Properties

Label 1369.2.a.o.1.19
Level $1369$
Weight $2$
Character 1369.1
Self dual yes
Analytic conductor $10.932$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1369,2,Mod(1,1369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1369, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1369.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1369 = 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1369.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,9,-1,25,17,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9315200367\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 1369.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81380 q^{2} -2.67610 q^{3} +1.28987 q^{4} -2.99386 q^{5} -4.85391 q^{6} -2.99597 q^{7} -1.28804 q^{8} +4.16150 q^{9} -5.43027 q^{10} +0.160906 q^{11} -3.45181 q^{12} +0.718529 q^{13} -5.43409 q^{14} +8.01187 q^{15} -4.91598 q^{16} -1.94564 q^{17} +7.54813 q^{18} +5.77250 q^{19} -3.86169 q^{20} +8.01751 q^{21} +0.291852 q^{22} -4.84015 q^{23} +3.44691 q^{24} +3.96322 q^{25} +1.30327 q^{26} -3.10830 q^{27} -3.86441 q^{28} +1.54800 q^{29} +14.5319 q^{30} +7.02347 q^{31} -6.34052 q^{32} -0.430601 q^{33} -3.52900 q^{34} +8.96953 q^{35} +5.36779 q^{36} +10.4702 q^{38} -1.92285 q^{39} +3.85621 q^{40} +2.08799 q^{41} +14.5422 q^{42} -6.85957 q^{43} +0.207548 q^{44} -12.4590 q^{45} -8.77906 q^{46} +11.0776 q^{47} +13.1556 q^{48} +1.97584 q^{49} +7.18848 q^{50} +5.20672 q^{51} +0.926808 q^{52} +10.0761 q^{53} -5.63783 q^{54} -0.481731 q^{55} +3.85892 q^{56} -15.4478 q^{57} +2.80776 q^{58} +9.76150 q^{59} +10.3343 q^{60} -11.0862 q^{61} +12.7392 q^{62} -12.4677 q^{63} -1.66848 q^{64} -2.15118 q^{65} -0.781024 q^{66} -7.90412 q^{67} -2.50962 q^{68} +12.9527 q^{69} +16.2689 q^{70} +2.02386 q^{71} -5.36017 q^{72} -9.41664 q^{73} -10.6060 q^{75} +7.44576 q^{76} -0.482070 q^{77} -3.48767 q^{78} +1.38332 q^{79} +14.7178 q^{80} -4.16640 q^{81} +3.78719 q^{82} +0.956139 q^{83} +10.3415 q^{84} +5.82497 q^{85} -12.4419 q^{86} -4.14259 q^{87} -0.207253 q^{88} +11.9126 q^{89} -22.5981 q^{90} -2.15269 q^{91} -6.24315 q^{92} -18.7955 q^{93} +20.0925 q^{94} -17.2821 q^{95} +16.9679 q^{96} +8.94904 q^{97} +3.58378 q^{98} +0.669612 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 9 q^{2} - q^{3} + 25 q^{4} + 17 q^{5} + 10 q^{6} - 3 q^{7} + 21 q^{8} + 20 q^{9} - 11 q^{10} - 5 q^{11} - 10 q^{12} + 15 q^{13} + 25 q^{14} + 23 q^{15} + 13 q^{16} + 26 q^{17} + 15 q^{18} + 27 q^{19}+ \cdots + 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81380 1.28255 0.641275 0.767311i \(-0.278406\pi\)
0.641275 + 0.767311i \(0.278406\pi\)
\(3\) −2.67610 −1.54505 −0.772523 0.634987i \(-0.781006\pi\)
−0.772523 + 0.634987i \(0.781006\pi\)
\(4\) 1.28987 0.644934
\(5\) −2.99386 −1.33890 −0.669448 0.742859i \(-0.733469\pi\)
−0.669448 + 0.742859i \(0.733469\pi\)
\(6\) −4.85391 −1.98160
\(7\) −2.99597 −1.13237 −0.566185 0.824278i \(-0.691581\pi\)
−0.566185 + 0.824278i \(0.691581\pi\)
\(8\) −1.28804 −0.455390
\(9\) 4.16150 1.38717
\(10\) −5.43027 −1.71720
\(11\) 0.160906 0.0485151 0.0242575 0.999706i \(-0.492278\pi\)
0.0242575 + 0.999706i \(0.492278\pi\)
\(12\) −3.45181 −0.996453
\(13\) 0.718529 0.199284 0.0996421 0.995023i \(-0.468230\pi\)
0.0996421 + 0.995023i \(0.468230\pi\)
\(14\) −5.43409 −1.45232
\(15\) 8.01187 2.06866
\(16\) −4.91598 −1.22899
\(17\) −1.94564 −0.471886 −0.235943 0.971767i \(-0.575818\pi\)
−0.235943 + 0.971767i \(0.575818\pi\)
\(18\) 7.54813 1.77911
\(19\) 5.77250 1.32430 0.662151 0.749370i \(-0.269644\pi\)
0.662151 + 0.749370i \(0.269644\pi\)
\(20\) −3.86169 −0.863500
\(21\) 8.01751 1.74956
\(22\) 0.291852 0.0622230
\(23\) −4.84015 −1.00924 −0.504620 0.863341i \(-0.668367\pi\)
−0.504620 + 0.863341i \(0.668367\pi\)
\(24\) 3.44691 0.703599
\(25\) 3.96322 0.792643
\(26\) 1.30327 0.255592
\(27\) −3.10830 −0.598192
\(28\) −3.86441 −0.730304
\(29\) 1.54800 0.287456 0.143728 0.989617i \(-0.454091\pi\)
0.143728 + 0.989617i \(0.454091\pi\)
\(30\) 14.5319 2.65315
\(31\) 7.02347 1.26145 0.630726 0.776006i \(-0.282757\pi\)
0.630726 + 0.776006i \(0.282757\pi\)
\(32\) −6.34052 −1.12086
\(33\) −0.430601 −0.0749580
\(34\) −3.52900 −0.605218
\(35\) 8.96953 1.51613
\(36\) 5.36779 0.894632
\(37\) 0 0
\(38\) 10.4702 1.69848
\(39\) −1.92285 −0.307903
\(40\) 3.85621 0.609720
\(41\) 2.08799 0.326089 0.163044 0.986619i \(-0.447869\pi\)
0.163044 + 0.986619i \(0.447869\pi\)
\(42\) 14.5422 2.24390
\(43\) −6.85957 −1.04607 −0.523037 0.852310i \(-0.675201\pi\)
−0.523037 + 0.852310i \(0.675201\pi\)
\(44\) 0.207548 0.0312890
\(45\) −12.4590 −1.85727
\(46\) −8.77906 −1.29440
\(47\) 11.0776 1.61583 0.807916 0.589298i \(-0.200595\pi\)
0.807916 + 0.589298i \(0.200595\pi\)
\(48\) 13.1556 1.89885
\(49\) 1.97584 0.282263
\(50\) 7.18848 1.01660
\(51\) 5.20672 0.729086
\(52\) 0.926808 0.128525
\(53\) 10.0761 1.38406 0.692032 0.721867i \(-0.256716\pi\)
0.692032 + 0.721867i \(0.256716\pi\)
\(54\) −5.63783 −0.767211
\(55\) −0.481731 −0.0649566
\(56\) 3.85892 0.515670
\(57\) −15.4478 −2.04611
\(58\) 2.80776 0.368676
\(59\) 9.76150 1.27084 0.635420 0.772167i \(-0.280827\pi\)
0.635420 + 0.772167i \(0.280827\pi\)
\(60\) 10.3343 1.33415
\(61\) −11.0862 −1.41945 −0.709724 0.704480i \(-0.751180\pi\)
−0.709724 + 0.704480i \(0.751180\pi\)
\(62\) 12.7392 1.61787
\(63\) −12.4677 −1.57079
\(64\) −1.66848 −0.208560
\(65\) −2.15118 −0.266821
\(66\) −0.781024 −0.0961374
\(67\) −7.90412 −0.965642 −0.482821 0.875719i \(-0.660388\pi\)
−0.482821 + 0.875719i \(0.660388\pi\)
\(68\) −2.50962 −0.304336
\(69\) 12.9527 1.55932
\(70\) 16.2689 1.94451
\(71\) 2.02386 0.240188 0.120094 0.992763i \(-0.461680\pi\)
0.120094 + 0.992763i \(0.461680\pi\)
\(72\) −5.36017 −0.631702
\(73\) −9.41664 −1.10213 −0.551067 0.834461i \(-0.685779\pi\)
−0.551067 + 0.834461i \(0.685779\pi\)
\(74\) 0 0
\(75\) −10.6060 −1.22467
\(76\) 7.44576 0.854087
\(77\) −0.482070 −0.0549370
\(78\) −3.48767 −0.394901
\(79\) 1.38332 0.155635 0.0778177 0.996968i \(-0.475205\pi\)
0.0778177 + 0.996968i \(0.475205\pi\)
\(80\) 14.7178 1.64550
\(81\) −4.16640 −0.462933
\(82\) 3.78719 0.418225
\(83\) 0.956139 0.104950 0.0524749 0.998622i \(-0.483289\pi\)
0.0524749 + 0.998622i \(0.483289\pi\)
\(84\) 10.3415 1.12835
\(85\) 5.82497 0.631807
\(86\) −12.4419 −1.34164
\(87\) −4.14259 −0.444132
\(88\) −0.207253 −0.0220933
\(89\) 11.9126 1.26273 0.631365 0.775486i \(-0.282495\pi\)
0.631365 + 0.775486i \(0.282495\pi\)
\(90\) −22.5981 −2.38205
\(91\) −2.15269 −0.225663
\(92\) −6.24315 −0.650893
\(93\) −18.7955 −1.94900
\(94\) 20.0925 2.07238
\(95\) −17.2821 −1.77310
\(96\) 16.9679 1.73177
\(97\) 8.94904 0.908638 0.454319 0.890839i \(-0.349883\pi\)
0.454319 + 0.890839i \(0.349883\pi\)
\(98\) 3.58378 0.362016
\(99\) 0.669612 0.0672985
\(100\) 5.11202 0.511202
\(101\) −8.31722 −0.827594 −0.413797 0.910369i \(-0.635798\pi\)
−0.413797 + 0.910369i \(0.635798\pi\)
\(102\) 9.44394 0.935090
\(103\) 12.3487 1.21676 0.608378 0.793648i \(-0.291821\pi\)
0.608378 + 0.793648i \(0.291821\pi\)
\(104\) −0.925492 −0.0907520
\(105\) −24.0033 −2.34249
\(106\) 18.2761 1.77513
\(107\) −5.62939 −0.544214 −0.272107 0.962267i \(-0.587720\pi\)
−0.272107 + 0.962267i \(0.587720\pi\)
\(108\) −4.00929 −0.385794
\(109\) −5.63253 −0.539499 −0.269749 0.962931i \(-0.586941\pi\)
−0.269749 + 0.962931i \(0.586941\pi\)
\(110\) −0.873764 −0.0833101
\(111\) 0 0
\(112\) 14.7281 1.39168
\(113\) −10.3234 −0.971146 −0.485573 0.874196i \(-0.661389\pi\)
−0.485573 + 0.874196i \(0.661389\pi\)
\(114\) −28.0192 −2.62424
\(115\) 14.4907 1.35127
\(116\) 1.99671 0.185390
\(117\) 2.99016 0.276440
\(118\) 17.7054 1.62991
\(119\) 5.82907 0.534350
\(120\) −10.3196 −0.942045
\(121\) −10.9741 −0.997646
\(122\) −20.1082 −1.82051
\(123\) −5.58766 −0.503822
\(124\) 9.05934 0.813553
\(125\) 3.10399 0.277629
\(126\) −22.6140 −2.01461
\(127\) −4.71502 −0.418391 −0.209195 0.977874i \(-0.567084\pi\)
−0.209195 + 0.977874i \(0.567084\pi\)
\(128\) 9.65476 0.853368
\(129\) 18.3569 1.61623
\(130\) −3.90180 −0.342211
\(131\) 14.4660 1.26390 0.631952 0.775007i \(-0.282254\pi\)
0.631952 + 0.775007i \(0.282254\pi\)
\(132\) −0.555418 −0.0483430
\(133\) −17.2942 −1.49960
\(134\) −14.3365 −1.23848
\(135\) 9.30582 0.800917
\(136\) 2.50605 0.214892
\(137\) 5.17046 0.441742 0.220871 0.975303i \(-0.429110\pi\)
0.220871 + 0.975303i \(0.429110\pi\)
\(138\) 23.4936 1.99991
\(139\) −0.912550 −0.0774015 −0.0387008 0.999251i \(-0.512322\pi\)
−0.0387008 + 0.999251i \(0.512322\pi\)
\(140\) 11.5695 0.977801
\(141\) −29.6447 −2.49654
\(142\) 3.67087 0.308053
\(143\) 0.115616 0.00966828
\(144\) −20.4579 −1.70482
\(145\) −4.63449 −0.384873
\(146\) −17.0799 −1.41354
\(147\) −5.28755 −0.436109
\(148\) 0 0
\(149\) 7.41563 0.607512 0.303756 0.952750i \(-0.401759\pi\)
0.303756 + 0.952750i \(0.401759\pi\)
\(150\) −19.2371 −1.57070
\(151\) 13.3117 1.08329 0.541644 0.840608i \(-0.317802\pi\)
0.541644 + 0.840608i \(0.317802\pi\)
\(152\) −7.43519 −0.603074
\(153\) −8.09678 −0.654586
\(154\) −0.874379 −0.0704595
\(155\) −21.0273 −1.68895
\(156\) −2.48023 −0.198577
\(157\) −11.9589 −0.954425 −0.477213 0.878788i \(-0.658353\pi\)
−0.477213 + 0.878788i \(0.658353\pi\)
\(158\) 2.50906 0.199610
\(159\) −26.9647 −2.13844
\(160\) 18.9826 1.50071
\(161\) 14.5009 1.14283
\(162\) −7.55701 −0.593735
\(163\) −3.10717 −0.243373 −0.121686 0.992569i \(-0.538830\pi\)
−0.121686 + 0.992569i \(0.538830\pi\)
\(164\) 2.69323 0.210306
\(165\) 1.28916 0.100361
\(166\) 1.73424 0.134603
\(167\) −4.89510 −0.378794 −0.189397 0.981901i \(-0.560653\pi\)
−0.189397 + 0.981901i \(0.560653\pi\)
\(168\) −10.3269 −0.796734
\(169\) −12.4837 −0.960286
\(170\) 10.5653 0.810324
\(171\) 24.0223 1.83703
\(172\) −8.84793 −0.674649
\(173\) −19.0784 −1.45050 −0.725251 0.688484i \(-0.758276\pi\)
−0.725251 + 0.688484i \(0.758276\pi\)
\(174\) −7.51383 −0.569622
\(175\) −11.8737 −0.897566
\(176\) −0.791011 −0.0596247
\(177\) −26.1227 −1.96351
\(178\) 21.6070 1.61951
\(179\) 15.4965 1.15826 0.579132 0.815234i \(-0.303392\pi\)
0.579132 + 0.815234i \(0.303392\pi\)
\(180\) −16.0704 −1.19782
\(181\) 22.7039 1.68757 0.843783 0.536684i \(-0.180323\pi\)
0.843783 + 0.536684i \(0.180323\pi\)
\(182\) −3.90455 −0.289425
\(183\) 29.6679 2.19311
\(184\) 6.23429 0.459598
\(185\) 0 0
\(186\) −34.0912 −2.49969
\(187\) −0.313065 −0.0228936
\(188\) 14.2886 1.04210
\(189\) 9.31237 0.677375
\(190\) −31.3462 −2.27409
\(191\) 14.7727 1.06892 0.534459 0.845194i \(-0.320515\pi\)
0.534459 + 0.845194i \(0.320515\pi\)
\(192\) 4.46501 0.322234
\(193\) 26.3754 1.89854 0.949272 0.314455i \(-0.101822\pi\)
0.949272 + 0.314455i \(0.101822\pi\)
\(194\) 16.2318 1.16537
\(195\) 5.75676 0.412250
\(196\) 2.54857 0.182041
\(197\) 4.60161 0.327851 0.163925 0.986473i \(-0.447584\pi\)
0.163925 + 0.986473i \(0.447584\pi\)
\(198\) 1.21454 0.0863137
\(199\) 2.96417 0.210125 0.105062 0.994466i \(-0.466496\pi\)
0.105062 + 0.994466i \(0.466496\pi\)
\(200\) −5.10477 −0.360962
\(201\) 21.1522 1.49196
\(202\) −15.0858 −1.06143
\(203\) −4.63775 −0.325506
\(204\) 6.71598 0.470213
\(205\) −6.25115 −0.436599
\(206\) 22.3981 1.56055
\(207\) −20.1423 −1.39999
\(208\) −3.53227 −0.244919
\(209\) 0.928831 0.0642486
\(210\) −43.5372 −3.00435
\(211\) −21.6699 −1.49182 −0.745909 0.666048i \(-0.767984\pi\)
−0.745909 + 0.666048i \(0.767984\pi\)
\(212\) 12.9969 0.892630
\(213\) −5.41605 −0.371101
\(214\) −10.2106 −0.697982
\(215\) 20.5366 1.40058
\(216\) 4.00360 0.272411
\(217\) −21.0421 −1.42843
\(218\) −10.2163 −0.691934
\(219\) 25.1998 1.70285
\(220\) −0.621370 −0.0418927
\(221\) −1.39800 −0.0940395
\(222\) 0 0
\(223\) 12.6558 0.847494 0.423747 0.905781i \(-0.360715\pi\)
0.423747 + 0.905781i \(0.360715\pi\)
\(224\) 18.9960 1.26922
\(225\) 16.4929 1.09953
\(226\) −18.7246 −1.24554
\(227\) 6.57096 0.436130 0.218065 0.975934i \(-0.430025\pi\)
0.218065 + 0.975934i \(0.430025\pi\)
\(228\) −19.9256 −1.31960
\(229\) 24.4422 1.61519 0.807593 0.589741i \(-0.200770\pi\)
0.807593 + 0.589741i \(0.200770\pi\)
\(230\) 26.2833 1.73307
\(231\) 1.29007 0.0848802
\(232\) −1.99388 −0.130904
\(233\) 17.1463 1.12329 0.561646 0.827378i \(-0.310168\pi\)
0.561646 + 0.827378i \(0.310168\pi\)
\(234\) 5.42355 0.354549
\(235\) −33.1648 −2.16343
\(236\) 12.5910 0.819607
\(237\) −3.70190 −0.240464
\(238\) 10.5728 0.685331
\(239\) 17.8579 1.15513 0.577566 0.816344i \(-0.304003\pi\)
0.577566 + 0.816344i \(0.304003\pi\)
\(240\) −39.3862 −2.54237
\(241\) 6.75241 0.434961 0.217480 0.976065i \(-0.430216\pi\)
0.217480 + 0.976065i \(0.430216\pi\)
\(242\) −19.9048 −1.27953
\(243\) 20.4746 1.31345
\(244\) −14.2998 −0.915450
\(245\) −5.91540 −0.377921
\(246\) −10.1349 −0.646177
\(247\) 4.14771 0.263912
\(248\) −9.04649 −0.574452
\(249\) −2.55872 −0.162152
\(250\) 5.63002 0.356074
\(251\) −9.16599 −0.578552 −0.289276 0.957246i \(-0.593415\pi\)
−0.289276 + 0.957246i \(0.593415\pi\)
\(252\) −16.0817 −1.01305
\(253\) −0.778810 −0.0489634
\(254\) −8.55210 −0.536607
\(255\) −15.5882 −0.976171
\(256\) 20.8487 1.30305
\(257\) −7.19490 −0.448806 −0.224403 0.974496i \(-0.572043\pi\)
−0.224403 + 0.974496i \(0.572043\pi\)
\(258\) 33.2957 2.07290
\(259\) 0 0
\(260\) −2.77473 −0.172082
\(261\) 6.44199 0.398749
\(262\) 26.2385 1.62102
\(263\) 8.99331 0.554551 0.277276 0.960790i \(-0.410568\pi\)
0.277276 + 0.960790i \(0.410568\pi\)
\(264\) 0.554630 0.0341351
\(265\) −30.1666 −1.85312
\(266\) −31.3683 −1.92331
\(267\) −31.8792 −1.95098
\(268\) −10.1953 −0.622775
\(269\) −27.0278 −1.64791 −0.823956 0.566654i \(-0.808238\pi\)
−0.823956 + 0.566654i \(0.808238\pi\)
\(270\) 16.8789 1.02722
\(271\) 17.1483 1.04168 0.520841 0.853653i \(-0.325618\pi\)
0.520841 + 0.853653i \(0.325618\pi\)
\(272\) 9.56471 0.579946
\(273\) 5.76082 0.348660
\(274\) 9.37817 0.566556
\(275\) 0.637706 0.0384551
\(276\) 16.7073 1.00566
\(277\) 10.4875 0.630134 0.315067 0.949069i \(-0.397973\pi\)
0.315067 + 0.949069i \(0.397973\pi\)
\(278\) −1.65518 −0.0992713
\(279\) 29.2282 1.74985
\(280\) −11.5531 −0.690429
\(281\) 14.5354 0.867110 0.433555 0.901127i \(-0.357259\pi\)
0.433555 + 0.901127i \(0.357259\pi\)
\(282\) −53.7696 −3.20193
\(283\) 17.0774 1.01515 0.507573 0.861609i \(-0.330543\pi\)
0.507573 + 0.861609i \(0.330543\pi\)
\(284\) 2.61051 0.154905
\(285\) 46.2485 2.73953
\(286\) 0.209704 0.0124000
\(287\) −6.25555 −0.369253
\(288\) −26.3861 −1.55482
\(289\) −13.2145 −0.777323
\(290\) −8.40604 −0.493619
\(291\) −23.9485 −1.40389
\(292\) −12.1462 −0.710804
\(293\) −13.6089 −0.795042 −0.397521 0.917593i \(-0.630129\pi\)
−0.397521 + 0.917593i \(0.630129\pi\)
\(294\) −9.59055 −0.559332
\(295\) −29.2246 −1.70152
\(296\) 0 0
\(297\) −0.500144 −0.0290213
\(298\) 13.4505 0.779165
\(299\) −3.47779 −0.201126
\(300\) −13.6803 −0.789831
\(301\) 20.5511 1.18454
\(302\) 24.1447 1.38937
\(303\) 22.2577 1.27867
\(304\) −28.3775 −1.62756
\(305\) 33.1907 1.90049
\(306\) −14.6859 −0.839539
\(307\) −20.2910 −1.15807 −0.579035 0.815303i \(-0.696570\pi\)
−0.579035 + 0.815303i \(0.696570\pi\)
\(308\) −0.621807 −0.0354307
\(309\) −33.0464 −1.87994
\(310\) −38.1393 −2.16617
\(311\) 5.91474 0.335394 0.167697 0.985839i \(-0.446367\pi\)
0.167697 + 0.985839i \(0.446367\pi\)
\(312\) 2.47671 0.140216
\(313\) 23.5054 1.32860 0.664301 0.747465i \(-0.268729\pi\)
0.664301 + 0.747465i \(0.268729\pi\)
\(314\) −21.6911 −1.22410
\(315\) 37.3267 2.10312
\(316\) 1.78430 0.100375
\(317\) −0.715392 −0.0401804 −0.0200902 0.999798i \(-0.506395\pi\)
−0.0200902 + 0.999798i \(0.506395\pi\)
\(318\) −48.9086 −2.74266
\(319\) 0.249082 0.0139459
\(320\) 4.99519 0.279240
\(321\) 15.0648 0.840836
\(322\) 26.3018 1.46574
\(323\) −11.2312 −0.624920
\(324\) −5.37411 −0.298561
\(325\) 2.84769 0.157961
\(326\) −5.63579 −0.312138
\(327\) 15.0732 0.833550
\(328\) −2.68941 −0.148498
\(329\) −33.1881 −1.82972
\(330\) 2.33828 0.128718
\(331\) −25.6185 −1.40812 −0.704061 0.710139i \(-0.748632\pi\)
−0.704061 + 0.710139i \(0.748632\pi\)
\(332\) 1.23329 0.0676857
\(333\) 0 0
\(334\) −8.87873 −0.485823
\(335\) 23.6638 1.29289
\(336\) −39.4139 −2.15020
\(337\) −14.4040 −0.784636 −0.392318 0.919830i \(-0.628327\pi\)
−0.392318 + 0.919830i \(0.628327\pi\)
\(338\) −22.6430 −1.23161
\(339\) 27.6265 1.50047
\(340\) 7.51344 0.407474
\(341\) 1.13012 0.0611994
\(342\) 43.5716 2.35608
\(343\) 15.0522 0.812744
\(344\) 8.83538 0.476372
\(345\) −38.7786 −2.08777
\(346\) −34.6044 −1.86034
\(347\) 28.0587 1.50627 0.753134 0.657867i \(-0.228541\pi\)
0.753134 + 0.657867i \(0.228541\pi\)
\(348\) −5.34340 −0.286436
\(349\) −33.1943 −1.77685 −0.888425 0.459022i \(-0.848200\pi\)
−0.888425 + 0.459022i \(0.848200\pi\)
\(350\) −21.5365 −1.15117
\(351\) −2.23340 −0.119210
\(352\) −1.02023 −0.0543784
\(353\) −11.6435 −0.619723 −0.309862 0.950782i \(-0.600283\pi\)
−0.309862 + 0.950782i \(0.600283\pi\)
\(354\) −47.3814 −2.51829
\(355\) −6.05916 −0.321587
\(356\) 15.3656 0.814377
\(357\) −15.5992 −0.825596
\(358\) 28.1076 1.48553
\(359\) 29.0400 1.53267 0.766335 0.642441i \(-0.222078\pi\)
0.766335 + 0.642441i \(0.222078\pi\)
\(360\) 16.0476 0.845784
\(361\) 14.3217 0.753776
\(362\) 41.1803 2.16439
\(363\) 29.3678 1.54141
\(364\) −2.77669 −0.145538
\(365\) 28.1921 1.47564
\(366\) 53.8116 2.81278
\(367\) −30.9655 −1.61638 −0.808192 0.588919i \(-0.799554\pi\)
−0.808192 + 0.588919i \(0.799554\pi\)
\(368\) 23.7940 1.24035
\(369\) 8.68917 0.452340
\(370\) 0 0
\(371\) −30.1878 −1.56727
\(372\) −24.2437 −1.25698
\(373\) 0.834072 0.0431866 0.0215933 0.999767i \(-0.493126\pi\)
0.0215933 + 0.999767i \(0.493126\pi\)
\(374\) −0.567837 −0.0293622
\(375\) −8.30659 −0.428950
\(376\) −14.2683 −0.735834
\(377\) 1.11228 0.0572854
\(378\) 16.8908 0.868767
\(379\) 15.4128 0.791701 0.395850 0.918315i \(-0.370450\pi\)
0.395850 + 0.918315i \(0.370450\pi\)
\(380\) −22.2916 −1.14353
\(381\) 12.6179 0.646433
\(382\) 26.7948 1.37094
\(383\) 4.42729 0.226224 0.113112 0.993582i \(-0.463918\pi\)
0.113112 + 0.993582i \(0.463918\pi\)
\(384\) −25.8371 −1.31849
\(385\) 1.44325 0.0735550
\(386\) 47.8397 2.43498
\(387\) −28.5461 −1.45108
\(388\) 11.5431 0.586011
\(389\) −4.08832 −0.207286 −0.103643 0.994615i \(-0.533050\pi\)
−0.103643 + 0.994615i \(0.533050\pi\)
\(390\) 10.4416 0.528732
\(391\) 9.41717 0.476247
\(392\) −2.54496 −0.128540
\(393\) −38.7126 −1.95279
\(394\) 8.34639 0.420485
\(395\) −4.14146 −0.208380
\(396\) 0.863711 0.0434031
\(397\) −6.68820 −0.335671 −0.167836 0.985815i \(-0.553678\pi\)
−0.167836 + 0.985815i \(0.553678\pi\)
\(398\) 5.37641 0.269495
\(399\) 46.2811 2.31695
\(400\) −19.4831 −0.974154
\(401\) −22.5654 −1.12686 −0.563432 0.826163i \(-0.690519\pi\)
−0.563432 + 0.826163i \(0.690519\pi\)
\(402\) 38.3658 1.91351
\(403\) 5.04656 0.251387
\(404\) −10.7281 −0.533743
\(405\) 12.4736 0.619820
\(406\) −8.41195 −0.417478
\(407\) 0 0
\(408\) −6.70645 −0.332019
\(409\) −3.17318 −0.156904 −0.0784518 0.996918i \(-0.524998\pi\)
−0.0784518 + 0.996918i \(0.524998\pi\)
\(410\) −11.3383 −0.559960
\(411\) −13.8367 −0.682512
\(412\) 15.9282 0.784727
\(413\) −29.2452 −1.43906
\(414\) −36.5341 −1.79555
\(415\) −2.86255 −0.140517
\(416\) −4.55585 −0.223369
\(417\) 2.44207 0.119589
\(418\) 1.68471 0.0824020
\(419\) 2.30553 0.112633 0.0563163 0.998413i \(-0.482064\pi\)
0.0563163 + 0.998413i \(0.482064\pi\)
\(420\) −30.9611 −1.51075
\(421\) 10.4729 0.510419 0.255210 0.966886i \(-0.417855\pi\)
0.255210 + 0.966886i \(0.417855\pi\)
\(422\) −39.3048 −1.91333
\(423\) 46.0994 2.24143
\(424\) −12.9784 −0.630289
\(425\) −7.71098 −0.374038
\(426\) −9.82362 −0.475956
\(427\) 33.2141 1.60734
\(428\) −7.26117 −0.350982
\(429\) −0.309399 −0.0149379
\(430\) 37.2493 1.79632
\(431\) 10.9329 0.526617 0.263309 0.964712i \(-0.415186\pi\)
0.263309 + 0.964712i \(0.415186\pi\)
\(432\) 15.2803 0.735175
\(433\) 4.42652 0.212725 0.106362 0.994327i \(-0.466080\pi\)
0.106362 + 0.994327i \(0.466080\pi\)
\(434\) −38.1661 −1.83203
\(435\) 12.4024 0.594647
\(436\) −7.26522 −0.347941
\(437\) −27.9397 −1.33654
\(438\) 45.7075 2.18399
\(439\) −13.1721 −0.628672 −0.314336 0.949312i \(-0.601782\pi\)
−0.314336 + 0.949312i \(0.601782\pi\)
\(440\) 0.620488 0.0295806
\(441\) 8.22247 0.391546
\(442\) −2.53569 −0.120610
\(443\) 32.5541 1.54669 0.773346 0.633984i \(-0.218582\pi\)
0.773346 + 0.633984i \(0.218582\pi\)
\(444\) 0 0
\(445\) −35.6646 −1.69066
\(446\) 22.9551 1.08695
\(447\) −19.8450 −0.938634
\(448\) 4.99871 0.236167
\(449\) 3.93429 0.185671 0.0928354 0.995681i \(-0.470407\pi\)
0.0928354 + 0.995681i \(0.470407\pi\)
\(450\) 29.9149 1.41020
\(451\) 0.335970 0.0158202
\(452\) −13.3158 −0.626325
\(453\) −35.6233 −1.67373
\(454\) 11.9184 0.559359
\(455\) 6.44487 0.302140
\(456\) 19.8973 0.931777
\(457\) 40.9703 1.91651 0.958255 0.285915i \(-0.0922976\pi\)
0.958255 + 0.285915i \(0.0922976\pi\)
\(458\) 44.3332 2.07156
\(459\) 6.04762 0.282279
\(460\) 18.6911 0.871479
\(461\) 15.1267 0.704522 0.352261 0.935902i \(-0.385413\pi\)
0.352261 + 0.935902i \(0.385413\pi\)
\(462\) 2.33992 0.108863
\(463\) 1.56923 0.0729285 0.0364642 0.999335i \(-0.488390\pi\)
0.0364642 + 0.999335i \(0.488390\pi\)
\(464\) −7.60992 −0.353281
\(465\) 56.2711 2.60951
\(466\) 31.0999 1.44068
\(467\) 12.8427 0.594288 0.297144 0.954833i \(-0.403966\pi\)
0.297144 + 0.954833i \(0.403966\pi\)
\(468\) 3.85691 0.178286
\(469\) 23.6805 1.09346
\(470\) −60.1542 −2.77471
\(471\) 32.0032 1.47463
\(472\) −12.5732 −0.578727
\(473\) −1.10375 −0.0507503
\(474\) −6.71450 −0.308407
\(475\) 22.8777 1.04970
\(476\) 7.51873 0.344621
\(477\) 41.9319 1.91993
\(478\) 32.3907 1.48151
\(479\) 6.58986 0.301098 0.150549 0.988603i \(-0.451896\pi\)
0.150549 + 0.988603i \(0.451896\pi\)
\(480\) −50.7994 −2.31867
\(481\) 0 0
\(482\) 12.2475 0.557859
\(483\) −38.8059 −1.76573
\(484\) −14.1551 −0.643416
\(485\) −26.7922 −1.21657
\(486\) 37.1368 1.68456
\(487\) −0.565847 −0.0256410 −0.0128205 0.999918i \(-0.504081\pi\)
−0.0128205 + 0.999918i \(0.504081\pi\)
\(488\) 14.2795 0.646402
\(489\) 8.31511 0.376022
\(490\) −10.7293 −0.484702
\(491\) −0.958656 −0.0432636 −0.0216318 0.999766i \(-0.506886\pi\)
−0.0216318 + 0.999766i \(0.506886\pi\)
\(492\) −7.20734 −0.324932
\(493\) −3.01184 −0.135646
\(494\) 7.52311 0.338481
\(495\) −2.00473 −0.0901057
\(496\) −34.5272 −1.55032
\(497\) −6.06342 −0.271982
\(498\) −4.64101 −0.207969
\(499\) −3.49941 −0.156655 −0.0783276 0.996928i \(-0.524958\pi\)
−0.0783276 + 0.996928i \(0.524958\pi\)
\(500\) 4.00374 0.179053
\(501\) 13.0998 0.585255
\(502\) −16.6253 −0.742022
\(503\) 36.9239 1.64635 0.823177 0.567785i \(-0.192199\pi\)
0.823177 + 0.567785i \(0.192199\pi\)
\(504\) 16.0589 0.715321
\(505\) 24.9006 1.10806
\(506\) −1.41260 −0.0627979
\(507\) 33.4077 1.48369
\(508\) −6.08176 −0.269834
\(509\) 3.16897 0.140462 0.0702311 0.997531i \(-0.477626\pi\)
0.0702311 + 0.997531i \(0.477626\pi\)
\(510\) −28.2739 −1.25199
\(511\) 28.2120 1.24802
\(512\) 18.5059 0.817854
\(513\) −17.9426 −0.792187
\(514\) −13.0501 −0.575615
\(515\) −36.9704 −1.62911
\(516\) 23.6779 1.04236
\(517\) 1.78245 0.0783922
\(518\) 0 0
\(519\) 51.0556 2.24109
\(520\) 2.77080 0.121507
\(521\) 37.9628 1.66318 0.831590 0.555390i \(-0.187431\pi\)
0.831590 + 0.555390i \(0.187431\pi\)
\(522\) 11.6845 0.511416
\(523\) 24.6627 1.07842 0.539212 0.842170i \(-0.318722\pi\)
0.539212 + 0.842170i \(0.318722\pi\)
\(524\) 18.6593 0.815135
\(525\) 31.7751 1.38678
\(526\) 16.3121 0.711240
\(527\) −13.6651 −0.595262
\(528\) 2.11682 0.0921229
\(529\) 0.427023 0.0185662
\(530\) −54.7161 −2.37672
\(531\) 40.6225 1.76287
\(532\) −22.3073 −0.967143
\(533\) 1.50028 0.0649843
\(534\) −57.8225 −2.50222
\(535\) 16.8536 0.728646
\(536\) 10.1808 0.439743
\(537\) −41.4702 −1.78957
\(538\) −49.0229 −2.11353
\(539\) 0.317925 0.0136940
\(540\) 12.0033 0.516539
\(541\) 12.4634 0.535843 0.267921 0.963441i \(-0.413663\pi\)
0.267921 + 0.963441i \(0.413663\pi\)
\(542\) 31.1035 1.33601
\(543\) −60.7579 −2.60737
\(544\) 12.3364 0.528917
\(545\) 16.8630 0.722333
\(546\) 10.4490 0.447174
\(547\) −20.9831 −0.897172 −0.448586 0.893740i \(-0.648072\pi\)
−0.448586 + 0.893740i \(0.648072\pi\)
\(548\) 6.66921 0.284894
\(549\) −46.1354 −1.96901
\(550\) 1.15667 0.0493206
\(551\) 8.93581 0.380678
\(552\) −16.6836 −0.710100
\(553\) −4.14438 −0.176237
\(554\) 19.0223 0.808179
\(555\) 0 0
\(556\) −1.17707 −0.0499189
\(557\) −29.6106 −1.25464 −0.627321 0.778761i \(-0.715849\pi\)
−0.627321 + 0.778761i \(0.715849\pi\)
\(558\) 53.0140 2.24426
\(559\) −4.92880 −0.208466
\(560\) −44.0940 −1.86331
\(561\) 0.837793 0.0353717
\(562\) 26.3643 1.11211
\(563\) −8.15606 −0.343737 −0.171868 0.985120i \(-0.554980\pi\)
−0.171868 + 0.985120i \(0.554980\pi\)
\(564\) −38.2378 −1.61010
\(565\) 30.9069 1.30026
\(566\) 30.9750 1.30198
\(567\) 12.4824 0.524212
\(568\) −2.60681 −0.109379
\(569\) −14.2731 −0.598359 −0.299180 0.954197i \(-0.596713\pi\)
−0.299180 + 0.954197i \(0.596713\pi\)
\(570\) 83.8855 3.51358
\(571\) −20.4929 −0.857600 −0.428800 0.903399i \(-0.641064\pi\)
−0.428800 + 0.903399i \(0.641064\pi\)
\(572\) 0.149129 0.00623540
\(573\) −39.5333 −1.65153
\(574\) −11.3463 −0.473586
\(575\) −19.1825 −0.799967
\(576\) −6.94338 −0.289307
\(577\) −31.7274 −1.32083 −0.660415 0.750901i \(-0.729619\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(578\) −23.9684 −0.996956
\(579\) −70.5832 −2.93334
\(580\) −5.97788 −0.248218
\(581\) −2.86456 −0.118842
\(582\) −43.4378 −1.80056
\(583\) 1.62131 0.0671480
\(584\) 12.1290 0.501901
\(585\) −8.95213 −0.370125
\(586\) −24.6839 −1.01968
\(587\) −6.38709 −0.263624 −0.131812 0.991275i \(-0.542079\pi\)
−0.131812 + 0.991275i \(0.542079\pi\)
\(588\) −6.82024 −0.281262
\(589\) 40.5429 1.67054
\(590\) −53.0075 −2.18229
\(591\) −12.3144 −0.506545
\(592\) 0 0
\(593\) 23.4355 0.962379 0.481190 0.876617i \(-0.340205\pi\)
0.481190 + 0.876617i \(0.340205\pi\)
\(594\) −0.907162 −0.0372213
\(595\) −17.4514 −0.715440
\(596\) 9.56518 0.391805
\(597\) −7.93242 −0.324652
\(598\) −6.30801 −0.257954
\(599\) −16.1611 −0.660323 −0.330162 0.943924i \(-0.607103\pi\)
−0.330162 + 0.943924i \(0.607103\pi\)
\(600\) 13.6609 0.557702
\(601\) 11.2355 0.458304 0.229152 0.973391i \(-0.426405\pi\)
0.229152 + 0.973391i \(0.426405\pi\)
\(602\) 37.2755 1.51924
\(603\) −32.8930 −1.33951
\(604\) 17.1703 0.698649
\(605\) 32.8550 1.33574
\(606\) 40.3710 1.63996
\(607\) 7.11264 0.288693 0.144347 0.989527i \(-0.453892\pi\)
0.144347 + 0.989527i \(0.453892\pi\)
\(608\) −36.6006 −1.48435
\(609\) 12.4111 0.502923
\(610\) 60.2013 2.43748
\(611\) 7.95957 0.322010
\(612\) −10.4438 −0.422164
\(613\) 8.66767 0.350084 0.175042 0.984561i \(-0.443994\pi\)
0.175042 + 0.984561i \(0.443994\pi\)
\(614\) −36.8038 −1.48528
\(615\) 16.7287 0.674566
\(616\) 0.620925 0.0250178
\(617\) −10.1412 −0.408271 −0.204135 0.978943i \(-0.565438\pi\)
−0.204135 + 0.978943i \(0.565438\pi\)
\(618\) −59.9395 −2.41112
\(619\) 30.5369 1.22738 0.613691 0.789546i \(-0.289684\pi\)
0.613691 + 0.789546i \(0.289684\pi\)
\(620\) −27.1224 −1.08926
\(621\) 15.0446 0.603720
\(622\) 10.7282 0.430160
\(623\) −35.6897 −1.42988
\(624\) 9.45271 0.378411
\(625\) −29.1090 −1.16436
\(626\) 42.6341 1.70400
\(627\) −2.48564 −0.0992670
\(628\) −15.4254 −0.615541
\(629\) 0 0
\(630\) 67.7032 2.69736
\(631\) 7.70802 0.306851 0.153426 0.988160i \(-0.450969\pi\)
0.153426 + 0.988160i \(0.450969\pi\)
\(632\) −1.78177 −0.0708748
\(633\) 57.9908 2.30493
\(634\) −1.29758 −0.0515334
\(635\) 14.1161 0.560182
\(636\) −34.7810 −1.37915
\(637\) 1.41970 0.0562505
\(638\) 0.451785 0.0178864
\(639\) 8.42230 0.333181
\(640\) −28.9050 −1.14257
\(641\) −25.7413 −1.01672 −0.508360 0.861144i \(-0.669748\pi\)
−0.508360 + 0.861144i \(0.669748\pi\)
\(642\) 27.3245 1.07841
\(643\) −32.4876 −1.28118 −0.640592 0.767881i \(-0.721311\pi\)
−0.640592 + 0.767881i \(0.721311\pi\)
\(644\) 18.7043 0.737052
\(645\) −54.9580 −2.16397
\(646\) −20.3711 −0.801491
\(647\) 27.6429 1.08676 0.543378 0.839488i \(-0.317145\pi\)
0.543378 + 0.839488i \(0.317145\pi\)
\(648\) 5.36648 0.210815
\(649\) 1.57069 0.0616548
\(650\) 5.16513 0.202593
\(651\) 56.3107 2.20699
\(652\) −4.00784 −0.156959
\(653\) −4.48121 −0.175363 −0.0876817 0.996149i \(-0.527946\pi\)
−0.0876817 + 0.996149i \(0.527946\pi\)
\(654\) 27.3398 1.06907
\(655\) −43.3094 −1.69224
\(656\) −10.2645 −0.400761
\(657\) −39.1874 −1.52884
\(658\) −60.1966 −2.34671
\(659\) −19.0352 −0.741508 −0.370754 0.928731i \(-0.620901\pi\)
−0.370754 + 0.928731i \(0.620901\pi\)
\(660\) 1.66285 0.0647262
\(661\) 25.4148 0.988520 0.494260 0.869314i \(-0.335439\pi\)
0.494260 + 0.869314i \(0.335439\pi\)
\(662\) −46.4669 −1.80599
\(663\) 3.74118 0.145295
\(664\) −1.23154 −0.0477931
\(665\) 51.7766 2.00781
\(666\) 0 0
\(667\) −7.49253 −0.290112
\(668\) −6.31404 −0.244297
\(669\) −33.8681 −1.30942
\(670\) 42.9215 1.65820
\(671\) −1.78385 −0.0688646
\(672\) −50.8352 −1.96101
\(673\) −33.0227 −1.27293 −0.636467 0.771304i \(-0.719605\pi\)
−0.636467 + 0.771304i \(0.719605\pi\)
\(674\) −26.1260 −1.00633
\(675\) −12.3189 −0.474153
\(676\) −16.1023 −0.619321
\(677\) −19.5563 −0.751609 −0.375805 0.926699i \(-0.622634\pi\)
−0.375805 + 0.926699i \(0.622634\pi\)
\(678\) 50.1089 1.92442
\(679\) −26.8111 −1.02891
\(680\) −7.50278 −0.287719
\(681\) −17.5845 −0.673841
\(682\) 2.04981 0.0784913
\(683\) −42.0083 −1.60740 −0.803702 0.595032i \(-0.797139\pi\)
−0.803702 + 0.595032i \(0.797139\pi\)
\(684\) 30.9856 1.18476
\(685\) −15.4796 −0.591447
\(686\) 27.3017 1.04238
\(687\) −65.4097 −2.49554
\(688\) 33.7215 1.28562
\(689\) 7.24000 0.275822
\(690\) −70.3367 −2.67767
\(691\) −16.4203 −0.624658 −0.312329 0.949974i \(-0.601109\pi\)
−0.312329 + 0.949974i \(0.601109\pi\)
\(692\) −24.6086 −0.935478
\(693\) −2.00614 −0.0762069
\(694\) 50.8928 1.93186
\(695\) 2.73205 0.103633
\(696\) 5.33581 0.202253
\(697\) −4.06247 −0.153877
\(698\) −60.2078 −2.27890
\(699\) −45.8852 −1.73554
\(700\) −15.3155 −0.578871
\(701\) 8.26474 0.312155 0.156077 0.987745i \(-0.450115\pi\)
0.156077 + 0.987745i \(0.450115\pi\)
\(702\) −4.05094 −0.152893
\(703\) 0 0
\(704\) −0.268468 −0.0101183
\(705\) 88.7522 3.34260
\(706\) −21.1190 −0.794826
\(707\) 24.9181 0.937143
\(708\) −33.6949 −1.26633
\(709\) −9.91812 −0.372483 −0.186241 0.982504i \(-0.559631\pi\)
−0.186241 + 0.982504i \(0.559631\pi\)
\(710\) −10.9901 −0.412451
\(711\) 5.75668 0.215892
\(712\) −15.3438 −0.575034
\(713\) −33.9946 −1.27311
\(714\) −28.2938 −1.05887
\(715\) −0.346138 −0.0129448
\(716\) 19.9885 0.747003
\(717\) −47.7895 −1.78473
\(718\) 52.6727 1.96573
\(719\) −6.40048 −0.238698 −0.119349 0.992852i \(-0.538081\pi\)
−0.119349 + 0.992852i \(0.538081\pi\)
\(720\) 61.2480 2.28258
\(721\) −36.9964 −1.37782
\(722\) 25.9768 0.966755
\(723\) −18.0701 −0.672035
\(724\) 29.2850 1.08837
\(725\) 6.13504 0.227850
\(726\) 53.2673 1.97693
\(727\) −23.1107 −0.857130 −0.428565 0.903511i \(-0.640981\pi\)
−0.428565 + 0.903511i \(0.640981\pi\)
\(728\) 2.77275 0.102765
\(729\) −42.2928 −1.56640
\(730\) 51.1348 1.89259
\(731\) 13.3462 0.493628
\(732\) 38.2677 1.41441
\(733\) 50.6416 1.87049 0.935245 0.354000i \(-0.115179\pi\)
0.935245 + 0.354000i \(0.115179\pi\)
\(734\) −56.1652 −2.07309
\(735\) 15.8302 0.583905
\(736\) 30.6891 1.13121
\(737\) −1.27182 −0.0468482
\(738\) 15.7604 0.580148
\(739\) 1.34343 0.0494190 0.0247095 0.999695i \(-0.492134\pi\)
0.0247095 + 0.999695i \(0.492134\pi\)
\(740\) 0 0
\(741\) −11.0997 −0.407757
\(742\) −54.7547 −2.01011
\(743\) 28.7002 1.05291 0.526454 0.850203i \(-0.323521\pi\)
0.526454 + 0.850203i \(0.323521\pi\)
\(744\) 24.2093 0.887556
\(745\) −22.2014 −0.813396
\(746\) 1.51284 0.0553890
\(747\) 3.97897 0.145583
\(748\) −0.403813 −0.0147649
\(749\) 16.8655 0.616252
\(750\) −15.0665 −0.550150
\(751\) 28.4247 1.03723 0.518616 0.855007i \(-0.326447\pi\)
0.518616 + 0.855007i \(0.326447\pi\)
\(752\) −54.4572 −1.98585
\(753\) 24.5291 0.893890
\(754\) 2.01745 0.0734713
\(755\) −39.8533 −1.45041
\(756\) 12.0117 0.436862
\(757\) 14.3460 0.521413 0.260706 0.965418i \(-0.416045\pi\)
0.260706 + 0.965418i \(0.416045\pi\)
\(758\) 27.9557 1.01540
\(759\) 2.08417 0.0756506
\(760\) 22.2600 0.807453
\(761\) −17.3036 −0.627254 −0.313627 0.949546i \(-0.601544\pi\)
−0.313627 + 0.949546i \(0.601544\pi\)
\(762\) 22.8863 0.829082
\(763\) 16.8749 0.610912
\(764\) 19.0549 0.689382
\(765\) 24.2406 0.876422
\(766\) 8.03021 0.290143
\(767\) 7.01392 0.253258
\(768\) −55.7933 −2.01327
\(769\) 18.1048 0.652875 0.326438 0.945219i \(-0.394152\pi\)
0.326438 + 0.945219i \(0.394152\pi\)
\(770\) 2.61777 0.0943379
\(771\) 19.2543 0.693425
\(772\) 34.0208 1.22444
\(773\) 23.0226 0.828064 0.414032 0.910262i \(-0.364120\pi\)
0.414032 + 0.910262i \(0.364120\pi\)
\(774\) −51.7769 −1.86108
\(775\) 27.8355 0.999881
\(776\) −11.5267 −0.413785
\(777\) 0 0
\(778\) −7.41539 −0.265854
\(779\) 12.0529 0.431840
\(780\) 7.42546 0.265874
\(781\) 0.325652 0.0116527
\(782\) 17.0809 0.610810
\(783\) −4.81163 −0.171954
\(784\) −9.71319 −0.346900
\(785\) 35.8033 1.27788
\(786\) −70.2168 −2.50455
\(787\) 34.6914 1.23661 0.618307 0.785937i \(-0.287819\pi\)
0.618307 + 0.785937i \(0.287819\pi\)
\(788\) 5.93546 0.211442
\(789\) −24.0670 −0.856807
\(790\) −7.51179 −0.267257
\(791\) 30.9287 1.09970
\(792\) −0.862485 −0.0306471
\(793\) −7.96579 −0.282873
\(794\) −12.1310 −0.430515
\(795\) 80.7287 2.86315
\(796\) 3.82339 0.135516
\(797\) −10.9268 −0.387047 −0.193524 0.981096i \(-0.561992\pi\)
−0.193524 + 0.981096i \(0.561992\pi\)
\(798\) 83.9446 2.97161
\(799\) −21.5530 −0.762489
\(800\) −25.1288 −0.888439
\(801\) 49.5742 1.75162
\(802\) −40.9291 −1.44526
\(803\) −1.51520 −0.0534701
\(804\) 27.2835 0.962216
\(805\) −43.4138 −1.53014
\(806\) 9.15345 0.322417
\(807\) 72.3290 2.54610
\(808\) 10.7129 0.376878
\(809\) −9.36038 −0.329093 −0.164547 0.986369i \(-0.552616\pi\)
−0.164547 + 0.986369i \(0.552616\pi\)
\(810\) 22.6247 0.794950
\(811\) −56.2663 −1.97578 −0.987888 0.155170i \(-0.950408\pi\)
−0.987888 + 0.155170i \(0.950408\pi\)
\(812\) −5.98209 −0.209930
\(813\) −45.8904 −1.60945
\(814\) 0 0
\(815\) 9.30246 0.325851
\(816\) −25.5961 −0.896043
\(817\) −39.5968 −1.38532
\(818\) −5.75551 −0.201237
\(819\) −8.95844 −0.313033
\(820\) −8.06315 −0.281578
\(821\) 41.0592 1.43297 0.716487 0.697600i \(-0.245749\pi\)
0.716487 + 0.697600i \(0.245749\pi\)
\(822\) −25.0969 −0.875356
\(823\) 8.34795 0.290991 0.145496 0.989359i \(-0.453522\pi\)
0.145496 + 0.989359i \(0.453522\pi\)
\(824\) −15.9056 −0.554098
\(825\) −1.70656 −0.0594149
\(826\) −53.0449 −1.84567
\(827\) −12.1894 −0.423868 −0.211934 0.977284i \(-0.567976\pi\)
−0.211934 + 0.977284i \(0.567976\pi\)
\(828\) −25.9809 −0.902898
\(829\) 7.15697 0.248572 0.124286 0.992246i \(-0.460336\pi\)
0.124286 + 0.992246i \(0.460336\pi\)
\(830\) −5.19209 −0.180220
\(831\) −28.0657 −0.973587
\(832\) −1.19885 −0.0415626
\(833\) −3.84427 −0.133196
\(834\) 4.42943 0.153379
\(835\) 14.6553 0.507166
\(836\) 1.19807 0.0414361
\(837\) −21.8310 −0.754590
\(838\) 4.18177 0.144457
\(839\) 15.8792 0.548210 0.274105 0.961700i \(-0.411618\pi\)
0.274105 + 0.961700i \(0.411618\pi\)
\(840\) 30.9172 1.06674
\(841\) −26.6037 −0.917369
\(842\) 18.9958 0.654638
\(843\) −38.8982 −1.33973
\(844\) −27.9513 −0.962124
\(845\) 37.3745 1.28572
\(846\) 83.6151 2.87475
\(847\) 32.8781 1.12971
\(848\) −49.5341 −1.70101
\(849\) −45.7008 −1.56845
\(850\) −13.9862 −0.479722
\(851\) 0 0
\(852\) −6.98598 −0.239336
\(853\) −25.1344 −0.860586 −0.430293 0.902689i \(-0.641590\pi\)
−0.430293 + 0.902689i \(0.641590\pi\)
\(854\) 60.2437 2.06150
\(855\) −71.9194 −2.45959
\(856\) 7.25087 0.247830
\(857\) 40.8577 1.39567 0.697836 0.716258i \(-0.254147\pi\)
0.697836 + 0.716258i \(0.254147\pi\)
\(858\) −0.561188 −0.0191586
\(859\) 1.92974 0.0658420 0.0329210 0.999458i \(-0.489519\pi\)
0.0329210 + 0.999458i \(0.489519\pi\)
\(860\) 26.4895 0.903285
\(861\) 16.7405 0.570514
\(862\) 19.8300 0.675413
\(863\) 38.2352 1.30154 0.650771 0.759274i \(-0.274446\pi\)
0.650771 + 0.759274i \(0.274446\pi\)
\(864\) 19.7082 0.670487
\(865\) 57.1181 1.94207
\(866\) 8.02882 0.272830
\(867\) 35.3633 1.20100
\(868\) −27.1415 −0.921243
\(869\) 0.222584 0.00755066
\(870\) 22.4954 0.762665
\(871\) −5.67934 −0.192437
\(872\) 7.25491 0.245682
\(873\) 37.2415 1.26043
\(874\) −50.6771 −1.71418
\(875\) −9.29947 −0.314379
\(876\) 32.5045 1.09822
\(877\) −18.1316 −0.612259 −0.306130 0.951990i \(-0.599034\pi\)
−0.306130 + 0.951990i \(0.599034\pi\)
\(878\) −23.8916 −0.806303
\(879\) 36.4188 1.22838
\(880\) 2.36818 0.0798313
\(881\) −8.13173 −0.273965 −0.136982 0.990573i \(-0.543740\pi\)
−0.136982 + 0.990573i \(0.543740\pi\)
\(882\) 14.9139 0.502177
\(883\) −37.4877 −1.26156 −0.630780 0.775962i \(-0.717265\pi\)
−0.630780 + 0.775962i \(0.717265\pi\)
\(884\) −1.80323 −0.0606492
\(885\) 78.2079 2.62893
\(886\) 59.0466 1.98371
\(887\) 8.50512 0.285574 0.142787 0.989753i \(-0.454394\pi\)
0.142787 + 0.989753i \(0.454394\pi\)
\(888\) 0 0
\(889\) 14.1261 0.473773
\(890\) −64.6884 −2.16836
\(891\) −0.670400 −0.0224592
\(892\) 16.3243 0.546578
\(893\) 63.9454 2.13985
\(894\) −35.9948 −1.20385
\(895\) −46.3944 −1.55079
\(896\) −28.9254 −0.966329
\(897\) 9.30690 0.310748
\(898\) 7.13602 0.238132
\(899\) 10.8723 0.362612
\(900\) 21.2737 0.709123
\(901\) −19.6045 −0.653121
\(902\) 0.609382 0.0202902
\(903\) −54.9967 −1.83017
\(904\) 13.2970 0.442250
\(905\) −67.9723 −2.25948
\(906\) −64.6135 −2.14664
\(907\) −18.8969 −0.627463 −0.313731 0.949512i \(-0.601579\pi\)
−0.313731 + 0.949512i \(0.601579\pi\)
\(908\) 8.47567 0.281275
\(909\) −34.6121 −1.14801
\(910\) 11.6897 0.387510
\(911\) 4.72015 0.156386 0.0781928 0.996938i \(-0.475085\pi\)
0.0781928 + 0.996938i \(0.475085\pi\)
\(912\) 75.9409 2.51465
\(913\) 0.153849 0.00509165
\(914\) 74.3119 2.45802
\(915\) −88.8216 −2.93635
\(916\) 31.5272 1.04169
\(917\) −43.3399 −1.43121
\(918\) 10.9692 0.362037
\(919\) 22.3416 0.736981 0.368490 0.929632i \(-0.379875\pi\)
0.368490 + 0.929632i \(0.379875\pi\)
\(920\) −18.6646 −0.615354
\(921\) 54.3008 1.78927
\(922\) 27.4369 0.903585
\(923\) 1.45420 0.0478656
\(924\) 1.66402 0.0547421
\(925\) 0 0
\(926\) 2.84628 0.0935344
\(927\) 51.3892 1.68784
\(928\) −9.81511 −0.322197
\(929\) 33.2743 1.09169 0.545846 0.837885i \(-0.316208\pi\)
0.545846 + 0.837885i \(0.316208\pi\)
\(930\) 102.064 3.34683
\(931\) 11.4055 0.373802
\(932\) 22.1165 0.724448
\(933\) −15.8284 −0.518200
\(934\) 23.2940 0.762204
\(935\) 0.937274 0.0306521
\(936\) −3.85144 −0.125888
\(937\) −11.6182 −0.379550 −0.189775 0.981828i \(-0.560776\pi\)
−0.189775 + 0.981828i \(0.560776\pi\)
\(938\) 42.9517 1.40242
\(939\) −62.9027 −2.05275
\(940\) −42.7782 −1.39527
\(941\) 23.5693 0.768339 0.384169 0.923263i \(-0.374488\pi\)
0.384169 + 0.923263i \(0.374488\pi\)
\(942\) 58.0474 1.89129
\(943\) −10.1062 −0.329102
\(944\) −47.9873 −1.56185
\(945\) −27.8800 −0.906935
\(946\) −2.00198 −0.0650898
\(947\) −43.5842 −1.41630 −0.708149 0.706063i \(-0.750469\pi\)
−0.708149 + 0.706063i \(0.750469\pi\)
\(948\) −4.77496 −0.155083
\(949\) −6.76613 −0.219638
\(950\) 41.4955 1.34629
\(951\) 1.91446 0.0620806
\(952\) −7.50806 −0.243338
\(953\) −43.6803 −1.41494 −0.707471 0.706742i \(-0.750164\pi\)
−0.707471 + 0.706742i \(0.750164\pi\)
\(954\) 76.0560 2.46241
\(955\) −44.2276 −1.43117
\(956\) 23.0343 0.744984
\(957\) −0.666569 −0.0215471
\(958\) 11.9527 0.386174
\(959\) −15.4905 −0.500216
\(960\) −13.3676 −0.431438
\(961\) 18.3291 0.591260
\(962\) 0 0
\(963\) −23.4267 −0.754916
\(964\) 8.70971 0.280521
\(965\) −78.9644 −2.54195
\(966\) −70.3862 −2.26464
\(967\) 4.45096 0.143133 0.0715667 0.997436i \(-0.477200\pi\)
0.0715667 + 0.997436i \(0.477200\pi\)
\(968\) 14.1351 0.454318
\(969\) 30.0558 0.965531
\(970\) −48.5957 −1.56031
\(971\) −14.3321 −0.459940 −0.229970 0.973198i \(-0.573863\pi\)
−0.229970 + 0.973198i \(0.573863\pi\)
\(972\) 26.4095 0.847086
\(973\) 2.73397 0.0876472
\(974\) −1.02633 −0.0328858
\(975\) −7.62069 −0.244057
\(976\) 54.4997 1.74449
\(977\) 45.4283 1.45338 0.726690 0.686966i \(-0.241058\pi\)
0.726690 + 0.686966i \(0.241058\pi\)
\(978\) 15.0819 0.482267
\(979\) 1.91681 0.0612614
\(980\) −7.63008 −0.243734
\(981\) −23.4398 −0.748375
\(982\) −1.73881 −0.0554877
\(983\) 24.6902 0.787495 0.393747 0.919219i \(-0.371178\pi\)
0.393747 + 0.919219i \(0.371178\pi\)
\(984\) 7.19711 0.229436
\(985\) −13.7766 −0.438958
\(986\) −5.46287 −0.173973
\(987\) 88.8147 2.82700
\(988\) 5.35000 0.170206
\(989\) 33.2013 1.05574
\(990\) −3.63617 −0.115565
\(991\) 48.3428 1.53566 0.767829 0.640654i \(-0.221337\pi\)
0.767829 + 0.640654i \(0.221337\pi\)
\(992\) −44.5324 −1.41391
\(993\) 68.5577 2.17561
\(994\) −10.9978 −0.348830
\(995\) −8.87432 −0.281335
\(996\) −3.30041 −0.104578
\(997\) 12.0140 0.380488 0.190244 0.981737i \(-0.439072\pi\)
0.190244 + 0.981737i \(0.439072\pi\)
\(998\) −6.34723 −0.200918
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1369.2.a.o.1.19 yes 27
37.6 odd 4 1369.2.b.h.1368.12 54
37.31 odd 4 1369.2.b.h.1368.43 54
37.36 even 2 1369.2.a.n.1.9 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1369.2.a.n.1.9 27 37.36 even 2
1369.2.a.o.1.19 yes 27 1.1 even 1 trivial
1369.2.b.h.1368.12 54 37.6 odd 4
1369.2.b.h.1368.43 54 37.31 odd 4