Properties

Label 1369.2.a.o.1.15
Level $1369$
Weight $2$
Character 1369.1
Self dual yes
Analytic conductor $10.932$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1369,2,Mod(1,1369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1369, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1369.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1369 = 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1369.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,9,-1,25,17,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9315200367\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 1369.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.581223 q^{2} -1.17520 q^{3} -1.66218 q^{4} -0.135564 q^{5} -0.683054 q^{6} -3.40406 q^{7} -2.12854 q^{8} -1.61890 q^{9} -0.0787931 q^{10} +4.51469 q^{11} +1.95340 q^{12} -1.75123 q^{13} -1.97852 q^{14} +0.159316 q^{15} +2.08720 q^{16} +0.238914 q^{17} -0.940940 q^{18} -3.02781 q^{19} +0.225332 q^{20} +4.00046 q^{21} +2.62404 q^{22} -7.46588 q^{23} +2.50147 q^{24} -4.98162 q^{25} -1.01785 q^{26} +5.42814 q^{27} +5.65816 q^{28} +1.30151 q^{29} +0.0925978 q^{30} +8.68910 q^{31} +5.47021 q^{32} -5.30568 q^{33} +0.138862 q^{34} +0.461469 q^{35} +2.69090 q^{36} -1.75983 q^{38} +2.05805 q^{39} +0.288554 q^{40} +7.75460 q^{41} +2.32516 q^{42} +8.68570 q^{43} -7.50423 q^{44} +0.219465 q^{45} -4.33934 q^{46} -8.13636 q^{47} -2.45289 q^{48} +4.58762 q^{49} -2.89543 q^{50} -0.280773 q^{51} +2.91086 q^{52} +11.3476 q^{53} +3.15496 q^{54} -0.612031 q^{55} +7.24568 q^{56} +3.55829 q^{57} +0.756470 q^{58} +6.24883 q^{59} -0.264811 q^{60} +13.3101 q^{61} +5.05030 q^{62} +5.51083 q^{63} -0.994996 q^{64} +0.237404 q^{65} -3.08378 q^{66} +2.59709 q^{67} -0.397119 q^{68} +8.77393 q^{69} +0.268216 q^{70} +3.60176 q^{71} +3.44589 q^{72} -6.65769 q^{73} +5.85442 q^{75} +5.03277 q^{76} -15.3683 q^{77} +1.19618 q^{78} +4.55092 q^{79} -0.282950 q^{80} -1.52247 q^{81} +4.50715 q^{82} -4.73268 q^{83} -6.64949 q^{84} -0.0323883 q^{85} +5.04833 q^{86} -1.52954 q^{87} -9.60971 q^{88} -16.7206 q^{89} +0.127558 q^{90} +5.96128 q^{91} +12.4096 q^{92} -10.2115 q^{93} -4.72903 q^{94} +0.410463 q^{95} -6.42861 q^{96} +2.99941 q^{97} +2.66643 q^{98} -7.30883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 9 q^{2} - q^{3} + 25 q^{4} + 17 q^{5} + 10 q^{6} - 3 q^{7} + 21 q^{8} + 20 q^{9} - 11 q^{10} - 5 q^{11} - 10 q^{12} + 15 q^{13} + 25 q^{14} + 23 q^{15} + 13 q^{16} + 26 q^{17} + 15 q^{18} + 27 q^{19}+ \cdots + 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.581223 0.410986 0.205493 0.978659i \(-0.434120\pi\)
0.205493 + 0.978659i \(0.434120\pi\)
\(3\) −1.17520 −0.678504 −0.339252 0.940696i \(-0.610174\pi\)
−0.339252 + 0.940696i \(0.610174\pi\)
\(4\) −1.66218 −0.831090
\(5\) −0.135564 −0.0606262 −0.0303131 0.999540i \(-0.509650\pi\)
−0.0303131 + 0.999540i \(0.509650\pi\)
\(6\) −0.683054 −0.278856
\(7\) −3.40406 −1.28661 −0.643307 0.765608i \(-0.722438\pi\)
−0.643307 + 0.765608i \(0.722438\pi\)
\(8\) −2.12854 −0.752553
\(9\) −1.61890 −0.539633
\(10\) −0.0787931 −0.0249166
\(11\) 4.51469 1.36123 0.680615 0.732641i \(-0.261713\pi\)
0.680615 + 0.732641i \(0.261713\pi\)
\(12\) 1.95340 0.563898
\(13\) −1.75123 −0.485703 −0.242852 0.970063i \(-0.578083\pi\)
−0.242852 + 0.970063i \(0.578083\pi\)
\(14\) −1.97852 −0.528781
\(15\) 0.159316 0.0411351
\(16\) 2.08720 0.521801
\(17\) 0.238914 0.0579452 0.0289726 0.999580i \(-0.490776\pi\)
0.0289726 + 0.999580i \(0.490776\pi\)
\(18\) −0.940940 −0.221782
\(19\) −3.02781 −0.694628 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(20\) 0.225332 0.0503859
\(21\) 4.00046 0.872972
\(22\) 2.62404 0.559447
\(23\) −7.46588 −1.55674 −0.778372 0.627803i \(-0.783954\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(24\) 2.50147 0.510610
\(25\) −4.98162 −0.996324
\(26\) −1.01785 −0.199617
\(27\) 5.42814 1.04465
\(28\) 5.65816 1.06929
\(29\) 1.30151 0.241685 0.120843 0.992672i \(-0.461440\pi\)
0.120843 + 0.992672i \(0.461440\pi\)
\(30\) 0.0925978 0.0169060
\(31\) 8.68910 1.56061 0.780304 0.625400i \(-0.215064\pi\)
0.780304 + 0.625400i \(0.215064\pi\)
\(32\) 5.47021 0.967006
\(33\) −5.30568 −0.923600
\(34\) 0.138862 0.0238147
\(35\) 0.461469 0.0780025
\(36\) 2.69090 0.448483
\(37\) 0 0
\(38\) −1.75983 −0.285482
\(39\) 2.05805 0.329551
\(40\) 0.288554 0.0456245
\(41\) 7.75460 1.21107 0.605533 0.795820i \(-0.292960\pi\)
0.605533 + 0.795820i \(0.292960\pi\)
\(42\) 2.32516 0.358780
\(43\) 8.68570 1.32456 0.662279 0.749258i \(-0.269589\pi\)
0.662279 + 0.749258i \(0.269589\pi\)
\(44\) −7.50423 −1.13131
\(45\) 0.219465 0.0327159
\(46\) −4.33934 −0.639801
\(47\) −8.13636 −1.18681 −0.593405 0.804904i \(-0.702217\pi\)
−0.593405 + 0.804904i \(0.702217\pi\)
\(48\) −2.45289 −0.354044
\(49\) 4.58762 0.655375
\(50\) −2.89543 −0.409476
\(51\) −0.280773 −0.0393161
\(52\) 2.91086 0.403663
\(53\) 11.3476 1.55871 0.779353 0.626585i \(-0.215548\pi\)
0.779353 + 0.626585i \(0.215548\pi\)
\(54\) 3.15496 0.429336
\(55\) −0.612031 −0.0825263
\(56\) 7.24568 0.968245
\(57\) 3.55829 0.471307
\(58\) 0.756470 0.0993293
\(59\) 6.24883 0.813528 0.406764 0.913533i \(-0.366657\pi\)
0.406764 + 0.913533i \(0.366657\pi\)
\(60\) −0.264811 −0.0341870
\(61\) 13.3101 1.70418 0.852090 0.523395i \(-0.175335\pi\)
0.852090 + 0.523395i \(0.175335\pi\)
\(62\) 5.05030 0.641389
\(63\) 5.51083 0.694299
\(64\) −0.994996 −0.124375
\(65\) 0.237404 0.0294464
\(66\) −3.08378 −0.379587
\(67\) 2.59709 0.317285 0.158642 0.987336i \(-0.449288\pi\)
0.158642 + 0.987336i \(0.449288\pi\)
\(68\) −0.397119 −0.0481577
\(69\) 8.77393 1.05626
\(70\) 0.268216 0.0320580
\(71\) 3.60176 0.427451 0.213725 0.976894i \(-0.431440\pi\)
0.213725 + 0.976894i \(0.431440\pi\)
\(72\) 3.44589 0.406102
\(73\) −6.65769 −0.779223 −0.389612 0.920979i \(-0.627391\pi\)
−0.389612 + 0.920979i \(0.627391\pi\)
\(74\) 0 0
\(75\) 5.85442 0.676010
\(76\) 5.03277 0.577298
\(77\) −15.3683 −1.75138
\(78\) 1.19618 0.135441
\(79\) 4.55092 0.512018 0.256009 0.966674i \(-0.417592\pi\)
0.256009 + 0.966674i \(0.417592\pi\)
\(80\) −0.282950 −0.0316348
\(81\) −1.52247 −0.169164
\(82\) 4.50715 0.497732
\(83\) −4.73268 −0.519480 −0.259740 0.965679i \(-0.583637\pi\)
−0.259740 + 0.965679i \(0.583637\pi\)
\(84\) −6.64949 −0.725519
\(85\) −0.0323883 −0.00351300
\(86\) 5.04833 0.544375
\(87\) −1.52954 −0.163984
\(88\) −9.60971 −1.02440
\(89\) −16.7206 −1.77238 −0.886192 0.463318i \(-0.846659\pi\)
−0.886192 + 0.463318i \(0.846659\pi\)
\(90\) 0.127558 0.0134458
\(91\) 5.96128 0.624912
\(92\) 12.4096 1.29380
\(93\) −10.2115 −1.05888
\(94\) −4.72903 −0.487763
\(95\) 0.410463 0.0421126
\(96\) −6.42861 −0.656117
\(97\) 2.99941 0.304544 0.152272 0.988339i \(-0.451341\pi\)
0.152272 + 0.988339i \(0.451341\pi\)
\(98\) 2.66643 0.269350
\(99\) −7.30883 −0.734565
\(100\) 8.28035 0.828035
\(101\) −11.7971 −1.17386 −0.586929 0.809638i \(-0.699663\pi\)
−0.586929 + 0.809638i \(0.699663\pi\)
\(102\) −0.163191 −0.0161584
\(103\) −1.81129 −0.178472 −0.0892358 0.996011i \(-0.528442\pi\)
−0.0892358 + 0.996011i \(0.528442\pi\)
\(104\) 3.72756 0.365518
\(105\) −0.542320 −0.0529250
\(106\) 6.59545 0.640607
\(107\) 0.0937009 0.00905841 0.00452920 0.999990i \(-0.498558\pi\)
0.00452920 + 0.999990i \(0.498558\pi\)
\(108\) −9.02255 −0.868195
\(109\) 14.8590 1.42323 0.711616 0.702569i \(-0.247964\pi\)
0.711616 + 0.702569i \(0.247964\pi\)
\(110\) −0.355726 −0.0339172
\(111\) 0 0
\(112\) −7.10497 −0.671356
\(113\) −4.47061 −0.420559 −0.210280 0.977641i \(-0.567437\pi\)
−0.210280 + 0.977641i \(0.567437\pi\)
\(114\) 2.06816 0.193701
\(115\) 1.01211 0.0943795
\(116\) −2.16335 −0.200862
\(117\) 2.83506 0.262101
\(118\) 3.63196 0.334349
\(119\) −0.813279 −0.0745531
\(120\) −0.339110 −0.0309564
\(121\) 9.38243 0.852948
\(122\) 7.73612 0.700395
\(123\) −9.11323 −0.821713
\(124\) −14.4428 −1.29701
\(125\) 1.35315 0.121030
\(126\) 3.20302 0.285347
\(127\) −1.18304 −0.104978 −0.0524888 0.998622i \(-0.516715\pi\)
−0.0524888 + 0.998622i \(0.516715\pi\)
\(128\) −11.5187 −1.01812
\(129\) −10.2075 −0.898717
\(130\) 0.137985 0.0121021
\(131\) 11.6279 1.01593 0.507967 0.861377i \(-0.330397\pi\)
0.507967 + 0.861377i \(0.330397\pi\)
\(132\) 8.81899 0.767595
\(133\) 10.3069 0.893717
\(134\) 1.50949 0.130400
\(135\) −0.735863 −0.0633330
\(136\) −0.508539 −0.0436069
\(137\) −9.18682 −0.784883 −0.392442 0.919777i \(-0.628369\pi\)
−0.392442 + 0.919777i \(0.628369\pi\)
\(138\) 5.09961 0.434107
\(139\) −5.22192 −0.442917 −0.221459 0.975170i \(-0.571082\pi\)
−0.221459 + 0.975170i \(0.571082\pi\)
\(140\) −0.767045 −0.0648271
\(141\) 9.56187 0.805255
\(142\) 2.09343 0.175676
\(143\) −7.90625 −0.661154
\(144\) −3.37897 −0.281581
\(145\) −0.176439 −0.0146525
\(146\) −3.86960 −0.320250
\(147\) −5.39139 −0.444674
\(148\) 0 0
\(149\) −3.97015 −0.325247 −0.162624 0.986688i \(-0.551996\pi\)
−0.162624 + 0.986688i \(0.551996\pi\)
\(150\) 3.40272 0.277831
\(151\) −3.51533 −0.286074 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(152\) 6.44482 0.522744
\(153\) −0.386778 −0.0312691
\(154\) −8.93239 −0.719793
\(155\) −1.17793 −0.0946138
\(156\) −3.42085 −0.273887
\(157\) 4.18187 0.333750 0.166875 0.985978i \(-0.446632\pi\)
0.166875 + 0.985978i \(0.446632\pi\)
\(158\) 2.64509 0.210432
\(159\) −13.3357 −1.05759
\(160\) −0.741566 −0.0586259
\(161\) 25.4143 2.00293
\(162\) −0.884896 −0.0695240
\(163\) 10.7692 0.843513 0.421756 0.906709i \(-0.361414\pi\)
0.421756 + 0.906709i \(0.361414\pi\)
\(164\) −12.8896 −1.00650
\(165\) 0.719261 0.0559944
\(166\) −2.75074 −0.213499
\(167\) 11.5114 0.890783 0.445391 0.895336i \(-0.353065\pi\)
0.445391 + 0.895336i \(0.353065\pi\)
\(168\) −8.51515 −0.656958
\(169\) −9.93320 −0.764092
\(170\) −0.0188248 −0.00144380
\(171\) 4.90172 0.374844
\(172\) −14.4372 −1.10083
\(173\) 11.3357 0.861834 0.430917 0.902392i \(-0.358190\pi\)
0.430917 + 0.902392i \(0.358190\pi\)
\(174\) −0.889005 −0.0673953
\(175\) 16.9577 1.28188
\(176\) 9.42308 0.710291
\(177\) −7.34364 −0.551982
\(178\) −9.71841 −0.728426
\(179\) 14.6224 1.09293 0.546466 0.837481i \(-0.315973\pi\)
0.546466 + 0.837481i \(0.315973\pi\)
\(180\) −0.364790 −0.0271899
\(181\) 0.178071 0.0132359 0.00661796 0.999978i \(-0.497893\pi\)
0.00661796 + 0.999978i \(0.497893\pi\)
\(182\) 3.46483 0.256831
\(183\) −15.6420 −1.15629
\(184\) 15.8914 1.17153
\(185\) 0 0
\(186\) −5.93513 −0.435185
\(187\) 1.07862 0.0788768
\(188\) 13.5241 0.986346
\(189\) −18.4777 −1.34406
\(190\) 0.238571 0.0173077
\(191\) −5.99804 −0.434003 −0.217001 0.976171i \(-0.569628\pi\)
−0.217001 + 0.976171i \(0.569628\pi\)
\(192\) 1.16932 0.0843886
\(193\) −17.1747 −1.23626 −0.618131 0.786075i \(-0.712110\pi\)
−0.618131 + 0.786075i \(0.712110\pi\)
\(194\) 1.74332 0.125163
\(195\) −0.278998 −0.0199795
\(196\) −7.62546 −0.544676
\(197\) −9.78679 −0.697280 −0.348640 0.937257i \(-0.613356\pi\)
−0.348640 + 0.937257i \(0.613356\pi\)
\(198\) −4.24805 −0.301896
\(199\) 23.8805 1.69285 0.846423 0.532512i \(-0.178752\pi\)
0.846423 + 0.532512i \(0.178752\pi\)
\(200\) 10.6036 0.749787
\(201\) −3.05210 −0.215279
\(202\) −6.85676 −0.482440
\(203\) −4.43043 −0.310956
\(204\) 0.466695 0.0326752
\(205\) −1.05125 −0.0734223
\(206\) −1.05276 −0.0733494
\(207\) 12.0865 0.840070
\(208\) −3.65517 −0.253440
\(209\) −13.6696 −0.945548
\(210\) −0.315209 −0.0217515
\(211\) 0.762065 0.0524627 0.0262314 0.999656i \(-0.491649\pi\)
0.0262314 + 0.999656i \(0.491649\pi\)
\(212\) −18.8617 −1.29543
\(213\) −4.23280 −0.290027
\(214\) 0.0544611 0.00372288
\(215\) −1.17747 −0.0803029
\(216\) −11.5540 −0.786152
\(217\) −29.5782 −2.00790
\(218\) 8.63637 0.584929
\(219\) 7.82413 0.528706
\(220\) 1.01731 0.0685868
\(221\) −0.418393 −0.0281442
\(222\) 0 0
\(223\) 10.8657 0.727619 0.363810 0.931473i \(-0.381476\pi\)
0.363810 + 0.931473i \(0.381476\pi\)
\(224\) −18.6209 −1.24416
\(225\) 8.06474 0.537649
\(226\) −2.59842 −0.172844
\(227\) −2.62128 −0.173981 −0.0869904 0.996209i \(-0.527725\pi\)
−0.0869904 + 0.996209i \(0.527725\pi\)
\(228\) −5.91452 −0.391699
\(229\) 15.6829 1.03636 0.518178 0.855273i \(-0.326610\pi\)
0.518178 + 0.855273i \(0.326610\pi\)
\(230\) 0.588260 0.0387887
\(231\) 18.0608 1.18832
\(232\) −2.77033 −0.181881
\(233\) 19.7685 1.29507 0.647537 0.762034i \(-0.275799\pi\)
0.647537 + 0.762034i \(0.275799\pi\)
\(234\) 1.64780 0.107720
\(235\) 1.10300 0.0719518
\(236\) −10.3867 −0.676115
\(237\) −5.34825 −0.347406
\(238\) −0.472696 −0.0306403
\(239\) 15.1048 0.977046 0.488523 0.872551i \(-0.337536\pi\)
0.488523 + 0.872551i \(0.337536\pi\)
\(240\) 0.332524 0.0214643
\(241\) −12.3019 −0.792432 −0.396216 0.918157i \(-0.629677\pi\)
−0.396216 + 0.918157i \(0.629677\pi\)
\(242\) 5.45328 0.350550
\(243\) −14.4952 −0.929868
\(244\) −22.1237 −1.41633
\(245\) −0.621918 −0.0397329
\(246\) −5.29682 −0.337713
\(247\) 5.30239 0.337383
\(248\) −18.4951 −1.17444
\(249\) 5.56186 0.352469
\(250\) 0.786483 0.0497415
\(251\) 29.0194 1.83169 0.915844 0.401534i \(-0.131523\pi\)
0.915844 + 0.401534i \(0.131523\pi\)
\(252\) −9.15999 −0.577025
\(253\) −33.7062 −2.11909
\(254\) −0.687607 −0.0431443
\(255\) 0.0380628 0.00238358
\(256\) −4.70496 −0.294060
\(257\) −16.4204 −1.02428 −0.512139 0.858903i \(-0.671147\pi\)
−0.512139 + 0.858903i \(0.671147\pi\)
\(258\) −5.93281 −0.369361
\(259\) 0 0
\(260\) −0.394608 −0.0244726
\(261\) −2.10702 −0.130421
\(262\) 6.75839 0.417535
\(263\) −1.41775 −0.0874222 −0.0437111 0.999044i \(-0.513918\pi\)
−0.0437111 + 0.999044i \(0.513918\pi\)
\(264\) 11.2934 0.695058
\(265\) −1.53832 −0.0944985
\(266\) 5.99057 0.367306
\(267\) 19.6501 1.20257
\(268\) −4.31683 −0.263692
\(269\) 20.3605 1.24140 0.620700 0.784048i \(-0.286849\pi\)
0.620700 + 0.784048i \(0.286849\pi\)
\(270\) −0.427700 −0.0260290
\(271\) −16.6609 −1.01208 −0.506040 0.862510i \(-0.668891\pi\)
−0.506040 + 0.862510i \(0.668891\pi\)
\(272\) 0.498663 0.0302359
\(273\) −7.00572 −0.424005
\(274\) −5.33959 −0.322576
\(275\) −22.4905 −1.35623
\(276\) −14.5839 −0.877845
\(277\) 10.7457 0.645649 0.322825 0.946459i \(-0.395368\pi\)
0.322825 + 0.946459i \(0.395368\pi\)
\(278\) −3.03510 −0.182033
\(279\) −14.0668 −0.842155
\(280\) −0.982257 −0.0587011
\(281\) −29.4052 −1.75417 −0.877084 0.480338i \(-0.840514\pi\)
−0.877084 + 0.480338i \(0.840514\pi\)
\(282\) 5.55758 0.330949
\(283\) −9.89331 −0.588096 −0.294048 0.955791i \(-0.595003\pi\)
−0.294048 + 0.955791i \(0.595003\pi\)
\(284\) −5.98678 −0.355250
\(285\) −0.482378 −0.0285736
\(286\) −4.59529 −0.271725
\(287\) −26.3971 −1.55817
\(288\) −8.85572 −0.521828
\(289\) −16.9429 −0.996642
\(290\) −0.102550 −0.00602196
\(291\) −3.52491 −0.206634
\(292\) 11.0663 0.647605
\(293\) −17.1879 −1.00413 −0.502064 0.864831i \(-0.667426\pi\)
−0.502064 + 0.864831i \(0.667426\pi\)
\(294\) −3.13360 −0.182755
\(295\) −0.847118 −0.0493211
\(296\) 0 0
\(297\) 24.5064 1.42200
\(298\) −2.30754 −0.133672
\(299\) 13.0745 0.756116
\(300\) −9.73110 −0.561825
\(301\) −29.5667 −1.70419
\(302\) −2.04319 −0.117572
\(303\) 13.8640 0.796467
\(304\) −6.31966 −0.362457
\(305\) −1.80437 −0.103318
\(306\) −0.224804 −0.0128512
\(307\) −9.76967 −0.557585 −0.278792 0.960351i \(-0.589934\pi\)
−0.278792 + 0.960351i \(0.589934\pi\)
\(308\) 25.5449 1.45555
\(309\) 2.12863 0.121094
\(310\) −0.684641 −0.0388850
\(311\) 1.58619 0.0899447 0.0449723 0.998988i \(-0.485680\pi\)
0.0449723 + 0.998988i \(0.485680\pi\)
\(312\) −4.38064 −0.248005
\(313\) 11.9721 0.676701 0.338350 0.941020i \(-0.390131\pi\)
0.338350 + 0.941020i \(0.390131\pi\)
\(314\) 2.43060 0.137167
\(315\) −0.747072 −0.0420927
\(316\) −7.56444 −0.425533
\(317\) −4.30654 −0.241879 −0.120940 0.992660i \(-0.538591\pi\)
−0.120940 + 0.992660i \(0.538591\pi\)
\(318\) −7.75100 −0.434654
\(319\) 5.87594 0.328989
\(320\) 0.134886 0.00754036
\(321\) −0.110118 −0.00614616
\(322\) 14.7714 0.823177
\(323\) −0.723387 −0.0402504
\(324\) 2.53063 0.140590
\(325\) 8.72396 0.483918
\(326\) 6.25933 0.346672
\(327\) −17.4623 −0.965668
\(328\) −16.5060 −0.911391
\(329\) 27.6966 1.52697
\(330\) 0.418051 0.0230129
\(331\) 8.08288 0.444275 0.222138 0.975015i \(-0.428697\pi\)
0.222138 + 0.975015i \(0.428697\pi\)
\(332\) 7.86657 0.431734
\(333\) 0 0
\(334\) 6.69071 0.366100
\(335\) −0.352072 −0.0192358
\(336\) 8.34978 0.455518
\(337\) −2.16065 −0.117698 −0.0588491 0.998267i \(-0.518743\pi\)
−0.0588491 + 0.998267i \(0.518743\pi\)
\(338\) −5.77340 −0.314032
\(339\) 5.25387 0.285351
\(340\) 0.0538351 0.00291962
\(341\) 39.2286 2.12435
\(342\) 2.84899 0.154056
\(343\) 8.21187 0.443399
\(344\) −18.4879 −0.996800
\(345\) −1.18943 −0.0640369
\(346\) 6.58854 0.354202
\(347\) 31.7682 1.70541 0.852703 0.522396i \(-0.174962\pi\)
0.852703 + 0.522396i \(0.174962\pi\)
\(348\) 2.54238 0.136286
\(349\) 17.6444 0.944481 0.472241 0.881470i \(-0.343445\pi\)
0.472241 + 0.881470i \(0.343445\pi\)
\(350\) 9.85622 0.526837
\(351\) −9.50591 −0.507388
\(352\) 24.6963 1.31632
\(353\) 24.8036 1.32016 0.660081 0.751195i \(-0.270522\pi\)
0.660081 + 0.751195i \(0.270522\pi\)
\(354\) −4.26829 −0.226857
\(355\) −0.488271 −0.0259147
\(356\) 27.7927 1.47301
\(357\) 0.955767 0.0505846
\(358\) 8.49889 0.449180
\(359\) −11.0967 −0.585664 −0.292832 0.956164i \(-0.594598\pi\)
−0.292832 + 0.956164i \(0.594598\pi\)
\(360\) −0.467140 −0.0246205
\(361\) −9.83236 −0.517493
\(362\) 0.103499 0.00543978
\(363\) −11.0263 −0.578729
\(364\) −9.90873 −0.519359
\(365\) 0.902545 0.0472414
\(366\) −9.09151 −0.475221
\(367\) 22.4927 1.17411 0.587054 0.809548i \(-0.300288\pi\)
0.587054 + 0.809548i \(0.300288\pi\)
\(368\) −15.5828 −0.812311
\(369\) −12.5539 −0.653531
\(370\) 0 0
\(371\) −38.6278 −2.00545
\(372\) 16.9733 0.880023
\(373\) 8.15249 0.422120 0.211060 0.977473i \(-0.432308\pi\)
0.211060 + 0.977473i \(0.432308\pi\)
\(374\) 0.626921 0.0324173
\(375\) −1.59023 −0.0821190
\(376\) 17.3186 0.893137
\(377\) −2.27925 −0.117387
\(378\) −10.7397 −0.552389
\(379\) 27.6915 1.42242 0.711208 0.702981i \(-0.248148\pi\)
0.711208 + 0.702981i \(0.248148\pi\)
\(380\) −0.682264 −0.0349994
\(381\) 1.39031 0.0712276
\(382\) −3.48620 −0.178369
\(383\) 30.0351 1.53472 0.767362 0.641214i \(-0.221569\pi\)
0.767362 + 0.641214i \(0.221569\pi\)
\(384\) 13.5369 0.690800
\(385\) 2.08339 0.106179
\(386\) −9.98233 −0.508087
\(387\) −14.0613 −0.714775
\(388\) −4.98556 −0.253103
\(389\) 8.47319 0.429608 0.214804 0.976657i \(-0.431089\pi\)
0.214804 + 0.976657i \(0.431089\pi\)
\(390\) −0.162160 −0.00821129
\(391\) −1.78371 −0.0902059
\(392\) −9.76495 −0.493205
\(393\) −13.6651 −0.689314
\(394\) −5.68830 −0.286572
\(395\) −0.616942 −0.0310417
\(396\) 12.1486 0.610489
\(397\) 5.93703 0.297971 0.148986 0.988839i \(-0.452399\pi\)
0.148986 + 0.988839i \(0.452399\pi\)
\(398\) 13.8799 0.695736
\(399\) −12.1126 −0.606390
\(400\) −10.3977 −0.519883
\(401\) 8.27102 0.413035 0.206518 0.978443i \(-0.433787\pi\)
0.206518 + 0.978443i \(0.433787\pi\)
\(402\) −1.77395 −0.0884766
\(403\) −15.2166 −0.757992
\(404\) 19.6090 0.975582
\(405\) 0.206393 0.0102558
\(406\) −2.57507 −0.127798
\(407\) 0 0
\(408\) 0.597637 0.0295874
\(409\) −3.85500 −0.190617 −0.0953087 0.995448i \(-0.530384\pi\)
−0.0953087 + 0.995448i \(0.530384\pi\)
\(410\) −0.611009 −0.0301756
\(411\) 10.7964 0.532546
\(412\) 3.01069 0.148326
\(413\) −21.2714 −1.04670
\(414\) 7.02495 0.345258
\(415\) 0.641583 0.0314941
\(416\) −9.57959 −0.469678
\(417\) 6.13681 0.300521
\(418\) −7.94510 −0.388607
\(419\) −7.84489 −0.383248 −0.191624 0.981468i \(-0.561375\pi\)
−0.191624 + 0.981468i \(0.561375\pi\)
\(420\) 0.901433 0.0439855
\(421\) −8.68389 −0.423227 −0.211613 0.977353i \(-0.567872\pi\)
−0.211613 + 0.977353i \(0.567872\pi\)
\(422\) 0.442929 0.0215615
\(423\) 13.1719 0.640441
\(424\) −24.1537 −1.17301
\(425\) −1.19018 −0.0577323
\(426\) −2.46020 −0.119197
\(427\) −45.3083 −2.19262
\(428\) −0.155748 −0.00752835
\(429\) 9.29145 0.448595
\(430\) −0.684373 −0.0330034
\(431\) 10.7078 0.515774 0.257887 0.966175i \(-0.416974\pi\)
0.257887 + 0.966175i \(0.416974\pi\)
\(432\) 11.3296 0.545098
\(433\) −20.6300 −0.991415 −0.495707 0.868490i \(-0.665091\pi\)
−0.495707 + 0.868490i \(0.665091\pi\)
\(434\) −17.1915 −0.825220
\(435\) 0.207352 0.00994175
\(436\) −24.6983 −1.18283
\(437\) 22.6053 1.08136
\(438\) 4.54756 0.217291
\(439\) 31.3169 1.49467 0.747337 0.664445i \(-0.231332\pi\)
0.747337 + 0.664445i \(0.231332\pi\)
\(440\) 1.30273 0.0621054
\(441\) −7.42690 −0.353662
\(442\) −0.243180 −0.0115669
\(443\) 36.0868 1.71454 0.857268 0.514870i \(-0.172160\pi\)
0.857268 + 0.514870i \(0.172160\pi\)
\(444\) 0 0
\(445\) 2.26672 0.107453
\(446\) 6.31537 0.299042
\(447\) 4.66573 0.220681
\(448\) 3.38703 0.160022
\(449\) 8.06309 0.380521 0.190260 0.981734i \(-0.439067\pi\)
0.190260 + 0.981734i \(0.439067\pi\)
\(450\) 4.68741 0.220967
\(451\) 35.0096 1.64854
\(452\) 7.43096 0.349523
\(453\) 4.13123 0.194102
\(454\) −1.52355 −0.0715037
\(455\) −0.808138 −0.0378861
\(456\) −7.57397 −0.354684
\(457\) −23.1181 −1.08142 −0.540709 0.841209i \(-0.681844\pi\)
−0.540709 + 0.841209i \(0.681844\pi\)
\(458\) 9.11527 0.425928
\(459\) 1.29686 0.0605323
\(460\) −1.68231 −0.0784379
\(461\) −1.36014 −0.0633480 −0.0316740 0.999498i \(-0.510084\pi\)
−0.0316740 + 0.999498i \(0.510084\pi\)
\(462\) 10.4974 0.488382
\(463\) −9.63998 −0.448008 −0.224004 0.974588i \(-0.571913\pi\)
−0.224004 + 0.974588i \(0.571913\pi\)
\(464\) 2.71653 0.126112
\(465\) 1.38431 0.0641958
\(466\) 11.4899 0.532258
\(467\) −11.4646 −0.530519 −0.265260 0.964177i \(-0.585458\pi\)
−0.265260 + 0.964177i \(0.585458\pi\)
\(468\) −4.71238 −0.217830
\(469\) −8.84064 −0.408223
\(470\) 0.641089 0.0295712
\(471\) −4.91455 −0.226450
\(472\) −13.3009 −0.612223
\(473\) 39.2133 1.80303
\(474\) −3.10852 −0.142779
\(475\) 15.0834 0.692074
\(476\) 1.35182 0.0619604
\(477\) −18.3705 −0.841129
\(478\) 8.77923 0.401552
\(479\) 19.9753 0.912695 0.456348 0.889802i \(-0.349157\pi\)
0.456348 + 0.889802i \(0.349157\pi\)
\(480\) 0.871490 0.0397779
\(481\) 0 0
\(482\) −7.15012 −0.325679
\(483\) −29.8670 −1.35899
\(484\) −15.5953 −0.708877
\(485\) −0.406613 −0.0184633
\(486\) −8.42494 −0.382163
\(487\) 3.19056 0.144578 0.0722890 0.997384i \(-0.476970\pi\)
0.0722890 + 0.997384i \(0.476970\pi\)
\(488\) −28.3311 −1.28249
\(489\) −12.6561 −0.572327
\(490\) −0.361473 −0.0163297
\(491\) 5.42371 0.244769 0.122384 0.992483i \(-0.460946\pi\)
0.122384 + 0.992483i \(0.460946\pi\)
\(492\) 15.1478 0.682917
\(493\) 0.310950 0.0140045
\(494\) 3.08187 0.138660
\(495\) 0.990816 0.0445339
\(496\) 18.1359 0.814327
\(497\) −12.2606 −0.549964
\(498\) 3.23268 0.144860
\(499\) −1.08975 −0.0487838 −0.0243919 0.999702i \(-0.507765\pi\)
−0.0243919 + 0.999702i \(0.507765\pi\)
\(500\) −2.24918 −0.100587
\(501\) −13.5283 −0.604399
\(502\) 16.8667 0.752799
\(503\) 0.148635 0.00662731 0.00331366 0.999995i \(-0.498945\pi\)
0.00331366 + 0.999995i \(0.498945\pi\)
\(504\) −11.7300 −0.522497
\(505\) 1.59927 0.0711666
\(506\) −19.5908 −0.870916
\(507\) 11.6735 0.518439
\(508\) 1.96642 0.0872458
\(509\) −12.8435 −0.569279 −0.284639 0.958635i \(-0.591874\pi\)
−0.284639 + 0.958635i \(0.591874\pi\)
\(510\) 0.0221229 0.000979621 0
\(511\) 22.6632 1.00256
\(512\) 20.3029 0.897268
\(513\) −16.4354 −0.725640
\(514\) −9.54392 −0.420964
\(515\) 0.245546 0.0108201
\(516\) 16.9666 0.746915
\(517\) −36.7331 −1.61552
\(518\) 0 0
\(519\) −13.3217 −0.584758
\(520\) −0.505325 −0.0221599
\(521\) −33.9439 −1.48711 −0.743555 0.668675i \(-0.766862\pi\)
−0.743555 + 0.668675i \(0.766862\pi\)
\(522\) −1.22465 −0.0536014
\(523\) 21.5585 0.942688 0.471344 0.881949i \(-0.343769\pi\)
0.471344 + 0.881949i \(0.343769\pi\)
\(524\) −19.3276 −0.844332
\(525\) −19.9288 −0.869764
\(526\) −0.824028 −0.0359293
\(527\) 2.07595 0.0904298
\(528\) −11.0740 −0.481935
\(529\) 32.7394 1.42345
\(530\) −0.894109 −0.0388376
\(531\) −10.1162 −0.439006
\(532\) −17.1318 −0.742760
\(533\) −13.5801 −0.588219
\(534\) 11.4211 0.494240
\(535\) −0.0127025 −0.000549177 0
\(536\) −5.52801 −0.238774
\(537\) −17.1843 −0.741559
\(538\) 11.8340 0.510198
\(539\) 20.7117 0.892116
\(540\) 1.22314 0.0526354
\(541\) 30.5914 1.31523 0.657614 0.753355i \(-0.271566\pi\)
0.657614 + 0.753355i \(0.271566\pi\)
\(542\) −9.68371 −0.415951
\(543\) −0.209270 −0.00898062
\(544\) 1.30691 0.0560334
\(545\) −2.01435 −0.0862852
\(546\) −4.07188 −0.174260
\(547\) −27.0949 −1.15849 −0.579246 0.815153i \(-0.696653\pi\)
−0.579246 + 0.815153i \(0.696653\pi\)
\(548\) 15.2702 0.652309
\(549\) −21.5477 −0.919632
\(550\) −13.0720 −0.557391
\(551\) −3.94074 −0.167881
\(552\) −18.6757 −0.794890
\(553\) −15.4916 −0.658769
\(554\) 6.24567 0.265353
\(555\) 0 0
\(556\) 8.67977 0.368104
\(557\) 35.3428 1.49752 0.748762 0.662839i \(-0.230649\pi\)
0.748762 + 0.662839i \(0.230649\pi\)
\(558\) −8.17592 −0.346114
\(559\) −15.2106 −0.643342
\(560\) 0.963180 0.0407018
\(561\) −1.26760 −0.0535182
\(562\) −17.0910 −0.720939
\(563\) −21.0910 −0.888881 −0.444441 0.895808i \(-0.646597\pi\)
−0.444441 + 0.895808i \(0.646597\pi\)
\(564\) −15.8936 −0.669239
\(565\) 0.606055 0.0254969
\(566\) −5.75021 −0.241700
\(567\) 5.18259 0.217648
\(568\) −7.66650 −0.321679
\(569\) −42.8589 −1.79674 −0.898370 0.439239i \(-0.855248\pi\)
−0.898370 + 0.439239i \(0.855248\pi\)
\(570\) −0.280369 −0.0117434
\(571\) 18.5662 0.776969 0.388485 0.921455i \(-0.372999\pi\)
0.388485 + 0.921455i \(0.372999\pi\)
\(572\) 13.1416 0.549479
\(573\) 7.04891 0.294473
\(574\) −15.3426 −0.640388
\(575\) 37.1922 1.55102
\(576\) 1.61080 0.0671166
\(577\) 26.6541 1.10962 0.554812 0.831976i \(-0.312790\pi\)
0.554812 + 0.831976i \(0.312790\pi\)
\(578\) −9.84761 −0.409606
\(579\) 20.1838 0.838809
\(580\) 0.293273 0.0121775
\(581\) 16.1103 0.668369
\(582\) −2.04876 −0.0849238
\(583\) 51.2307 2.12176
\(584\) 14.1712 0.586407
\(585\) −0.384333 −0.0158902
\(586\) −9.98999 −0.412683
\(587\) 35.2047 1.45305 0.726527 0.687138i \(-0.241133\pi\)
0.726527 + 0.687138i \(0.241133\pi\)
\(588\) 8.96146 0.369564
\(589\) −26.3089 −1.08404
\(590\) −0.492364 −0.0202703
\(591\) 11.5015 0.473107
\(592\) 0 0
\(593\) 35.8341 1.47153 0.735764 0.677238i \(-0.236823\pi\)
0.735764 + 0.677238i \(0.236823\pi\)
\(594\) 14.2437 0.584425
\(595\) 0.110252 0.00451987
\(596\) 6.59910 0.270310
\(597\) −28.0645 −1.14860
\(598\) 7.59917 0.310753
\(599\) −22.8314 −0.932865 −0.466432 0.884557i \(-0.654461\pi\)
−0.466432 + 0.884557i \(0.654461\pi\)
\(600\) −12.4614 −0.508733
\(601\) −44.8434 −1.82920 −0.914600 0.404359i \(-0.867495\pi\)
−0.914600 + 0.404359i \(0.867495\pi\)
\(602\) −17.1848 −0.700401
\(603\) −4.20442 −0.171217
\(604\) 5.84312 0.237753
\(605\) −1.27192 −0.0517110
\(606\) 8.05808 0.327337
\(607\) 3.67023 0.148970 0.0744849 0.997222i \(-0.476269\pi\)
0.0744849 + 0.997222i \(0.476269\pi\)
\(608\) −16.5628 −0.671709
\(609\) 5.20666 0.210984
\(610\) −1.04874 −0.0424623
\(611\) 14.2486 0.576437
\(612\) 0.642895 0.0259875
\(613\) −11.5735 −0.467448 −0.233724 0.972303i \(-0.575091\pi\)
−0.233724 + 0.972303i \(0.575091\pi\)
\(614\) −5.67836 −0.229160
\(615\) 1.23543 0.0498173
\(616\) 32.7120 1.31801
\(617\) 17.3327 0.697790 0.348895 0.937162i \(-0.386557\pi\)
0.348895 + 0.937162i \(0.386557\pi\)
\(618\) 1.23721 0.0497678
\(619\) 20.0946 0.807670 0.403835 0.914832i \(-0.367677\pi\)
0.403835 + 0.914832i \(0.367677\pi\)
\(620\) 1.95794 0.0786326
\(621\) −40.5259 −1.62625
\(622\) 0.921930 0.0369660
\(623\) 56.9181 2.28037
\(624\) 4.29557 0.171960
\(625\) 24.7247 0.988987
\(626\) 6.95843 0.278115
\(627\) 16.0646 0.641558
\(628\) −6.95103 −0.277376
\(629\) 0 0
\(630\) −0.434215 −0.0172995
\(631\) 7.93504 0.315889 0.157945 0.987448i \(-0.449513\pi\)
0.157945 + 0.987448i \(0.449513\pi\)
\(632\) −9.68681 −0.385321
\(633\) −0.895581 −0.0355961
\(634\) −2.50306 −0.0994090
\(635\) 0.160378 0.00636439
\(636\) 22.1663 0.878951
\(637\) −8.03398 −0.318318
\(638\) 3.41523 0.135210
\(639\) −5.83089 −0.230666
\(640\) 1.56153 0.0617249
\(641\) 25.2280 0.996446 0.498223 0.867049i \(-0.333986\pi\)
0.498223 + 0.867049i \(0.333986\pi\)
\(642\) −0.0640028 −0.00252599
\(643\) −13.6761 −0.539334 −0.269667 0.962954i \(-0.586914\pi\)
−0.269667 + 0.962954i \(0.586914\pi\)
\(644\) −42.2432 −1.66461
\(645\) 1.38377 0.0544858
\(646\) −0.420449 −0.0165423
\(647\) −4.72308 −0.185683 −0.0928417 0.995681i \(-0.529595\pi\)
−0.0928417 + 0.995681i \(0.529595\pi\)
\(648\) 3.24065 0.127305
\(649\) 28.2115 1.10740
\(650\) 5.07056 0.198884
\(651\) 34.7604 1.36237
\(652\) −17.9004 −0.701035
\(653\) −20.2454 −0.792263 −0.396132 0.918194i \(-0.629648\pi\)
−0.396132 + 0.918194i \(0.629648\pi\)
\(654\) −10.1495 −0.396877
\(655\) −1.57633 −0.0615922
\(656\) 16.1854 0.631935
\(657\) 10.7781 0.420494
\(658\) 16.0979 0.627562
\(659\) −18.1715 −0.707862 −0.353931 0.935271i \(-0.615155\pi\)
−0.353931 + 0.935271i \(0.615155\pi\)
\(660\) −1.19554 −0.0465364
\(661\) 8.45867 0.329004 0.164502 0.986377i \(-0.447398\pi\)
0.164502 + 0.986377i \(0.447398\pi\)
\(662\) 4.69795 0.182591
\(663\) 0.491697 0.0190959
\(664\) 10.0737 0.390936
\(665\) −1.39724 −0.0541827
\(666\) 0 0
\(667\) −9.71696 −0.376242
\(668\) −19.1341 −0.740321
\(669\) −12.7694 −0.493692
\(670\) −0.204632 −0.00790564
\(671\) 60.0909 2.31978
\(672\) 21.8834 0.844170
\(673\) −47.9374 −1.84785 −0.923925 0.382574i \(-0.875038\pi\)
−0.923925 + 0.382574i \(0.875038\pi\)
\(674\) −1.25582 −0.0483723
\(675\) −27.0410 −1.04081
\(676\) 16.5108 0.635030
\(677\) 7.63281 0.293353 0.146676 0.989185i \(-0.453142\pi\)
0.146676 + 0.989185i \(0.453142\pi\)
\(678\) 3.05367 0.117275
\(679\) −10.2102 −0.391830
\(680\) 0.0689398 0.00264372
\(681\) 3.08054 0.118047
\(682\) 22.8005 0.873078
\(683\) 39.6975 1.51898 0.759492 0.650516i \(-0.225448\pi\)
0.759492 + 0.650516i \(0.225448\pi\)
\(684\) −8.14754 −0.311529
\(685\) 1.24541 0.0475845
\(686\) 4.77292 0.182231
\(687\) −18.4306 −0.703172
\(688\) 18.1288 0.691155
\(689\) −19.8722 −0.757069
\(690\) −0.691325 −0.0263183
\(691\) −5.98406 −0.227644 −0.113822 0.993501i \(-0.536309\pi\)
−0.113822 + 0.993501i \(0.536309\pi\)
\(692\) −18.8419 −0.716262
\(693\) 24.8797 0.945101
\(694\) 18.4644 0.700899
\(695\) 0.707906 0.0268524
\(696\) 3.25570 0.123407
\(697\) 1.85269 0.0701755
\(698\) 10.2553 0.388169
\(699\) −23.2319 −0.878713
\(700\) −28.1868 −1.06536
\(701\) 21.2280 0.801769 0.400884 0.916129i \(-0.368703\pi\)
0.400884 + 0.916129i \(0.368703\pi\)
\(702\) −5.52505 −0.208530
\(703\) 0 0
\(704\) −4.49210 −0.169302
\(705\) −1.29625 −0.0488196
\(706\) 14.4164 0.542568
\(707\) 40.1581 1.51030
\(708\) 12.2065 0.458747
\(709\) 24.9373 0.936541 0.468270 0.883585i \(-0.344877\pi\)
0.468270 + 0.883585i \(0.344877\pi\)
\(710\) −0.283794 −0.0106506
\(711\) −7.36747 −0.276302
\(712\) 35.5906 1.33381
\(713\) −64.8718 −2.42947
\(714\) 0.555514 0.0207896
\(715\) 1.07181 0.0400833
\(716\) −24.3051 −0.908325
\(717\) −17.7512 −0.662929
\(718\) −6.44968 −0.240700
\(719\) 2.23576 0.0833797 0.0416898 0.999131i \(-0.486726\pi\)
0.0416898 + 0.999131i \(0.486726\pi\)
\(720\) 0.458068 0.0170712
\(721\) 6.16573 0.229624
\(722\) −5.71479 −0.212682
\(723\) 14.4572 0.537668
\(724\) −0.295986 −0.0110002
\(725\) −6.48365 −0.240797
\(726\) −6.40871 −0.237850
\(727\) 36.4649 1.35241 0.676204 0.736715i \(-0.263624\pi\)
0.676204 + 0.736715i \(0.263624\pi\)
\(728\) −12.6888 −0.470280
\(729\) 21.6022 0.800083
\(730\) 0.524579 0.0194156
\(731\) 2.07514 0.0767518
\(732\) 25.9999 0.960984
\(733\) 2.09671 0.0774438 0.0387219 0.999250i \(-0.487671\pi\)
0.0387219 + 0.999250i \(0.487671\pi\)
\(734\) 13.0733 0.482543
\(735\) 0.730880 0.0269589
\(736\) −40.8400 −1.50538
\(737\) 11.7250 0.431897
\(738\) −7.29662 −0.268592
\(739\) −28.5648 −1.05077 −0.525386 0.850864i \(-0.676079\pi\)
−0.525386 + 0.850864i \(0.676079\pi\)
\(740\) 0 0
\(741\) −6.23138 −0.228915
\(742\) −22.4513 −0.824214
\(743\) 14.6071 0.535882 0.267941 0.963435i \(-0.413657\pi\)
0.267941 + 0.963435i \(0.413657\pi\)
\(744\) 21.7355 0.796862
\(745\) 0.538211 0.0197185
\(746\) 4.73841 0.173485
\(747\) 7.66173 0.280328
\(748\) −1.79287 −0.0655537
\(749\) −0.318963 −0.0116547
\(750\) −0.924277 −0.0337498
\(751\) −54.7210 −1.99680 −0.998399 0.0565662i \(-0.981985\pi\)
−0.998399 + 0.0565662i \(0.981985\pi\)
\(752\) −16.9822 −0.619279
\(753\) −34.1037 −1.24281
\(754\) −1.32475 −0.0482446
\(755\) 0.476554 0.0173436
\(756\) 30.7133 1.11703
\(757\) −19.2216 −0.698622 −0.349311 0.937007i \(-0.613584\pi\)
−0.349311 + 0.937007i \(0.613584\pi\)
\(758\) 16.0949 0.584594
\(759\) 39.6116 1.43781
\(760\) −0.873688 −0.0316920
\(761\) 40.4818 1.46747 0.733733 0.679438i \(-0.237777\pi\)
0.733733 + 0.679438i \(0.237777\pi\)
\(762\) 0.808078 0.0292736
\(763\) −50.5809 −1.83115
\(764\) 9.96982 0.360696
\(765\) 0.0524333 0.00189573
\(766\) 17.4571 0.630751
\(767\) −10.9431 −0.395133
\(768\) 5.52928 0.199521
\(769\) −12.6633 −0.456650 −0.228325 0.973585i \(-0.573325\pi\)
−0.228325 + 0.973585i \(0.573325\pi\)
\(770\) 1.21091 0.0436383
\(771\) 19.2973 0.694976
\(772\) 28.5475 1.02745
\(773\) 28.5896 1.02830 0.514148 0.857701i \(-0.328108\pi\)
0.514148 + 0.857701i \(0.328108\pi\)
\(774\) −8.17273 −0.293763
\(775\) −43.2858 −1.55487
\(776\) −6.38437 −0.229185
\(777\) 0 0
\(778\) 4.92481 0.176563
\(779\) −23.4795 −0.841240
\(780\) 0.463745 0.0166047
\(781\) 16.2608 0.581859
\(782\) −1.03673 −0.0370734
\(783\) 7.06481 0.252476
\(784\) 9.57531 0.341975
\(785\) −0.566913 −0.0202340
\(786\) −7.94248 −0.283299
\(787\) −46.2315 −1.64797 −0.823987 0.566608i \(-0.808255\pi\)
−0.823987 + 0.566608i \(0.808255\pi\)
\(788\) 16.2674 0.579502
\(789\) 1.66614 0.0593163
\(790\) −0.358581 −0.0127577
\(791\) 15.2182 0.541098
\(792\) 15.5571 0.552799
\(793\) −23.3090 −0.827726
\(794\) 3.45074 0.122462
\(795\) 1.80784 0.0641176
\(796\) −39.6937 −1.40691
\(797\) −27.6489 −0.979373 −0.489687 0.871899i \(-0.662889\pi\)
−0.489687 + 0.871899i \(0.662889\pi\)
\(798\) −7.04014 −0.249218
\(799\) −1.94389 −0.0687700
\(800\) −27.2505 −0.963452
\(801\) 27.0690 0.956436
\(802\) 4.80731 0.169752
\(803\) −30.0574 −1.06070
\(804\) 5.07315 0.178916
\(805\) −3.44528 −0.121430
\(806\) −8.84423 −0.311525
\(807\) −23.9277 −0.842294
\(808\) 25.1107 0.883391
\(809\) 17.0004 0.597704 0.298852 0.954299i \(-0.403396\pi\)
0.298852 + 0.954299i \(0.403396\pi\)
\(810\) 0.119960 0.00421498
\(811\) 3.43649 0.120671 0.0603357 0.998178i \(-0.480783\pi\)
0.0603357 + 0.998178i \(0.480783\pi\)
\(812\) 7.36418 0.258432
\(813\) 19.5800 0.686699
\(814\) 0 0
\(815\) −1.45993 −0.0511390
\(816\) −0.586030 −0.0205152
\(817\) −26.2987 −0.920074
\(818\) −2.24061 −0.0783411
\(819\) −9.65071 −0.337223
\(820\) 1.74736 0.0610206
\(821\) −16.5396 −0.577236 −0.288618 0.957444i \(-0.593196\pi\)
−0.288618 + 0.957444i \(0.593196\pi\)
\(822\) 6.27510 0.218869
\(823\) −30.0080 −1.04601 −0.523006 0.852329i \(-0.675189\pi\)
−0.523006 + 0.852329i \(0.675189\pi\)
\(824\) 3.85540 0.134309
\(825\) 26.4309 0.920205
\(826\) −12.3634 −0.430178
\(827\) 0.382375 0.0132965 0.00664824 0.999978i \(-0.497884\pi\)
0.00664824 + 0.999978i \(0.497884\pi\)
\(828\) −20.0900 −0.698174
\(829\) 0.605322 0.0210237 0.0105119 0.999945i \(-0.496654\pi\)
0.0105119 + 0.999945i \(0.496654\pi\)
\(830\) 0.372903 0.0129436
\(831\) −12.6284 −0.438075
\(832\) 1.74247 0.0604091
\(833\) 1.09605 0.0379759
\(834\) 3.56685 0.123510
\(835\) −1.56054 −0.0540048
\(836\) 22.7214 0.785836
\(837\) 47.1657 1.63028
\(838\) −4.55962 −0.157510
\(839\) 29.0031 1.00130 0.500650 0.865650i \(-0.333095\pi\)
0.500650 + 0.865650i \(0.333095\pi\)
\(840\) 1.15435 0.0398289
\(841\) −27.3061 −0.941588
\(842\) −5.04727 −0.173940
\(843\) 34.5571 1.19021
\(844\) −1.26669 −0.0436012
\(845\) 1.34659 0.0463240
\(846\) 7.65583 0.263213
\(847\) −31.9384 −1.09742
\(848\) 23.6847 0.813335
\(849\) 11.6266 0.399025
\(850\) −0.691760 −0.0237272
\(851\) 0 0
\(852\) 7.03568 0.241038
\(853\) 56.5657 1.93677 0.968387 0.249453i \(-0.0802508\pi\)
0.968387 + 0.249453i \(0.0802508\pi\)
\(854\) −26.3342 −0.901138
\(855\) −0.664498 −0.0227254
\(856\) −0.199446 −0.00681693
\(857\) 0.990424 0.0338322 0.0169161 0.999857i \(-0.494615\pi\)
0.0169161 + 0.999857i \(0.494615\pi\)
\(858\) 5.40040 0.184367
\(859\) −4.84248 −0.165223 −0.0826116 0.996582i \(-0.526326\pi\)
−0.0826116 + 0.996582i \(0.526326\pi\)
\(860\) 1.95717 0.0667390
\(861\) 31.0220 1.05723
\(862\) 6.22359 0.211976
\(863\) 30.9388 1.05317 0.526585 0.850122i \(-0.323472\pi\)
0.526585 + 0.850122i \(0.323472\pi\)
\(864\) 29.6931 1.01018
\(865\) −1.53671 −0.0522497
\(866\) −11.9906 −0.407458
\(867\) 19.9114 0.676226
\(868\) 49.1643 1.66875
\(869\) 20.5460 0.696975
\(870\) 0.120517 0.00408592
\(871\) −4.54809 −0.154106
\(872\) −31.6280 −1.07106
\(873\) −4.85574 −0.164342
\(874\) 13.1387 0.444423
\(875\) −4.60621 −0.155718
\(876\) −13.0051 −0.439402
\(877\) 54.8462 1.85203 0.926013 0.377492i \(-0.123213\pi\)
0.926013 + 0.377492i \(0.123213\pi\)
\(878\) 18.2021 0.614291
\(879\) 20.1993 0.681304
\(880\) −1.27743 −0.0430623
\(881\) 39.1318 1.31838 0.659192 0.751974i \(-0.270898\pi\)
0.659192 + 0.751974i \(0.270898\pi\)
\(882\) −4.31668 −0.145350
\(883\) −16.6988 −0.561959 −0.280979 0.959714i \(-0.590659\pi\)
−0.280979 + 0.959714i \(0.590659\pi\)
\(884\) 0.695445 0.0233904
\(885\) 0.995536 0.0334646
\(886\) 20.9745 0.704651
\(887\) 22.4696 0.754457 0.377228 0.926120i \(-0.376877\pi\)
0.377228 + 0.926120i \(0.376877\pi\)
\(888\) 0 0
\(889\) 4.02713 0.135066
\(890\) 1.31747 0.0441617
\(891\) −6.87350 −0.230271
\(892\) −18.0607 −0.604717
\(893\) 24.6354 0.824391
\(894\) 2.71183 0.0906971
\(895\) −1.98228 −0.0662604
\(896\) 39.2105 1.30993
\(897\) −15.3651 −0.513027
\(898\) 4.68645 0.156389
\(899\) 11.3090 0.377176
\(900\) −13.4051 −0.446835
\(901\) 2.71109 0.0903196
\(902\) 20.3484 0.677527
\(903\) 34.7468 1.15630
\(904\) 9.51588 0.316493
\(905\) −0.0241401 −0.000802443 0
\(906\) 2.40116 0.0797733
\(907\) −1.57002 −0.0521316 −0.0260658 0.999660i \(-0.508298\pi\)
−0.0260658 + 0.999660i \(0.508298\pi\)
\(908\) 4.35705 0.144594
\(909\) 19.0984 0.633452
\(910\) −0.469708 −0.0155707
\(911\) 23.1298 0.766324 0.383162 0.923681i \(-0.374835\pi\)
0.383162 + 0.923681i \(0.374835\pi\)
\(912\) 7.42688 0.245929
\(913\) −21.3666 −0.707131
\(914\) −13.4368 −0.444448
\(915\) 2.12050 0.0701017
\(916\) −26.0678 −0.861306
\(917\) −39.5820 −1.30711
\(918\) 0.753765 0.0248779
\(919\) −31.8709 −1.05132 −0.525662 0.850693i \(-0.676182\pi\)
−0.525662 + 0.850693i \(0.676182\pi\)
\(920\) −2.15431 −0.0710256
\(921\) 11.4813 0.378323
\(922\) −0.790544 −0.0260352
\(923\) −6.30751 −0.207614
\(924\) −30.0204 −0.987598
\(925\) 0 0
\(926\) −5.60297 −0.184125
\(927\) 2.93229 0.0963091
\(928\) 7.11956 0.233711
\(929\) −28.0517 −0.920346 −0.460173 0.887829i \(-0.652213\pi\)
−0.460173 + 0.887829i \(0.652213\pi\)
\(930\) 0.804592 0.0263836
\(931\) −13.8905 −0.455241
\(932\) −32.8587 −1.07632
\(933\) −1.86410 −0.0610278
\(934\) −6.66350 −0.218036
\(935\) −0.146223 −0.00478200
\(936\) −6.03454 −0.197245
\(937\) 38.6097 1.26133 0.630663 0.776057i \(-0.282783\pi\)
0.630663 + 0.776057i \(0.282783\pi\)
\(938\) −5.13838 −0.167774
\(939\) −14.0696 −0.459144
\(940\) −1.83339 −0.0597984
\(941\) 12.2716 0.400043 0.200021 0.979792i \(-0.435899\pi\)
0.200021 + 0.979792i \(0.435899\pi\)
\(942\) −2.85645 −0.0930681
\(943\) −57.8950 −1.88532
\(944\) 13.0426 0.424500
\(945\) 2.50492 0.0814851
\(946\) 22.7916 0.741020
\(947\) −33.3992 −1.08533 −0.542665 0.839949i \(-0.682585\pi\)
−0.542665 + 0.839949i \(0.682585\pi\)
\(948\) 8.88975 0.288726
\(949\) 11.6591 0.378471
\(950\) 8.76682 0.284433
\(951\) 5.06105 0.164116
\(952\) 1.73110 0.0561052
\(953\) −1.71781 −0.0556454 −0.0278227 0.999613i \(-0.508857\pi\)
−0.0278227 + 0.999613i \(0.508857\pi\)
\(954\) −10.6774 −0.345693
\(955\) 0.813120 0.0263120
\(956\) −25.1068 −0.812013
\(957\) −6.90542 −0.223220
\(958\) 11.6101 0.375105
\(959\) 31.2725 1.00984
\(960\) −0.158518 −0.00511616
\(961\) 44.5004 1.43550
\(962\) 0 0
\(963\) −0.151692 −0.00488821
\(964\) 20.4479 0.658583
\(965\) 2.32828 0.0749499
\(966\) −17.3594 −0.558528
\(967\) −23.1071 −0.743076 −0.371538 0.928418i \(-0.621169\pi\)
−0.371538 + 0.928418i \(0.621169\pi\)
\(968\) −19.9709 −0.641889
\(969\) 0.850127 0.0273100
\(970\) −0.236333 −0.00758818
\(971\) 37.9148 1.21674 0.608372 0.793652i \(-0.291823\pi\)
0.608372 + 0.793652i \(0.291823\pi\)
\(972\) 24.0937 0.772804
\(973\) 17.7757 0.569864
\(974\) 1.85442 0.0594196
\(975\) −10.2524 −0.328340
\(976\) 27.7808 0.889243
\(977\) −35.6149 −1.13942 −0.569711 0.821845i \(-0.692945\pi\)
−0.569711 + 0.821845i \(0.692945\pi\)
\(978\) −7.35598 −0.235218
\(979\) −75.4885 −2.41262
\(980\) 1.03374 0.0330216
\(981\) −24.0552 −0.768023
\(982\) 3.15238 0.100597
\(983\) 12.1991 0.389092 0.194546 0.980893i \(-0.437677\pi\)
0.194546 + 0.980893i \(0.437677\pi\)
\(984\) 19.3979 0.618382
\(985\) 1.32674 0.0422734
\(986\) 0.180731 0.00575566
\(987\) −32.5492 −1.03605
\(988\) −8.81352 −0.280396
\(989\) −64.8465 −2.06200
\(990\) 0.575885 0.0183028
\(991\) −12.0888 −0.384013 −0.192007 0.981394i \(-0.561500\pi\)
−0.192007 + 0.981394i \(0.561500\pi\)
\(992\) 47.5312 1.50912
\(993\) −9.49902 −0.301442
\(994\) −7.12615 −0.226028
\(995\) −3.23735 −0.102631
\(996\) −9.24482 −0.292933
\(997\) 45.9879 1.45645 0.728226 0.685338i \(-0.240345\pi\)
0.728226 + 0.685338i \(0.240345\pi\)
\(998\) −0.633386 −0.0200495
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1369.2.a.o.1.15 yes 27
37.6 odd 4 1369.2.b.h.1368.22 54
37.31 odd 4 1369.2.b.h.1368.33 54
37.36 even 2 1369.2.a.n.1.13 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1369.2.a.n.1.13 27 37.36 even 2
1369.2.a.o.1.15 yes 27 1.1 even 1 trivial
1369.2.b.h.1368.22 54 37.6 odd 4
1369.2.b.h.1368.33 54 37.31 odd 4