9734 2.70172
\(254\) 0 0
\(255\) −62.6063 −3.92056
\(256\) 0 0
\(257\) −25.6155 −1.59785 −0.798926 0.601430i \(-0.794598\pi\)
−0.798926 + 0.601430i \(0.794598\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −24.2446 −1.50070
\(262\) 0 0
\(263\) −8.61356 −0.531135 −0.265568 0.964092i \(-0.585559\pi\)
−0.265568 + 0.964092i \(0.585559\pi\)
\(264\) 0 0
\(265\) 18.8340 1.15696
\(266\) 0 0
\(267\) 18.9879 1.16204
\(268\) 0 0
\(269\) −1.45261 −0.0885669 −0.0442835 0.999019i \(-0.514100\pi\)
−0.0442835 + 0.999019i \(0.514100\pi\)
\(270\) 0 0
\(271\) −27.2330 −1.65429 −0.827145 0.561989i \(-0.810036\pi\)
−0.827145 + 0.561989i \(0.810036\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −50.2127 −3.02794
\(276\) 0 0
\(277\) −6.11960 −0.367691 −0.183846 0.982955i \(-0.558855\pi\)
−0.183846 + 0.982955i \(0.558855\pi\)
\(278\) 0 0
\(279\) −8.36062 −0.500537
\(280\) 0 0
\(281\) 12.7356 0.759740 0.379870 0.925040i \(-0.375969\pi\)
0.379870 + 0.925040i \(0.375969\pi\)
\(282\) 0 0
\(283\) 18.1397 1.07829 0.539146 0.842212i \(-0.318747\pi\)
0.539146 + 0.842212i \(0.318747\pi\)
\(284\) 0 0
\(285\) 30.5183 1.80775
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 21.4397 1.26116
\(290\) 0 0
\(291\) 40.3478 2.36523
\(292\) 0 0
\(293\) 28.9103 1.68896 0.844478 0.535590i \(-0.179911\pi\)
0.844478 + 0.535590i \(0.179911\pi\)
\(294\) 0 0
\(295\) 14.8116 0.862366
\(296\) 0 0
\(297\) −5.90617 −0.342711
\(298\) 0 0
\(299\) 0.633604 0.0366423
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 35.6426 2.04762
\(304\) 0 0
\(305\) −0.890084 −0.0509660
\(306\) 0 0
\(307\) −25.2799 −1.44280 −0.721401 0.692518i \(-0.756501\pi\)
−0.721401 + 0.692518i \(0.756501\pi\)
\(308\) 0 0
\(309\) 13.3491 0.759405
\(310\) 0 0
\(311\) −4.39048 −0.248961 −0.124481 0.992222i \(-0.539726\pi\)
−0.124481 + 0.992222i \(0.539726\pi\)
\(312\) 0 0
\(313\) 23.7889 1.34463 0.672315 0.740265i \(-0.265300\pi\)
0.672315 + 0.740265i \(0.265300\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.8092 −1.50576 −0.752878 0.658160i \(-0.771335\pi\)
−0.752878 + 0.658160i \(0.771335\pi\)
\(318\) 0 0
\(319\) 32.5579 1.82289
\(320\) 0 0
\(321\) −14.6051 −0.815176
\(322\) 0 0
\(323\) −18.7380 −1.04261
\(324\) 0 0
\(325\) −0.740340 −0.0410667
\(326\) 0 0
\(327\) 14.7407 0.815164
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −19.5066 −1.07218 −0.536091 0.844160i \(-0.680100\pi\)
−0.536091 + 0.844160i \(0.680100\pi\)
\(332\) 0 0
\(333\) −7.06398 −0.387104
\(334\) 0 0
\(335\) 23.0980 1.26198
\(336\) 0 0
\(337\) 8.92261 0.486045 0.243023 0.970021i \(-0.421861\pi\)
0.243023 + 0.970021i \(0.421861\pi\)
\(338\) 0 0
\(339\) 31.1340 1.69097
\(340\) 0 0
\(341\) 11.2274 0.608000
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 92.4844 4.97919
\(346\) 0 0
\(347\) 2.50471 0.134460 0.0672300 0.997738i \(-0.478584\pi\)
0.0672300 + 0.997738i \(0.478584\pi\)
\(348\) 0 0
\(349\) −12.4341 −0.665583 −0.332792 0.943000i \(-0.607991\pi\)
−0.332792 + 0.943000i \(0.607991\pi\)
\(350\) 0 0
\(351\) −0.0870811 −0.00464804
\(352\) 0 0
\(353\) 13.0525 0.694715 0.347358 0.937733i \(-0.387079\pi\)
0.347358 + 0.937733i \(0.387079\pi\)
\(354\) 0 0
\(355\) 27.1468 1.44080
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.0978347 0.00516352 0.00258176 0.999997i \(-0.499178\pi\)
0.00258176 + 0.999997i \(0.499178\pi\)
\(360\) 0 0
\(361\) −9.86592 −0.519259
\(362\) 0 0
\(363\) 28.0700 1.47329
\(364\) 0 0
\(365\) 14.3177 0.749421
\(366\) 0 0
\(367\) −11.4734 −0.598905 −0.299453 0.954111i \(-0.596804\pi\)
−0.299453 + 0.954111i \(0.596804\pi\)
\(368\) 0 0
\(369\) −24.7060 −1.28614
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.8726 −0.614741 −0.307371 0.951590i \(-0.599449\pi\)
−0.307371 + 0.951590i \(0.599449\pi\)
\(374\) 0 0
\(375\) −57.5749 −2.97316
\(376\) 0 0
\(377\) 0.480037 0.0247232
\(378\) 0 0
\(379\) −6.07367 −0.311984 −0.155992 0.987758i \(-0.549857\pi\)
−0.155992 + 0.987758i \(0.549857\pi\)
\(380\) 0 0
\(381\) 42.7244 2.18884
\(382\) 0 0
\(383\) −26.5311 −1.35568 −0.677838 0.735211i \(-0.737083\pi\)
−0.677838 + 0.735211i \(0.737083\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.478894 0.0243435
\(388\) 0 0
\(389\) 27.5512 1.39690 0.698452 0.715657i \(-0.253873\pi\)
0.698452 + 0.715657i \(0.253873\pi\)
\(390\) 0 0
\(391\) −56.7845 −2.87172
\(392\) 0 0
\(393\) −31.6426 −1.59616
\(394\) 0 0
\(395\) 18.1355 0.912494
\(396\) 0 0
\(397\) 9.87481 0.495602 0.247801 0.968811i \(-0.420292\pi\)
0.247801 + 0.968811i \(0.420292\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.9594 −0.946789 −0.473395 0.880850i \(-0.656972\pi\)
−0.473395 + 0.880850i \(0.656972\pi\)
\(402\) 0 0
\(403\) 0.165538 0.00824605
\(404\) 0 0
\(405\) 28.8240 1.43228
\(406\) 0 0
\(407\) 9.48619 0.470213
\(408\) 0 0
\(409\) −24.5643 −1.21463 −0.607313 0.794463i \(-0.707752\pi\)
−0.607313 + 0.794463i \(0.707752\pi\)
\(410\) 0 0
\(411\) 32.5235 1.60427
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −23.9215 −1.17426
\(416\) 0 0
\(417\) 30.6896 1.50288
\(418\) 0 0
\(419\) 4.05490 0.198095 0.0990475 0.995083i \(-0.468420\pi\)
0.0990475 + 0.995083i \(0.468420\pi\)
\(420\) 0 0
\(421\) 2.10215 0.102452 0.0512262 0.998687i \(-0.483687\pi\)
0.0512262 + 0.998687i \(0.483687\pi\)
\(422\) 0 0
\(423\) 20.6838 1.00568
\(424\) 0 0
\(425\) 66.3503 3.21846
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.827166 0.0399359
\(430\) 0 0
\(431\) −5.50173 −0.265009 −0.132504 0.991182i \(-0.542302\pi\)
−0.132504 + 0.991182i \(0.542302\pi\)
\(432\) 0 0
\(433\) 26.8914 1.29232 0.646158 0.763203i \(-0.276375\pi\)
0.646158 + 0.763203i \(0.276375\pi\)
\(434\) 0 0
\(435\) 70.0689 3.35955
\(436\) 0 0
\(437\) 27.6804 1.32413
\(438\) 0 0
\(439\) 13.1601 0.628097 0.314048 0.949407i \(-0.398315\pi\)
0.314048 + 0.949407i \(0.398315\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.01075 −0.190557 −0.0952783 0.995451i \(-0.530374\pi\)
−0.0952783 + 0.995451i \(0.530374\pi\)
\(444\) 0 0
\(445\) −29.5254 −1.39964
\(446\) 0 0
\(447\) −43.2846 −2.04729
\(448\) 0 0
\(449\) 17.0164 0.803053 0.401527 0.915847i \(-0.368480\pi\)
0.401527 + 0.915847i \(0.368480\pi\)
\(450\) 0 0
\(451\) 33.1776 1.56227
\(452\) 0 0
\(453\) −29.8752 −1.40366
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.0911 0.612377 0.306189 0.951971i \(-0.400946\pi\)
0.306189 + 0.951971i \(0.400946\pi\)
\(458\) 0 0
\(459\) 7.80433 0.364275
\(460\) 0 0
\(461\) 25.6695 1.19555 0.597773 0.801665i \(-0.296052\pi\)
0.597773 + 0.801665i \(0.296052\pi\)
\(462\) 0 0
\(463\) −7.00969 −0.325768 −0.162884 0.986645i \(-0.552080\pi\)
−0.162884 + 0.986645i \(0.552080\pi\)
\(464\) 0 0
\(465\) 24.1629 1.12053
\(466\) 0 0
\(467\) 11.0815 0.512790 0.256395 0.966572i \(-0.417465\pi\)
0.256395 + 0.966572i \(0.417465\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 29.6775 1.36747
\(472\) 0 0
\(473\) −0.643104 −0.0295700
\(474\) 0 0
\(475\) −32.3434 −1.48402
\(476\) 0 0
\(477\) −16.6069 −0.760376
\(478\) 0 0
\(479\) −39.3145 −1.79633 −0.898163 0.439664i \(-0.855098\pi\)
−0.898163 + 0.439664i \(0.855098\pi\)
\(480\) 0 0
\(481\) 0.139865 0.00637730
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −62.7391 −2.84884
\(486\) 0 0
\(487\) −8.85517 −0.401266 −0.200633 0.979666i \(-0.564300\pi\)
−0.200633 + 0.979666i \(0.564300\pi\)
\(488\) 0 0
\(489\) 40.7226 1.84154
\(490\) 0 0
\(491\) 12.2000 0.550577 0.275289 0.961362i \(-0.411227\pi\)
0.275289 + 0.961362i \(0.411227\pi\)
\(492\) 0 0
\(493\) −43.0216 −1.93760
\(494\) 0 0
\(495\) 64.9608 2.91977
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 32.3260 1.44711 0.723556 0.690266i \(-0.242506\pi\)
0.723556 + 0.690266i \(0.242506\pi\)
\(500\) 0 0
\(501\) −36.8224 −1.64510
\(502\) 0 0
\(503\) 20.1662 0.899166 0.449583 0.893239i \(-0.351573\pi\)
0.449583 + 0.893239i \(0.351573\pi\)
\(504\) 0 0
\(505\) −55.4228 −2.46628
\(506\) 0 0
\(507\) −33.1160 −1.47073
\(508\) 0 0
\(509\) −9.24542 −0.409796 −0.204898 0.978783i \(-0.565686\pi\)
−0.204898 + 0.978783i \(0.565686\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.80433 −0.167965
\(514\) 0 0
\(515\) −20.7573 −0.914677
\(516\) 0 0
\(517\) −27.7762 −1.22159
\(518\) 0 0
\(519\) 23.8974 1.04898
\(520\) 0 0
\(521\) −9.98576 −0.437484 −0.218742 0.975783i \(-0.570195\pi\)
−0.218742 + 0.975783i \(0.570195\pi\)
\(522\) 0 0
\(523\) 13.4231 0.586951 0.293476 0.955967i \(-0.405188\pi\)
0.293476 + 0.955967i \(0.405188\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −14.8358 −0.646257
\(528\) 0 0
\(529\) 60.8842 2.64714
\(530\) 0 0
\(531\) −13.0601 −0.566761
\(532\) 0 0
\(533\) 0.489173 0.0211885
\(534\) 0 0
\(535\) 22.7103 0.981852
\(536\) 0 0
\(537\) −33.7576 −1.45675
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.9511 −0.771777 −0.385889 0.922545i \(-0.626105\pi\)
−0.385889 + 0.922545i \(0.626105\pi\)
\(542\) 0 0
\(543\) −31.9758 −1.37221
\(544\) 0 0
\(545\) −22.9212 −0.981837
\(546\) 0 0
\(547\) −34.0605 −1.45632 −0.728161 0.685406i \(-0.759625\pi\)
−0.728161 + 0.685406i \(0.759625\pi\)
\(548\) 0 0
\(549\) 0.784829 0.0334957
\(550\) 0 0
\(551\) 20.9715 0.893416
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 20.4155 0.866590
\(556\) 0 0
\(557\) 36.3279 1.53926 0.769632 0.638487i \(-0.220440\pi\)
0.769632 + 0.638487i \(0.220440\pi\)
\(558\) 0 0
\(559\) −0.00948198 −0.000401045 0
\(560\) 0 0
\(561\) −74.1318 −3.12985
\(562\) 0 0
\(563\) 2.96679 0.125035 0.0625176 0.998044i \(-0.480087\pi\)
0.0625176 + 0.998044i \(0.480087\pi\)
\(564\) 0 0
\(565\) −48.4121 −2.03671
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.0877 −1.34519 −0.672593 0.740013i \(-0.734819\pi\)
−0.672593 + 0.740013i \(0.734819\pi\)
\(570\) 0 0
\(571\) 3.73019 0.156103 0.0780517 0.996949i \(-0.475130\pi\)
0.0780517 + 0.996949i \(0.475130\pi\)
\(572\) 0 0
\(573\) 50.2618 2.09972
\(574\) 0 0
\(575\) −98.0152 −4.08752
\(576\) 0 0
\(577\) 3.63034 0.151133 0.0755666 0.997141i \(-0.475923\pi\)
0.0755666 + 0.997141i \(0.475923\pi\)
\(578\) 0 0
\(579\) −2.19294 −0.0911357
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 22.3013 0.923624
\(584\) 0 0
\(585\) 0.957787 0.0395996
\(586\) 0 0
\(587\) −21.3440 −0.880959 −0.440480 0.897763i \(-0.645192\pi\)
−0.440480 + 0.897763i \(0.645192\pi\)
\(588\) 0 0
\(589\) 7.23191 0.297986
\(590\) 0 0
\(591\) −46.8314 −1.92639
\(592\) 0 0
\(593\) −46.5007 −1.90956 −0.954778 0.297319i \(-0.903908\pi\)
−0.954778 + 0.297319i \(0.903908\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.5013 0.798133
\(598\) 0 0
\(599\) 9.57971 0.391416 0.195708 0.980662i \(-0.437299\pi\)
0.195708 + 0.980662i \(0.437299\pi\)
\(600\) 0 0
\(601\) −42.2539 −1.72357 −0.861786 0.507272i \(-0.830654\pi\)
−0.861786 + 0.507272i \(0.830654\pi\)
\(602\) 0 0
\(603\) −20.3666 −0.829391
\(604\) 0 0
\(605\) −43.6476 −1.77453
\(606\) 0 0
\(607\) −25.3510 −1.02896 −0.514482 0.857501i \(-0.672016\pi\)
−0.514482 + 0.857501i \(0.672016\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.409534 −0.0165680
\(612\) 0 0
\(613\) 12.3696 0.499602 0.249801 0.968297i \(-0.419635\pi\)
0.249801 + 0.968297i \(0.419635\pi\)
\(614\) 0 0
\(615\) 71.4025 2.87923
\(616\) 0 0
\(617\) 48.9004 1.96865 0.984327 0.176352i \(-0.0564295\pi\)
0.984327 + 0.176352i \(0.0564295\pi\)
\(618\) 0 0
\(619\) −15.9117 −0.639546 −0.319773 0.947494i \(-0.603607\pi\)
−0.319773 + 0.947494i \(0.603607\pi\)
\(620\) 0 0
\(621\) −11.5289 −0.462637
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 36.0180 1.44072
\(626\) 0 0
\(627\) 36.1366 1.44316
\(628\) 0 0
\(629\) −12.5349 −0.499800
\(630\) 0 0
\(631\) 8.18167 0.325707 0.162854 0.986650i \(-0.447930\pi\)
0.162854 + 0.986650i \(0.447930\pi\)
\(632\) 0 0
\(633\) 0.823221 0.0327201
\(634\) 0 0
\(635\) −66.4347 −2.63638
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −23.9366 −0.946918
\(640\) 0 0
\(641\) −27.9463 −1.10381 −0.551906 0.833906i \(-0.686099\pi\)
−0.551906 + 0.833906i \(0.686099\pi\)
\(642\) 0 0
\(643\) 15.6886 0.618698 0.309349 0.950949i \(-0.399889\pi\)
0.309349 + 0.950949i \(0.399889\pi\)
\(644\) 0 0
\(645\) −1.38404 −0.0544966
\(646\) 0 0
\(647\) −16.0885 −0.632503 −0.316252 0.948675i \(-0.602424\pi\)
−0.316252 + 0.948675i \(0.602424\pi\)
\(648\) 0 0
\(649\) 17.5384 0.688441
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.8950 0.700285 0.350142 0.936696i \(-0.386133\pi\)
0.350142 + 0.936696i \(0.386133\pi\)
\(654\) 0 0
\(655\) 49.2030 1.92252
\(656\) 0 0
\(657\) −12.6246 −0.492531
\(658\) 0 0
\(659\) 3.62266 0.141119 0.0705594 0.997508i \(-0.477522\pi\)
0.0705594 + 0.997508i \(0.477522\pi\)
\(660\) 0 0
\(661\) −38.4187 −1.49431 −0.747157 0.664647i \(-0.768582\pi\)
−0.747157 + 0.664647i \(0.768582\pi\)
\(662\) 0 0
\(663\) −1.09301 −0.0424488
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 63.5532 2.46079
\(668\) 0 0
\(669\) 22.0737 0.853417
\(670\) 0 0
\(671\) −1.05394 −0.0406870
\(672\) 0 0
\(673\) 19.3448 0.745688 0.372844 0.927894i \(-0.378383\pi\)
0.372844 + 0.927894i \(0.378383\pi\)
\(674\) 0 0
\(675\) 13.4710 0.518498
\(676\) 0 0
\(677\) 27.3193 1.04997 0.524983 0.851113i \(-0.324072\pi\)
0.524983 + 0.851113i \(0.324072\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 20.6547 0.791490
\(682\) 0 0
\(683\) −32.1002 −1.22828 −0.614141 0.789197i \(-0.710497\pi\)
−0.614141 + 0.789197i \(0.710497\pi\)
\(684\) 0 0
\(685\) −50.5727 −1.93228
\(686\) 0 0
\(687\) −43.6340 −1.66474
\(688\) 0 0
\(689\) 0.328812 0.0125267
\(690\) 0 0
\(691\) 0.249315 0.00948437 0.00474219 0.999989i \(-0.498491\pi\)
0.00474219 + 0.999989i \(0.498491\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −47.7211 −1.81016
\(696\) 0 0
\(697\) −43.8404 −1.66057
\(698\) 0 0
\(699\) −25.3217 −0.957755
\(700\) 0 0
\(701\) 17.4989 0.660923 0.330461 0.943819i \(-0.392796\pi\)
0.330461 + 0.943819i \(0.392796\pi\)
\(702\) 0 0
\(703\) 6.11032 0.230455
\(704\) 0 0
\(705\) −59.7779 −2.25137
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.65173 −0.287367 −0.143683 0.989624i \(-0.545895\pi\)
−0.143683 + 0.989624i \(0.545895\pi\)
\(710\) 0 0
\(711\) −15.9909 −0.599706
\(712\) 0 0
\(713\) 21.9160 0.820760
\(714\) 0 0
\(715\) −1.28621 −0.0481015
\(716\) 0 0
\(717\) 33.0222 1.23324
\(718\) 0 0
\(719\) 2.39288 0.0892394 0.0446197 0.999004i \(-0.485792\pi\)
0.0446197 + 0.999004i \(0.485792\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −59.2573 −2.20380
\(724\) 0 0
\(725\) −74.2592 −2.75792
\(726\) 0 0
\(727\) 24.5924 0.912080 0.456040 0.889959i \(-0.349267\pi\)
0.456040 + 0.889959i \(0.349267\pi\)
\(728\) 0 0
\(729\) −35.0388 −1.29773
\(730\) 0 0
\(731\) 0.849789 0.0314306
\(732\) 0 0
\(733\) −0.387674 −0.0143191 −0.00715953 0.999974i \(-0.502279\pi\)
−0.00715953 + 0.999974i \(0.502279\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 27.3502 1.00746
\(738\) 0 0
\(739\) 10.2446 0.376853 0.188427 0.982087i \(-0.439661\pi\)
0.188427 + 0.982087i \(0.439661\pi\)
\(740\) 0 0
\(741\) 0.532801 0.0195729
\(742\) 0 0
\(743\) −36.2500 −1.32988 −0.664941 0.746896i \(-0.731543\pi\)
−0.664941 + 0.746896i \(0.731543\pi\)
\(744\) 0 0
\(745\) 67.3058 2.46589
\(746\) 0 0
\(747\) 21.0928 0.771744
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −32.4916 −1.18563 −0.592817 0.805337i \(-0.701984\pi\)
−0.592817 + 0.805337i \(0.701984\pi\)
\(752\) 0 0
\(753\) −49.1400 −1.79076
\(754\) 0 0
\(755\) 46.4547 1.69066
\(756\) 0 0
\(757\) −11.5985 −0.421555 −0.210777 0.977534i \(-0.567599\pi\)
−0.210777 + 0.977534i \(0.567599\pi\)
\(758\) 0 0
\(759\) 109.510 3.97497
\(760\) 0 0
\(761\) −20.3269 −0.736850 −0.368425 0.929658i \(-0.620103\pi\)
−0.368425 + 0.929658i \(0.620103\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −85.8383 −3.10349
\(766\) 0 0
\(767\) 0.258587 0.00933704
\(768\) 0 0
\(769\) −6.28624 −0.226688 −0.113344 0.993556i \(-0.536156\pi\)
−0.113344 + 0.993556i \(0.536156\pi\)
\(770\) 0 0
\(771\) −65.2766 −2.35088
\(772\) 0 0
\(773\) −20.1080 −0.723235 −0.361617 0.932327i \(-0.617775\pi\)
−0.361617 + 0.932327i \(0.617775\pi\)
\(774\) 0 0
\(775\) −25.6079 −0.919863
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21.3706 0.765682
\(780\) 0 0
\(781\) 32.1444 1.15022
\(782\) 0 0
\(783\) −8.73460 −0.312149
\(784\) 0 0
\(785\) −46.1473 −1.64707
\(786\) 0 0
\(787\) −4.22894 −0.150745 −0.0753727 0.997155i \(-0.524015\pi\)
−0.0753727 + 0.997155i \(0.524015\pi\)
\(788\) 0 0
\(789\) −21.9502 −0.781446
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −0.0155394 −0.000551822 0
\(794\) 0 0
\(795\) 47.9952 1.70221
\(796\) 0 0
\(797\) 33.1563 1.17446 0.587228 0.809421i \(-0.300219\pi\)
0.587228 + 0.809421i \(0.300219\pi\)
\(798\) 0 0
\(799\) 36.7030 1.29846
\(800\) 0 0
\(801\) 26.0340 0.919865
\(802\) 0 0
\(803\) 16.9535 0.598275
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.70171 −0.130306
\(808\) 0 0
\(809\) 10.5265 0.370091 0.185046 0.982730i \(-0.440757\pi\)
0.185046 + 0.982730i \(0.440757\pi\)
\(810\) 0 0
\(811\) 8.94063 0.313948 0.156974 0.987603i \(-0.449826\pi\)
0.156974 + 0.987603i \(0.449826\pi\)
\(812\) 0 0
\(813\) −69.3986 −2.43392
\(814\) 0 0
\(815\) −63.3220 −2.21807
\(816\) 0 0
\(817\) −0.414242 −0.0144925
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.9293 −0.381436 −0.190718 0.981645i \(-0.561082\pi\)
−0.190718 + 0.981645i \(0.561082\pi\)
\(822\) 0 0
\(823\) 12.4547 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(824\) 0 0
\(825\) −127.958 −4.45493
\(826\) 0 0
\(827\) −39.2922 −1.36632 −0.683161 0.730267i \(-0.739395\pi\)
−0.683161 + 0.730267i \(0.739395\pi\)
\(828\) 0 0
\(829\) −21.2695 −0.738721 −0.369360 0.929286i \(-0.620423\pi\)
−0.369360 + 0.929286i \(0.620423\pi\)
\(830\) 0 0
\(831\) −15.5947 −0.540976
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 57.2573 1.98147
\(836\) 0 0
\(837\) −3.01208 −0.104113
\(838\) 0 0
\(839\) −24.2781 −0.838172 −0.419086 0.907946i \(-0.637649\pi\)
−0.419086 + 0.907946i \(0.637649\pi\)
\(840\) 0 0
\(841\) 19.1497 0.660336
\(842\) 0 0
\(843\) 32.4543 1.11779
\(844\) 0 0
\(845\) 51.4940 1.77145
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 46.2258 1.58647
\(850\) 0 0
\(851\) 18.5171 0.634757
\(852\) 0 0
\(853\) 30.2382 1.03534 0.517668 0.855581i \(-0.326800\pi\)
0.517668 + 0.855581i \(0.326800\pi\)
\(854\) 0 0
\(855\) 41.8431 1.43100
\(856\) 0 0
\(857\) 33.1947 1.13391 0.566954 0.823749i \(-0.308122\pi\)
0.566954 + 0.823749i \(0.308122\pi\)
\(858\) 0 0
\(859\) 2.38866 0.0815000 0.0407500 0.999169i \(-0.487025\pi\)
0.0407500 + 0.999169i \(0.487025\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.9017 −1.42635 −0.713175 0.700986i \(-0.752744\pi\)
−0.713175 + 0.700986i \(0.752744\pi\)
\(864\) 0 0
\(865\) −37.1594 −1.26346
\(866\) 0 0
\(867\) 54.6352 1.85551
\(868\) 0 0
\(869\) 21.4741 0.728459
\(870\) 0 0
\(871\) 0.403254 0.0136637
\(872\) 0 0
\(873\) 55.3201 1.87230
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 21.8377 0.737407 0.368704 0.929547i \(-0.379802\pi\)
0.368704 + 0.929547i \(0.379802\pi\)
\(878\) 0 0
\(879\) 73.6728 2.48492
\(880\) 0 0
\(881\) −23.1842 −0.781097 −0.390548 0.920582i \(-0.627715\pi\)
−0.390548 + 0.920582i \(0.627715\pi\)
\(882\) 0 0
\(883\) −35.0968 −1.18110 −0.590550 0.807001i \(-0.701089\pi\)
−0.590550 + 0.807001i \(0.701089\pi\)
\(884\) 0 0
\(885\) 37.7448 1.26878
\(886\) 0 0
\(887\) −55.8537 −1.87538 −0.937692 0.347467i \(-0.887042\pi\)
−0.937692 + 0.347467i \(0.887042\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 34.1304 1.14341
\(892\) 0 0
\(893\) −17.8914 −0.598713
\(894\) 0 0
\(895\) 52.4917 1.75460
\(896\) 0 0
\(897\) 1.61463 0.0539109
\(898\) 0 0
\(899\) 16.6042 0.553781
\(900\) 0 0
\(901\) −29.4686 −0.981741
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49.7211 1.65278
\(906\) 0 0
\(907\) −47.7187 −1.58447 −0.792237 0.610214i \(-0.791083\pi\)
−0.792237 + 0.610214i \(0.791083\pi\)
\(908\) 0 0
\(909\) 48.8689 1.62088
\(910\) 0 0
\(911\) 8.80061 0.291577 0.145789 0.989316i \(-0.453428\pi\)
0.145789 + 0.989316i \(0.453428\pi\)
\(912\) 0 0
\(913\) −28.3254 −0.937433
\(914\) 0 0
\(915\) −2.26822 −0.0749851
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 19.3297 0.637630 0.318815 0.947817i \(-0.396715\pi\)
0.318815 + 0.947817i \(0.396715\pi\)
\(920\) 0 0
\(921\) −64.4215 −2.12276
\(922\) 0 0
\(923\) 0.473939 0.0155999
\(924\) 0 0
\(925\) −21.6364 −0.711400
\(926\) 0 0
\(927\) 18.3027 0.601141
\(928\) 0 0
\(929\) 52.6129 1.72617 0.863087 0.505055i \(-0.168528\pi\)
0.863087 + 0.505055i \(0.168528\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −11.1884 −0.366291
\(934\) 0 0
\(935\) 115.272 3.76979
\(936\) 0 0
\(937\) −23.5445 −0.769166 −0.384583 0.923091i \(-0.625655\pi\)
−0.384583 + 0.923091i \(0.625655\pi\)
\(938\) 0 0
\(939\) 60.6219 1.97832
\(940\) 0 0
\(941\) 34.9198 1.13835 0.569176 0.822215i \(-0.307262\pi\)
0.569176 + 0.822215i \(0.307262\pi\)
\(942\) 0 0
\(943\) 64.7627 2.10896
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −41.1685 −1.33780 −0.668899 0.743354i \(-0.733234\pi\)
−0.668899 + 0.743354i \(0.733234\pi\)
\(948\) 0 0
\(949\) 0.249964 0.00811416
\(950\) 0 0
\(951\) −68.3186 −2.21538
\(952\) 0 0
\(953\) 48.3126 1.56500 0.782500 0.622651i \(-0.213944\pi\)
0.782500 + 0.622651i \(0.213944\pi\)
\(954\) 0 0
\(955\) −78.1550 −2.52904
\(956\) 0 0
\(957\) 82.9682 2.68198
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.2741 −0.815294
\(962\) 0 0
\(963\) −20.0248 −0.645289
\(964\) 0 0
\(965\) 3.40994 0.109770
\(966\) 0 0
\(967\) 60.2747 1.93830 0.969152 0.246463i \(-0.0792685\pi\)
0.969152 + 0.246463i \(0.0792685\pi\)
\(968\) 0 0
\(969\) −47.7504 −1.53396
\(970\) 0 0
\(971\) 9.80713 0.314726 0.157363 0.987541i \(-0.449701\pi\)
0.157363 + 0.987541i \(0.449701\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.88663 −0.0604204
\(976\) 0 0
\(977\) 12.8140 0.409957 0.204978 0.978766i \(-0.434288\pi\)
0.204978 + 0.978766i \(0.434288\pi\)
\(978\) 0 0
\(979\) −34.9609 −1.11736
\(980\) 0 0
\(981\) 20.2107 0.645279
\(982\) 0 0
\(983\) 9.40087 0.299841 0.149921 0.988698i \(-0.452098\pi\)
0.149921 + 0.988698i \(0.452098\pi\)
\(984\) 0 0
\(985\) 72.8209 2.32027
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.25534 −0.0399175
\(990\) 0 0
\(991\) −36.7338 −1.16689 −0.583443 0.812154i \(-0.698295\pi\)
−0.583443 + 0.812154i \(0.698295\pi\)
\(992\) 0 0
\(993\) −49.7092 −1.57747
\(994\) 0 0
\(995\) −30.3236 −0.961324
\(996\) 0 0
\(997\) −4.19664 −0.132909 −0.0664545 0.997789i \(-0.521169\pi\)
−0.0664545 + 0.997789i \(0.521169\pi\)
\(998\) 0 0
\(999\) −2.54494 −0.0805184
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1372.2.a.b.1.6 yes 6
4.3 odd 2 5488.2.a.l.1.1 6
7.2 even 3 1372.2.e.c.361.1 12
7.3 odd 6 1372.2.e.c.1353.6 12
7.4 even 3 1372.2.e.c.1353.1 12
7.5 odd 6 1372.2.e.c.361.6 12
7.6 odd 2 inner 1372.2.a.b.1.1 6
28.27 even 2 5488.2.a.l.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1372.2.a.b.1.1 6 7.6 odd 2 inner
1372.2.a.b.1.6 yes 6 1.1 even 1 trivial
1372.2.e.c.361.1 12 7.2 even 3
1372.2.e.c.361.6 12 7.5 odd 6
1372.2.e.c.1353.1 12 7.4 even 3
1372.2.e.c.1353.6 12 7.3 odd 6
5488.2.a.l.1.1 6 4.3 odd 2
5488.2.a.l.1.6 6 28.27 even 2