Properties

Label 1369.2.a.n.1.13
Level $1369$
Weight $2$
Character 1369.1
Self dual yes
Analytic conductor $10.932$
Analytic rank $1$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1369,2,Mod(1,1369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1369, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1369.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1369 = 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1369.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,-9,-1,25,-17,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9315200367\)
Analytic rank: \(1\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 1369.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.581223 q^{2} -1.17520 q^{3} -1.66218 q^{4} +0.135564 q^{5} +0.683054 q^{6} -3.40406 q^{7} +2.12854 q^{8} -1.61890 q^{9} -0.0787931 q^{10} +4.51469 q^{11} +1.95340 q^{12} +1.75123 q^{13} +1.97852 q^{14} -0.159316 q^{15} +2.08720 q^{16} -0.238914 q^{17} +0.940940 q^{18} +3.02781 q^{19} -0.225332 q^{20} +4.00046 q^{21} -2.62404 q^{22} +7.46588 q^{23} -2.50147 q^{24} -4.98162 q^{25} -1.01785 q^{26} +5.42814 q^{27} +5.65816 q^{28} -1.30151 q^{29} +0.0925978 q^{30} -8.68910 q^{31} -5.47021 q^{32} -5.30568 q^{33} +0.138862 q^{34} -0.461469 q^{35} +2.69090 q^{36} -1.75983 q^{38} -2.05805 q^{39} +0.288554 q^{40} +7.75460 q^{41} -2.32516 q^{42} -8.68570 q^{43} -7.50423 q^{44} -0.219465 q^{45} -4.33934 q^{46} -8.13636 q^{47} -2.45289 q^{48} +4.58762 q^{49} +2.89543 q^{50} +0.280773 q^{51} -2.91086 q^{52} +11.3476 q^{53} -3.15496 q^{54} +0.612031 q^{55} -7.24568 q^{56} -3.55829 q^{57} +0.756470 q^{58} -6.24883 q^{59} +0.264811 q^{60} -13.3101 q^{61} +5.05030 q^{62} +5.51083 q^{63} -0.994996 q^{64} +0.237404 q^{65} +3.08378 q^{66} +2.59709 q^{67} +0.397119 q^{68} -8.77393 q^{69} +0.268216 q^{70} +3.60176 q^{71} -3.44589 q^{72} -6.65769 q^{73} +5.85442 q^{75} -5.03277 q^{76} -15.3683 q^{77} +1.19618 q^{78} -4.55092 q^{79} +0.282950 q^{80} -1.52247 q^{81} -4.50715 q^{82} -4.73268 q^{83} -6.64949 q^{84} -0.0323883 q^{85} +5.04833 q^{86} +1.52954 q^{87} +9.60971 q^{88} +16.7206 q^{89} +0.127558 q^{90} -5.96128 q^{91} -12.4096 q^{92} +10.2115 q^{93} +4.72903 q^{94} +0.410463 q^{95} +6.42861 q^{96} -2.99941 q^{97} -2.66643 q^{98} -7.30883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 9 q^{2} - q^{3} + 25 q^{4} - 17 q^{5} - 10 q^{6} - 3 q^{7} - 21 q^{8} + 20 q^{9} - 11 q^{10} - 5 q^{11} - 10 q^{12} - 15 q^{13} - 25 q^{14} - 23 q^{15} + 13 q^{16} - 26 q^{17} - 15 q^{18} - 27 q^{19}+ \cdots + 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.581223 −0.410986 −0.205493 0.978659i \(-0.565880\pi\)
−0.205493 + 0.978659i \(0.565880\pi\)
\(3\) −1.17520 −0.678504 −0.339252 0.940696i \(-0.610174\pi\)
−0.339252 + 0.940696i \(0.610174\pi\)
\(4\) −1.66218 −0.831090
\(5\) 0.135564 0.0606262 0.0303131 0.999540i \(-0.490350\pi\)
0.0303131 + 0.999540i \(0.490350\pi\)
\(6\) 0.683054 0.278856
\(7\) −3.40406 −1.28661 −0.643307 0.765608i \(-0.722438\pi\)
−0.643307 + 0.765608i \(0.722438\pi\)
\(8\) 2.12854 0.752553
\(9\) −1.61890 −0.539633
\(10\) −0.0787931 −0.0249166
\(11\) 4.51469 1.36123 0.680615 0.732641i \(-0.261713\pi\)
0.680615 + 0.732641i \(0.261713\pi\)
\(12\) 1.95340 0.563898
\(13\) 1.75123 0.485703 0.242852 0.970063i \(-0.421917\pi\)
0.242852 + 0.970063i \(0.421917\pi\)
\(14\) 1.97852 0.528781
\(15\) −0.159316 −0.0411351
\(16\) 2.08720 0.521801
\(17\) −0.238914 −0.0579452 −0.0289726 0.999580i \(-0.509224\pi\)
−0.0289726 + 0.999580i \(0.509224\pi\)
\(18\) 0.940940 0.221782
\(19\) 3.02781 0.694628 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(20\) −0.225332 −0.0503859
\(21\) 4.00046 0.872972
\(22\) −2.62404 −0.559447
\(23\) 7.46588 1.55674 0.778372 0.627803i \(-0.216046\pi\)
0.778372 + 0.627803i \(0.216046\pi\)
\(24\) −2.50147 −0.510610
\(25\) −4.98162 −0.996324
\(26\) −1.01785 −0.199617
\(27\) 5.42814 1.04465
\(28\) 5.65816 1.06929
\(29\) −1.30151 −0.241685 −0.120843 0.992672i \(-0.538560\pi\)
−0.120843 + 0.992672i \(0.538560\pi\)
\(30\) 0.0925978 0.0169060
\(31\) −8.68910 −1.56061 −0.780304 0.625400i \(-0.784936\pi\)
−0.780304 + 0.625400i \(0.784936\pi\)
\(32\) −5.47021 −0.967006
\(33\) −5.30568 −0.923600
\(34\) 0.138862 0.0238147
\(35\) −0.461469 −0.0780025
\(36\) 2.69090 0.448483
\(37\) 0 0
\(38\) −1.75983 −0.285482
\(39\) −2.05805 −0.329551
\(40\) 0.288554 0.0456245
\(41\) 7.75460 1.21107 0.605533 0.795820i \(-0.292960\pi\)
0.605533 + 0.795820i \(0.292960\pi\)
\(42\) −2.32516 −0.358780
\(43\) −8.68570 −1.32456 −0.662279 0.749258i \(-0.730411\pi\)
−0.662279 + 0.749258i \(0.730411\pi\)
\(44\) −7.50423 −1.13131
\(45\) −0.219465 −0.0327159
\(46\) −4.33934 −0.639801
\(47\) −8.13636 −1.18681 −0.593405 0.804904i \(-0.702217\pi\)
−0.593405 + 0.804904i \(0.702217\pi\)
\(48\) −2.45289 −0.354044
\(49\) 4.58762 0.655375
\(50\) 2.89543 0.409476
\(51\) 0.280773 0.0393161
\(52\) −2.91086 −0.403663
\(53\) 11.3476 1.55871 0.779353 0.626585i \(-0.215548\pi\)
0.779353 + 0.626585i \(0.215548\pi\)
\(54\) −3.15496 −0.429336
\(55\) 0.612031 0.0825263
\(56\) −7.24568 −0.968245
\(57\) −3.55829 −0.471307
\(58\) 0.756470 0.0993293
\(59\) −6.24883 −0.813528 −0.406764 0.913533i \(-0.633343\pi\)
−0.406764 + 0.913533i \(0.633343\pi\)
\(60\) 0.264811 0.0341870
\(61\) −13.3101 −1.70418 −0.852090 0.523395i \(-0.824665\pi\)
−0.852090 + 0.523395i \(0.824665\pi\)
\(62\) 5.05030 0.641389
\(63\) 5.51083 0.694299
\(64\) −0.994996 −0.124375
\(65\) 0.237404 0.0294464
\(66\) 3.08378 0.379587
\(67\) 2.59709 0.317285 0.158642 0.987336i \(-0.449288\pi\)
0.158642 + 0.987336i \(0.449288\pi\)
\(68\) 0.397119 0.0481577
\(69\) −8.77393 −1.05626
\(70\) 0.268216 0.0320580
\(71\) 3.60176 0.427451 0.213725 0.976894i \(-0.431440\pi\)
0.213725 + 0.976894i \(0.431440\pi\)
\(72\) −3.44589 −0.406102
\(73\) −6.65769 −0.779223 −0.389612 0.920979i \(-0.627391\pi\)
−0.389612 + 0.920979i \(0.627391\pi\)
\(74\) 0 0
\(75\) 5.85442 0.676010
\(76\) −5.03277 −0.577298
\(77\) −15.3683 −1.75138
\(78\) 1.19618 0.135441
\(79\) −4.55092 −0.512018 −0.256009 0.966674i \(-0.582408\pi\)
−0.256009 + 0.966674i \(0.582408\pi\)
\(80\) 0.282950 0.0316348
\(81\) −1.52247 −0.169164
\(82\) −4.50715 −0.497732
\(83\) −4.73268 −0.519480 −0.259740 0.965679i \(-0.583637\pi\)
−0.259740 + 0.965679i \(0.583637\pi\)
\(84\) −6.64949 −0.725519
\(85\) −0.0323883 −0.00351300
\(86\) 5.04833 0.544375
\(87\) 1.52954 0.163984
\(88\) 9.60971 1.02440
\(89\) 16.7206 1.77238 0.886192 0.463318i \(-0.153341\pi\)
0.886192 + 0.463318i \(0.153341\pi\)
\(90\) 0.127558 0.0134458
\(91\) −5.96128 −0.624912
\(92\) −12.4096 −1.29380
\(93\) 10.2115 1.05888
\(94\) 4.72903 0.487763
\(95\) 0.410463 0.0421126
\(96\) 6.42861 0.656117
\(97\) −2.99941 −0.304544 −0.152272 0.988339i \(-0.548659\pi\)
−0.152272 + 0.988339i \(0.548659\pi\)
\(98\) −2.66643 −0.269350
\(99\) −7.30883 −0.734565
\(100\) 8.28035 0.828035
\(101\) −11.7971 −1.17386 −0.586929 0.809638i \(-0.699663\pi\)
−0.586929 + 0.809638i \(0.699663\pi\)
\(102\) −0.163191 −0.0161584
\(103\) 1.81129 0.178472 0.0892358 0.996011i \(-0.471558\pi\)
0.0892358 + 0.996011i \(0.471558\pi\)
\(104\) 3.72756 0.365518
\(105\) 0.542320 0.0529250
\(106\) −6.59545 −0.640607
\(107\) 0.0937009 0.00905841 0.00452920 0.999990i \(-0.498558\pi\)
0.00452920 + 0.999990i \(0.498558\pi\)
\(108\) −9.02255 −0.868195
\(109\) −14.8590 −1.42323 −0.711616 0.702569i \(-0.752036\pi\)
−0.711616 + 0.702569i \(0.752036\pi\)
\(110\) −0.355726 −0.0339172
\(111\) 0 0
\(112\) −7.10497 −0.671356
\(113\) 4.47061 0.420559 0.210280 0.977641i \(-0.432563\pi\)
0.210280 + 0.977641i \(0.432563\pi\)
\(114\) 2.06816 0.193701
\(115\) 1.01211 0.0943795
\(116\) 2.16335 0.200862
\(117\) −2.83506 −0.262101
\(118\) 3.63196 0.334349
\(119\) 0.813279 0.0745531
\(120\) −0.339110 −0.0309564
\(121\) 9.38243 0.852948
\(122\) 7.73612 0.700395
\(123\) −9.11323 −0.821713
\(124\) 14.4428 1.29701
\(125\) −1.35315 −0.121030
\(126\) −3.20302 −0.285347
\(127\) −1.18304 −0.104978 −0.0524888 0.998622i \(-0.516715\pi\)
−0.0524888 + 0.998622i \(0.516715\pi\)
\(128\) 11.5187 1.01812
\(129\) 10.2075 0.898717
\(130\) −0.137985 −0.0121021
\(131\) −11.6279 −1.01593 −0.507967 0.861377i \(-0.669603\pi\)
−0.507967 + 0.861377i \(0.669603\pi\)
\(132\) 8.81899 0.767595
\(133\) −10.3069 −0.893717
\(134\) −1.50949 −0.130400
\(135\) 0.735863 0.0633330
\(136\) −0.508539 −0.0436069
\(137\) −9.18682 −0.784883 −0.392442 0.919777i \(-0.628369\pi\)
−0.392442 + 0.919777i \(0.628369\pi\)
\(138\) 5.09961 0.434107
\(139\) −5.22192 −0.442917 −0.221459 0.975170i \(-0.571082\pi\)
−0.221459 + 0.975170i \(0.571082\pi\)
\(140\) 0.767045 0.0648271
\(141\) 9.56187 0.805255
\(142\) −2.09343 −0.175676
\(143\) 7.90625 0.661154
\(144\) −3.37897 −0.281581
\(145\) −0.176439 −0.0146525
\(146\) 3.86960 0.320250
\(147\) −5.39139 −0.444674
\(148\) 0 0
\(149\) −3.97015 −0.325247 −0.162624 0.986688i \(-0.551996\pi\)
−0.162624 + 0.986688i \(0.551996\pi\)
\(150\) −3.40272 −0.277831
\(151\) −3.51533 −0.286074 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(152\) 6.44482 0.522744
\(153\) 0.386778 0.0312691
\(154\) 8.93239 0.719793
\(155\) −1.17793 −0.0946138
\(156\) 3.42085 0.273887
\(157\) 4.18187 0.333750 0.166875 0.985978i \(-0.446632\pi\)
0.166875 + 0.985978i \(0.446632\pi\)
\(158\) 2.64509 0.210432
\(159\) −13.3357 −1.05759
\(160\) −0.741566 −0.0586259
\(161\) −25.4143 −2.00293
\(162\) 0.884896 0.0695240
\(163\) −10.7692 −0.843513 −0.421756 0.906709i \(-0.638586\pi\)
−0.421756 + 0.906709i \(0.638586\pi\)
\(164\) −12.8896 −1.00650
\(165\) −0.719261 −0.0559944
\(166\) 2.75074 0.213499
\(167\) −11.5114 −0.890783 −0.445391 0.895336i \(-0.646935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(168\) 8.51515 0.656958
\(169\) −9.93320 −0.764092
\(170\) 0.0188248 0.00144380
\(171\) −4.90172 −0.374844
\(172\) 14.4372 1.10083
\(173\) 11.3357 0.861834 0.430917 0.902392i \(-0.358190\pi\)
0.430917 + 0.902392i \(0.358190\pi\)
\(174\) −0.889005 −0.0673953
\(175\) 16.9577 1.28188
\(176\) 9.42308 0.710291
\(177\) 7.34364 0.551982
\(178\) −9.71841 −0.728426
\(179\) −14.6224 −1.09293 −0.546466 0.837481i \(-0.684027\pi\)
−0.546466 + 0.837481i \(0.684027\pi\)
\(180\) 0.364790 0.0271899
\(181\) 0.178071 0.0132359 0.00661796 0.999978i \(-0.497893\pi\)
0.00661796 + 0.999978i \(0.497893\pi\)
\(182\) 3.46483 0.256831
\(183\) 15.6420 1.15629
\(184\) 15.8914 1.17153
\(185\) 0 0
\(186\) −5.93513 −0.435185
\(187\) −1.07862 −0.0788768
\(188\) 13.5241 0.986346
\(189\) −18.4777 −1.34406
\(190\) −0.238571 −0.0173077
\(191\) 5.99804 0.434003 0.217001 0.976171i \(-0.430372\pi\)
0.217001 + 0.976171i \(0.430372\pi\)
\(192\) 1.16932 0.0843886
\(193\) 17.1747 1.23626 0.618131 0.786075i \(-0.287890\pi\)
0.618131 + 0.786075i \(0.287890\pi\)
\(194\) 1.74332 0.125163
\(195\) −0.278998 −0.0199795
\(196\) −7.62546 −0.544676
\(197\) −9.78679 −0.697280 −0.348640 0.937257i \(-0.613356\pi\)
−0.348640 + 0.937257i \(0.613356\pi\)
\(198\) 4.24805 0.301896
\(199\) −23.8805 −1.69285 −0.846423 0.532512i \(-0.821248\pi\)
−0.846423 + 0.532512i \(0.821248\pi\)
\(200\) −10.6036 −0.749787
\(201\) −3.05210 −0.215279
\(202\) 6.85676 0.482440
\(203\) 4.43043 0.310956
\(204\) −0.466695 −0.0326752
\(205\) 1.05125 0.0734223
\(206\) −1.05276 −0.0733494
\(207\) −12.0865 −0.840070
\(208\) 3.65517 0.253440
\(209\) 13.6696 0.945548
\(210\) −0.315209 −0.0217515
\(211\) 0.762065 0.0524627 0.0262314 0.999656i \(-0.491649\pi\)
0.0262314 + 0.999656i \(0.491649\pi\)
\(212\) −18.8617 −1.29543
\(213\) −4.23280 −0.290027
\(214\) −0.0544611 −0.00372288
\(215\) −1.17747 −0.0803029
\(216\) 11.5540 0.786152
\(217\) 29.5782 2.00790
\(218\) 8.63637 0.584929
\(219\) 7.82413 0.528706
\(220\) −1.01731 −0.0685868
\(221\) −0.418393 −0.0281442
\(222\) 0 0
\(223\) 10.8657 0.727619 0.363810 0.931473i \(-0.381476\pi\)
0.363810 + 0.931473i \(0.381476\pi\)
\(224\) 18.6209 1.24416
\(225\) 8.06474 0.537649
\(226\) −2.59842 −0.172844
\(227\) 2.62128 0.173981 0.0869904 0.996209i \(-0.472275\pi\)
0.0869904 + 0.996209i \(0.472275\pi\)
\(228\) 5.91452 0.391699
\(229\) 15.6829 1.03636 0.518178 0.855273i \(-0.326610\pi\)
0.518178 + 0.855273i \(0.326610\pi\)
\(230\) −0.588260 −0.0387887
\(231\) 18.0608 1.18832
\(232\) −2.77033 −0.181881
\(233\) 19.7685 1.29507 0.647537 0.762034i \(-0.275799\pi\)
0.647537 + 0.762034i \(0.275799\pi\)
\(234\) 1.64780 0.107720
\(235\) −1.10300 −0.0719518
\(236\) 10.3867 0.676115
\(237\) 5.34825 0.347406
\(238\) −0.472696 −0.0306403
\(239\) −15.1048 −0.977046 −0.488523 0.872551i \(-0.662464\pi\)
−0.488523 + 0.872551i \(0.662464\pi\)
\(240\) −0.332524 −0.0214643
\(241\) 12.3019 0.792432 0.396216 0.918157i \(-0.370323\pi\)
0.396216 + 0.918157i \(0.370323\pi\)
\(242\) −5.45328 −0.350550
\(243\) −14.4952 −0.929868
\(244\) 22.1237 1.41633
\(245\) 0.621918 0.0397329
\(246\) 5.29682 0.337713
\(247\) 5.30239 0.337383
\(248\) −18.4951 −1.17444
\(249\) 5.56186 0.352469
\(250\) 0.786483 0.0497415
\(251\) −29.0194 −1.83169 −0.915844 0.401534i \(-0.868477\pi\)
−0.915844 + 0.401534i \(0.868477\pi\)
\(252\) −9.15999 −0.577025
\(253\) 33.7062 2.11909
\(254\) 0.687607 0.0431443
\(255\) 0.0380628 0.00238358
\(256\) −4.70496 −0.294060
\(257\) 16.4204 1.02428 0.512139 0.858903i \(-0.328853\pi\)
0.512139 + 0.858903i \(0.328853\pi\)
\(258\) −5.93281 −0.369361
\(259\) 0 0
\(260\) −0.394608 −0.0244726
\(261\) 2.10702 0.130421
\(262\) 6.75839 0.417535
\(263\) −1.41775 −0.0874222 −0.0437111 0.999044i \(-0.513918\pi\)
−0.0437111 + 0.999044i \(0.513918\pi\)
\(264\) −11.2934 −0.695058
\(265\) 1.53832 0.0944985
\(266\) 5.99057 0.367306
\(267\) −19.6501 −1.20257
\(268\) −4.31683 −0.263692
\(269\) 20.3605 1.24140 0.620700 0.784048i \(-0.286849\pi\)
0.620700 + 0.784048i \(0.286849\pi\)
\(270\) −0.427700 −0.0260290
\(271\) −16.6609 −1.01208 −0.506040 0.862510i \(-0.668891\pi\)
−0.506040 + 0.862510i \(0.668891\pi\)
\(272\) −0.498663 −0.0302359
\(273\) 7.00572 0.424005
\(274\) 5.33959 0.322576
\(275\) −22.4905 −1.35623
\(276\) 14.5839 0.877845
\(277\) −10.7457 −0.645649 −0.322825 0.946459i \(-0.604632\pi\)
−0.322825 + 0.946459i \(0.604632\pi\)
\(278\) 3.03510 0.182033
\(279\) 14.0668 0.842155
\(280\) −0.982257 −0.0587011
\(281\) 29.4052 1.75417 0.877084 0.480338i \(-0.159486\pi\)
0.877084 + 0.480338i \(0.159486\pi\)
\(282\) −5.55758 −0.330949
\(283\) 9.89331 0.588096 0.294048 0.955791i \(-0.404997\pi\)
0.294048 + 0.955791i \(0.404997\pi\)
\(284\) −5.98678 −0.355250
\(285\) −0.482378 −0.0285736
\(286\) −4.59529 −0.271725
\(287\) −26.3971 −1.55817
\(288\) 8.85572 0.521828
\(289\) −16.9429 −0.996642
\(290\) 0.102550 0.00602196
\(291\) 3.52491 0.206634
\(292\) 11.0663 0.647605
\(293\) −17.1879 −1.00413 −0.502064 0.864831i \(-0.667426\pi\)
−0.502064 + 0.864831i \(0.667426\pi\)
\(294\) 3.13360 0.182755
\(295\) −0.847118 −0.0493211
\(296\) 0 0
\(297\) 24.5064 1.42200
\(298\) 2.30754 0.133672
\(299\) 13.0745 0.756116
\(300\) −9.73110 −0.561825
\(301\) 29.5667 1.70419
\(302\) 2.04319 0.117572
\(303\) 13.8640 0.796467
\(304\) 6.31966 0.362457
\(305\) −1.80437 −0.103318
\(306\) −0.224804 −0.0128512
\(307\) −9.76967 −0.557585 −0.278792 0.960351i \(-0.589934\pi\)
−0.278792 + 0.960351i \(0.589934\pi\)
\(308\) 25.5449 1.45555
\(309\) −2.12863 −0.121094
\(310\) 0.684641 0.0388850
\(311\) −1.58619 −0.0899447 −0.0449723 0.998988i \(-0.514320\pi\)
−0.0449723 + 0.998988i \(0.514320\pi\)
\(312\) −4.38064 −0.248005
\(313\) −11.9721 −0.676701 −0.338350 0.941020i \(-0.609869\pi\)
−0.338350 + 0.941020i \(0.609869\pi\)
\(314\) −2.43060 −0.137167
\(315\) 0.747072 0.0420927
\(316\) 7.56444 0.425533
\(317\) −4.30654 −0.241879 −0.120940 0.992660i \(-0.538591\pi\)
−0.120940 + 0.992660i \(0.538591\pi\)
\(318\) 7.75100 0.434654
\(319\) −5.87594 −0.328989
\(320\) −0.134886 −0.00754036
\(321\) −0.110118 −0.00614616
\(322\) 14.7714 0.823177
\(323\) −0.723387 −0.0402504
\(324\) 2.53063 0.140590
\(325\) −8.72396 −0.483918
\(326\) 6.25933 0.346672
\(327\) 17.4623 0.965668
\(328\) 16.5060 0.911391
\(329\) 27.6966 1.52697
\(330\) 0.418051 0.0230129
\(331\) −8.08288 −0.444275 −0.222138 0.975015i \(-0.571303\pi\)
−0.222138 + 0.975015i \(0.571303\pi\)
\(332\) 7.86657 0.431734
\(333\) 0 0
\(334\) 6.69071 0.366100
\(335\) 0.352072 0.0192358
\(336\) 8.34978 0.455518
\(337\) −2.16065 −0.117698 −0.0588491 0.998267i \(-0.518743\pi\)
−0.0588491 + 0.998267i \(0.518743\pi\)
\(338\) 5.77340 0.314032
\(339\) −5.25387 −0.285351
\(340\) 0.0538351 0.00291962
\(341\) −39.2286 −2.12435
\(342\) 2.84899 0.154056
\(343\) 8.21187 0.443399
\(344\) −18.4879 −0.996800
\(345\) −1.18943 −0.0640369
\(346\) −6.58854 −0.354202
\(347\) −31.7682 −1.70541 −0.852703 0.522396i \(-0.825038\pi\)
−0.852703 + 0.522396i \(0.825038\pi\)
\(348\) −2.54238 −0.136286
\(349\) 17.6444 0.944481 0.472241 0.881470i \(-0.343445\pi\)
0.472241 + 0.881470i \(0.343445\pi\)
\(350\) −9.85622 −0.526837
\(351\) 9.50591 0.507388
\(352\) −24.6963 −1.31632
\(353\) −24.8036 −1.32016 −0.660081 0.751195i \(-0.729478\pi\)
−0.660081 + 0.751195i \(0.729478\pi\)
\(354\) −4.26829 −0.226857
\(355\) 0.488271 0.0259147
\(356\) −27.7927 −1.47301
\(357\) −0.955767 −0.0505846
\(358\) 8.49889 0.449180
\(359\) −11.0967 −0.585664 −0.292832 0.956164i \(-0.594598\pi\)
−0.292832 + 0.956164i \(0.594598\pi\)
\(360\) −0.467140 −0.0246205
\(361\) −9.83236 −0.517493
\(362\) −0.103499 −0.00543978
\(363\) −11.0263 −0.578729
\(364\) 9.90873 0.519359
\(365\) −0.902545 −0.0472414
\(366\) −9.09151 −0.475221
\(367\) 22.4927 1.17411 0.587054 0.809548i \(-0.300288\pi\)
0.587054 + 0.809548i \(0.300288\pi\)
\(368\) 15.5828 0.812311
\(369\) −12.5539 −0.653531
\(370\) 0 0
\(371\) −38.6278 −2.00545
\(372\) −16.9733 −0.880023
\(373\) 8.15249 0.422120 0.211060 0.977473i \(-0.432308\pi\)
0.211060 + 0.977473i \(0.432308\pi\)
\(374\) 0.626921 0.0324173
\(375\) 1.59023 0.0821190
\(376\) −17.3186 −0.893137
\(377\) −2.27925 −0.117387
\(378\) 10.7397 0.552389
\(379\) 27.6915 1.42242 0.711208 0.702981i \(-0.248148\pi\)
0.711208 + 0.702981i \(0.248148\pi\)
\(380\) −0.682264 −0.0349994
\(381\) 1.39031 0.0712276
\(382\) −3.48620 −0.178369
\(383\) −30.0351 −1.53472 −0.767362 0.641214i \(-0.778431\pi\)
−0.767362 + 0.641214i \(0.778431\pi\)
\(384\) −13.5369 −0.690800
\(385\) −2.08339 −0.106179
\(386\) −9.98233 −0.508087
\(387\) 14.0613 0.714775
\(388\) 4.98556 0.253103
\(389\) −8.47319 −0.429608 −0.214804 0.976657i \(-0.568911\pi\)
−0.214804 + 0.976657i \(0.568911\pi\)
\(390\) 0.162160 0.00821129
\(391\) −1.78371 −0.0902059
\(392\) 9.76495 0.493205
\(393\) 13.6651 0.689314
\(394\) 5.68830 0.286572
\(395\) −0.616942 −0.0310417
\(396\) 12.1486 0.610489
\(397\) 5.93703 0.297971 0.148986 0.988839i \(-0.452399\pi\)
0.148986 + 0.988839i \(0.452399\pi\)
\(398\) 13.8799 0.695736
\(399\) 12.1126 0.606390
\(400\) −10.3977 −0.519883
\(401\) −8.27102 −0.413035 −0.206518 0.978443i \(-0.566213\pi\)
−0.206518 + 0.978443i \(0.566213\pi\)
\(402\) 1.77395 0.0884766
\(403\) −15.2166 −0.757992
\(404\) 19.6090 0.975582
\(405\) −0.206393 −0.0102558
\(406\) −2.57507 −0.127798
\(407\) 0 0
\(408\) 0.597637 0.0295874
\(409\) 3.85500 0.190617 0.0953087 0.995448i \(-0.469616\pi\)
0.0953087 + 0.995448i \(0.469616\pi\)
\(410\) −0.611009 −0.0301756
\(411\) 10.7964 0.532546
\(412\) −3.01069 −0.148326
\(413\) 21.2714 1.04670
\(414\) 7.02495 0.345258
\(415\) −0.641583 −0.0314941
\(416\) −9.57959 −0.469678
\(417\) 6.13681 0.300521
\(418\) −7.94510 −0.388607
\(419\) −7.84489 −0.383248 −0.191624 0.981468i \(-0.561375\pi\)
−0.191624 + 0.981468i \(0.561375\pi\)
\(420\) −0.901433 −0.0439855
\(421\) 8.68389 0.423227 0.211613 0.977353i \(-0.432128\pi\)
0.211613 + 0.977353i \(0.432128\pi\)
\(422\) −0.442929 −0.0215615
\(423\) 13.1719 0.640441
\(424\) 24.1537 1.17301
\(425\) 1.19018 0.0577323
\(426\) 2.46020 0.119197
\(427\) 45.3083 2.19262
\(428\) −0.155748 −0.00752835
\(429\) −9.29145 −0.448595
\(430\) 0.684373 0.0330034
\(431\) −10.7078 −0.515774 −0.257887 0.966175i \(-0.583026\pi\)
−0.257887 + 0.966175i \(0.583026\pi\)
\(432\) 11.3296 0.545098
\(433\) −20.6300 −0.991415 −0.495707 0.868490i \(-0.665091\pi\)
−0.495707 + 0.868490i \(0.665091\pi\)
\(434\) −17.1915 −0.825220
\(435\) 0.207352 0.00994175
\(436\) 24.6983 1.18283
\(437\) 22.6053 1.08136
\(438\) −4.54756 −0.217291
\(439\) −31.3169 −1.49467 −0.747337 0.664445i \(-0.768668\pi\)
−0.747337 + 0.664445i \(0.768668\pi\)
\(440\) 1.30273 0.0621054
\(441\) −7.42690 −0.353662
\(442\) 0.243180 0.0115669
\(443\) 36.0868 1.71454 0.857268 0.514870i \(-0.172160\pi\)
0.857268 + 0.514870i \(0.172160\pi\)
\(444\) 0 0
\(445\) 2.26672 0.107453
\(446\) −6.31537 −0.299042
\(447\) 4.66573 0.220681
\(448\) 3.38703 0.160022
\(449\) −8.06309 −0.380521 −0.190260 0.981734i \(-0.560933\pi\)
−0.190260 + 0.981734i \(0.560933\pi\)
\(450\) −4.68741 −0.220967
\(451\) 35.0096 1.64854
\(452\) −7.43096 −0.349523
\(453\) 4.13123 0.194102
\(454\) −1.52355 −0.0715037
\(455\) −0.808138 −0.0378861
\(456\) −7.57397 −0.354684
\(457\) 23.1181 1.08142 0.540709 0.841209i \(-0.318156\pi\)
0.540709 + 0.841209i \(0.318156\pi\)
\(458\) −9.11527 −0.425928
\(459\) −1.29686 −0.0605323
\(460\) −1.68231 −0.0784379
\(461\) 1.36014 0.0633480 0.0316740 0.999498i \(-0.489916\pi\)
0.0316740 + 0.999498i \(0.489916\pi\)
\(462\) −10.4974 −0.488382
\(463\) 9.63998 0.448008 0.224004 0.974588i \(-0.428087\pi\)
0.224004 + 0.974588i \(0.428087\pi\)
\(464\) −2.71653 −0.126112
\(465\) 1.38431 0.0641958
\(466\) −11.4899 −0.532258
\(467\) 11.4646 0.530519 0.265260 0.964177i \(-0.414542\pi\)
0.265260 + 0.964177i \(0.414542\pi\)
\(468\) 4.71238 0.217830
\(469\) −8.84064 −0.408223
\(470\) 0.641089 0.0295712
\(471\) −4.91455 −0.226450
\(472\) −13.3009 −0.612223
\(473\) −39.2133 −1.80303
\(474\) −3.10852 −0.142779
\(475\) −15.0834 −0.692074
\(476\) −1.35182 −0.0619604
\(477\) −18.3705 −0.841129
\(478\) 8.77923 0.401552
\(479\) −19.9753 −0.912695 −0.456348 0.889802i \(-0.650843\pi\)
−0.456348 + 0.889802i \(0.650843\pi\)
\(480\) 0.871490 0.0397779
\(481\) 0 0
\(482\) −7.15012 −0.325679
\(483\) 29.8670 1.35899
\(484\) −15.5953 −0.708877
\(485\) −0.406613 −0.0184633
\(486\) 8.42494 0.382163
\(487\) −3.19056 −0.144578 −0.0722890 0.997384i \(-0.523030\pi\)
−0.0722890 + 0.997384i \(0.523030\pi\)
\(488\) −28.3311 −1.28249
\(489\) 12.6561 0.572327
\(490\) −0.361473 −0.0163297
\(491\) 5.42371 0.244769 0.122384 0.992483i \(-0.460946\pi\)
0.122384 + 0.992483i \(0.460946\pi\)
\(492\) 15.1478 0.682917
\(493\) 0.310950 0.0140045
\(494\) −3.08187 −0.138660
\(495\) −0.990816 −0.0445339
\(496\) −18.1359 −0.814327
\(497\) −12.2606 −0.549964
\(498\) −3.23268 −0.144860
\(499\) 1.08975 0.0487838 0.0243919 0.999702i \(-0.492235\pi\)
0.0243919 + 0.999702i \(0.492235\pi\)
\(500\) 2.24918 0.100587
\(501\) 13.5283 0.604399
\(502\) 16.8667 0.752799
\(503\) −0.148635 −0.00662731 −0.00331366 0.999995i \(-0.501055\pi\)
−0.00331366 + 0.999995i \(0.501055\pi\)
\(504\) 11.7300 0.522497
\(505\) −1.59927 −0.0711666
\(506\) −19.5908 −0.870916
\(507\) 11.6735 0.518439
\(508\) 1.96642 0.0872458
\(509\) −12.8435 −0.569279 −0.284639 0.958635i \(-0.591874\pi\)
−0.284639 + 0.958635i \(0.591874\pi\)
\(510\) −0.0221229 −0.000979621 0
\(511\) 22.6632 1.00256
\(512\) −20.3029 −0.897268
\(513\) 16.4354 0.725640
\(514\) −9.54392 −0.420964
\(515\) 0.245546 0.0108201
\(516\) −16.9666 −0.746915
\(517\) −36.7331 −1.61552
\(518\) 0 0
\(519\) −13.3217 −0.584758
\(520\) 0.505325 0.0221599
\(521\) −33.9439 −1.48711 −0.743555 0.668675i \(-0.766862\pi\)
−0.743555 + 0.668675i \(0.766862\pi\)
\(522\) −1.22465 −0.0536014
\(523\) −21.5585 −0.942688 −0.471344 0.881949i \(-0.656231\pi\)
−0.471344 + 0.881949i \(0.656231\pi\)
\(524\) 19.3276 0.844332
\(525\) −19.9288 −0.869764
\(526\) 0.824028 0.0359293
\(527\) 2.07595 0.0904298
\(528\) −11.0740 −0.481935
\(529\) 32.7394 1.42345
\(530\) −0.894109 −0.0388376
\(531\) 10.1162 0.439006
\(532\) 17.1318 0.742760
\(533\) 13.5801 0.588219
\(534\) 11.4211 0.494240
\(535\) 0.0127025 0.000549177 0
\(536\) 5.52801 0.238774
\(537\) 17.1843 0.741559
\(538\) −11.8340 −0.510198
\(539\) 20.7117 0.892116
\(540\) −1.22314 −0.0526354
\(541\) −30.5914 −1.31523 −0.657614 0.753355i \(-0.728434\pi\)
−0.657614 + 0.753355i \(0.728434\pi\)
\(542\) 9.68371 0.415951
\(543\) −0.209270 −0.00898062
\(544\) 1.30691 0.0560334
\(545\) −2.01435 −0.0862852
\(546\) −4.07188 −0.174260
\(547\) 27.0949 1.15849 0.579246 0.815153i \(-0.303347\pi\)
0.579246 + 0.815153i \(0.303347\pi\)
\(548\) 15.2702 0.652309
\(549\) 21.5477 0.919632
\(550\) 13.0720 0.557391
\(551\) −3.94074 −0.167881
\(552\) −18.6757 −0.794890
\(553\) 15.4916 0.658769
\(554\) 6.24567 0.265353
\(555\) 0 0
\(556\) 8.67977 0.368104
\(557\) −35.3428 −1.49752 −0.748762 0.662839i \(-0.769351\pi\)
−0.748762 + 0.662839i \(0.769351\pi\)
\(558\) −8.17592 −0.346114
\(559\) −15.2106 −0.643342
\(560\) −0.963180 −0.0407018
\(561\) 1.26760 0.0535182
\(562\) −17.0910 −0.720939
\(563\) 21.0910 0.888881 0.444441 0.895808i \(-0.353403\pi\)
0.444441 + 0.895808i \(0.353403\pi\)
\(564\) −15.8936 −0.669239
\(565\) 0.606055 0.0254969
\(566\) −5.75021 −0.241700
\(567\) 5.18259 0.217648
\(568\) 7.66650 0.321679
\(569\) 42.8589 1.79674 0.898370 0.439239i \(-0.144752\pi\)
0.898370 + 0.439239i \(0.144752\pi\)
\(570\) 0.280369 0.0117434
\(571\) 18.5662 0.776969 0.388485 0.921455i \(-0.372999\pi\)
0.388485 + 0.921455i \(0.372999\pi\)
\(572\) −13.1416 −0.549479
\(573\) −7.04891 −0.294473
\(574\) 15.3426 0.640388
\(575\) −37.1922 −1.55102
\(576\) 1.61080 0.0671166
\(577\) −26.6541 −1.10962 −0.554812 0.831976i \(-0.687210\pi\)
−0.554812 + 0.831976i \(0.687210\pi\)
\(578\) 9.84761 0.409606
\(579\) −20.1838 −0.838809
\(580\) 0.293273 0.0121775
\(581\) 16.1103 0.668369
\(582\) −2.04876 −0.0849238
\(583\) 51.2307 2.12176
\(584\) −14.1712 −0.586407
\(585\) −0.384333 −0.0158902
\(586\) 9.98999 0.412683
\(587\) −35.2047 −1.45305 −0.726527 0.687138i \(-0.758867\pi\)
−0.726527 + 0.687138i \(0.758867\pi\)
\(588\) 8.96146 0.369564
\(589\) −26.3089 −1.08404
\(590\) 0.492364 0.0202703
\(591\) 11.5015 0.473107
\(592\) 0 0
\(593\) 35.8341 1.47153 0.735764 0.677238i \(-0.236823\pi\)
0.735764 + 0.677238i \(0.236823\pi\)
\(594\) −14.2437 −0.584425
\(595\) 0.110252 0.00451987
\(596\) 6.59910 0.270310
\(597\) 28.0645 1.14860
\(598\) −7.59917 −0.310753
\(599\) −22.8314 −0.932865 −0.466432 0.884557i \(-0.654461\pi\)
−0.466432 + 0.884557i \(0.654461\pi\)
\(600\) 12.4614 0.508733
\(601\) −44.8434 −1.82920 −0.914600 0.404359i \(-0.867495\pi\)
−0.914600 + 0.404359i \(0.867495\pi\)
\(602\) −17.1848 −0.700401
\(603\) −4.20442 −0.171217
\(604\) 5.84312 0.237753
\(605\) 1.27192 0.0517110
\(606\) −8.05808 −0.327337
\(607\) −3.67023 −0.148970 −0.0744849 0.997222i \(-0.523731\pi\)
−0.0744849 + 0.997222i \(0.523731\pi\)
\(608\) −16.5628 −0.671709
\(609\) −5.20666 −0.210984
\(610\) 1.04874 0.0424623
\(611\) −14.2486 −0.576437
\(612\) −0.642895 −0.0259875
\(613\) −11.5735 −0.467448 −0.233724 0.972303i \(-0.575091\pi\)
−0.233724 + 0.972303i \(0.575091\pi\)
\(614\) 5.67836 0.229160
\(615\) −1.23543 −0.0498173
\(616\) −32.7120 −1.31801
\(617\) 17.3327 0.697790 0.348895 0.937162i \(-0.386557\pi\)
0.348895 + 0.937162i \(0.386557\pi\)
\(618\) 1.23721 0.0497678
\(619\) 20.0946 0.807670 0.403835 0.914832i \(-0.367677\pi\)
0.403835 + 0.914832i \(0.367677\pi\)
\(620\) 1.95794 0.0786326
\(621\) 40.5259 1.62625
\(622\) 0.921930 0.0369660
\(623\) −56.9181 −2.28037
\(624\) −4.29557 −0.171960
\(625\) 24.7247 0.988987
\(626\) 6.95843 0.278115
\(627\) −16.0646 −0.641558
\(628\) −6.95103 −0.277376
\(629\) 0 0
\(630\) −0.434215 −0.0172995
\(631\) −7.93504 −0.315889 −0.157945 0.987448i \(-0.550487\pi\)
−0.157945 + 0.987448i \(0.550487\pi\)
\(632\) −9.68681 −0.385321
\(633\) −0.895581 −0.0355961
\(634\) 2.50306 0.0994090
\(635\) −0.160378 −0.00636439
\(636\) 22.1663 0.878951
\(637\) 8.03398 0.318318
\(638\) 3.41523 0.135210
\(639\) −5.83089 −0.230666
\(640\) 1.56153 0.0617249
\(641\) 25.2280 0.996446 0.498223 0.867049i \(-0.333986\pi\)
0.498223 + 0.867049i \(0.333986\pi\)
\(642\) 0.0640028 0.00252599
\(643\) 13.6761 0.539334 0.269667 0.962954i \(-0.413086\pi\)
0.269667 + 0.962954i \(0.413086\pi\)
\(644\) 42.2432 1.66461
\(645\) 1.38377 0.0544858
\(646\) 0.420449 0.0165423
\(647\) 4.72308 0.185683 0.0928417 0.995681i \(-0.470405\pi\)
0.0928417 + 0.995681i \(0.470405\pi\)
\(648\) −3.24065 −0.127305
\(649\) −28.2115 −1.10740
\(650\) 5.07056 0.198884
\(651\) −34.7604 −1.36237
\(652\) 17.9004 0.701035
\(653\) 20.2454 0.792263 0.396132 0.918194i \(-0.370352\pi\)
0.396132 + 0.918194i \(0.370352\pi\)
\(654\) −10.1495 −0.396877
\(655\) −1.57633 −0.0615922
\(656\) 16.1854 0.631935
\(657\) 10.7781 0.420494
\(658\) −16.0979 −0.627562
\(659\) −18.1715 −0.707862 −0.353931 0.935271i \(-0.615155\pi\)
−0.353931 + 0.935271i \(0.615155\pi\)
\(660\) 1.19554 0.0465364
\(661\) −8.45867 −0.329004 −0.164502 0.986377i \(-0.552602\pi\)
−0.164502 + 0.986377i \(0.552602\pi\)
\(662\) 4.69795 0.182591
\(663\) 0.491697 0.0190959
\(664\) −10.0737 −0.390936
\(665\) −1.39724 −0.0541827
\(666\) 0 0
\(667\) −9.71696 −0.376242
\(668\) 19.1341 0.740321
\(669\) −12.7694 −0.493692
\(670\) −0.204632 −0.00790564
\(671\) −60.0909 −2.31978
\(672\) −21.8834 −0.844170
\(673\) −47.9374 −1.84785 −0.923925 0.382574i \(-0.875038\pi\)
−0.923925 + 0.382574i \(0.875038\pi\)
\(674\) 1.25582 0.0483723
\(675\) −27.0410 −1.04081
\(676\) 16.5108 0.635030
\(677\) 7.63281 0.293353 0.146676 0.989185i \(-0.453142\pi\)
0.146676 + 0.989185i \(0.453142\pi\)
\(678\) 3.05367 0.117275
\(679\) 10.2102 0.391830
\(680\) −0.0689398 −0.00264372
\(681\) −3.08054 −0.118047
\(682\) 22.8005 0.873078
\(683\) −39.6975 −1.51898 −0.759492 0.650516i \(-0.774552\pi\)
−0.759492 + 0.650516i \(0.774552\pi\)
\(684\) 8.14754 0.311529
\(685\) −1.24541 −0.0475845
\(686\) −4.77292 −0.182231
\(687\) −18.4306 −0.703172
\(688\) −18.1288 −0.691155
\(689\) 19.8722 0.757069
\(690\) 0.691325 0.0263183
\(691\) −5.98406 −0.227644 −0.113822 0.993501i \(-0.536309\pi\)
−0.113822 + 0.993501i \(0.536309\pi\)
\(692\) −18.8419 −0.716262
\(693\) 24.8797 0.945101
\(694\) 18.4644 0.700899
\(695\) −0.707906 −0.0268524
\(696\) 3.25570 0.123407
\(697\) −1.85269 −0.0701755
\(698\) −10.2553 −0.388169
\(699\) −23.2319 −0.878713
\(700\) −28.1868 −1.06536
\(701\) −21.2280 −0.801769 −0.400884 0.916129i \(-0.631297\pi\)
−0.400884 + 0.916129i \(0.631297\pi\)
\(702\) −5.52505 −0.208530
\(703\) 0 0
\(704\) −4.49210 −0.169302
\(705\) 1.29625 0.0488196
\(706\) 14.4164 0.542568
\(707\) 40.1581 1.51030
\(708\) −12.2065 −0.458747
\(709\) −24.9373 −0.936541 −0.468270 0.883585i \(-0.655123\pi\)
−0.468270 + 0.883585i \(0.655123\pi\)
\(710\) −0.283794 −0.0106506
\(711\) 7.36747 0.276302
\(712\) 35.5906 1.33381
\(713\) −64.8718 −2.42947
\(714\) 0.555514 0.0207896
\(715\) 1.07181 0.0400833
\(716\) 24.3051 0.908325
\(717\) 17.7512 0.662929
\(718\) 6.44968 0.240700
\(719\) 2.23576 0.0833797 0.0416898 0.999131i \(-0.486726\pi\)
0.0416898 + 0.999131i \(0.486726\pi\)
\(720\) −0.458068 −0.0170712
\(721\) −6.16573 −0.229624
\(722\) 5.71479 0.212682
\(723\) −14.4572 −0.537668
\(724\) −0.295986 −0.0110002
\(725\) 6.48365 0.240797
\(726\) 6.40871 0.237850
\(727\) −36.4649 −1.35241 −0.676204 0.736715i \(-0.736376\pi\)
−0.676204 + 0.736715i \(0.736376\pi\)
\(728\) −12.6888 −0.470280
\(729\) 21.6022 0.800083
\(730\) 0.524579 0.0194156
\(731\) 2.07514 0.0767518
\(732\) −25.9999 −0.960984
\(733\) 2.09671 0.0774438 0.0387219 0.999250i \(-0.487671\pi\)
0.0387219 + 0.999250i \(0.487671\pi\)
\(734\) −13.0733 −0.482543
\(735\) −0.730880 −0.0269589
\(736\) −40.8400 −1.50538
\(737\) 11.7250 0.431897
\(738\) 7.29662 0.268592
\(739\) −28.5648 −1.05077 −0.525386 0.850864i \(-0.676079\pi\)
−0.525386 + 0.850864i \(0.676079\pi\)
\(740\) 0 0
\(741\) −6.23138 −0.228915
\(742\) 22.4513 0.824214
\(743\) 14.6071 0.535882 0.267941 0.963435i \(-0.413657\pi\)
0.267941 + 0.963435i \(0.413657\pi\)
\(744\) 21.7355 0.796862
\(745\) −0.538211 −0.0197185
\(746\) −4.73841 −0.173485
\(747\) 7.66173 0.280328
\(748\) 1.79287 0.0655537
\(749\) −0.318963 −0.0116547
\(750\) −0.924277 −0.0337498
\(751\) −54.7210 −1.99680 −0.998399 0.0565662i \(-0.981985\pi\)
−0.998399 + 0.0565662i \(0.981985\pi\)
\(752\) −16.9822 −0.619279
\(753\) 34.1037 1.24281
\(754\) 1.32475 0.0482446
\(755\) −0.476554 −0.0173436
\(756\) 30.7133 1.11703
\(757\) 19.2216 0.698622 0.349311 0.937007i \(-0.386416\pi\)
0.349311 + 0.937007i \(0.386416\pi\)
\(758\) −16.0949 −0.584594
\(759\) −39.6116 −1.43781
\(760\) 0.873688 0.0316920
\(761\) 40.4818 1.46747 0.733733 0.679438i \(-0.237777\pi\)
0.733733 + 0.679438i \(0.237777\pi\)
\(762\) −0.808078 −0.0292736
\(763\) 50.5809 1.83115
\(764\) −9.96982 −0.360696
\(765\) 0.0524333 0.00189573
\(766\) 17.4571 0.630751
\(767\) −10.9431 −0.395133
\(768\) 5.52928 0.199521
\(769\) 12.6633 0.456650 0.228325 0.973585i \(-0.426675\pi\)
0.228325 + 0.973585i \(0.426675\pi\)
\(770\) 1.21091 0.0436383
\(771\) −19.2973 −0.694976
\(772\) −28.5475 −1.02745
\(773\) 28.5896 1.02830 0.514148 0.857701i \(-0.328108\pi\)
0.514148 + 0.857701i \(0.328108\pi\)
\(774\) −8.17273 −0.293763
\(775\) 43.2858 1.55487
\(776\) −6.38437 −0.229185
\(777\) 0 0
\(778\) 4.92481 0.176563
\(779\) 23.4795 0.841240
\(780\) 0.463745 0.0166047
\(781\) 16.2608 0.581859
\(782\) 1.03673 0.0370734
\(783\) −7.06481 −0.252476
\(784\) 9.57531 0.341975
\(785\) 0.566913 0.0202340
\(786\) −7.94248 −0.283299
\(787\) −46.2315 −1.64797 −0.823987 0.566608i \(-0.808255\pi\)
−0.823987 + 0.566608i \(0.808255\pi\)
\(788\) 16.2674 0.579502
\(789\) 1.66614 0.0593163
\(790\) 0.358581 0.0127577
\(791\) −15.2182 −0.541098
\(792\) −15.5571 −0.552799
\(793\) −23.3090 −0.827726
\(794\) −3.45074 −0.122462
\(795\) −1.80784 −0.0641176
\(796\) 39.6937 1.40691
\(797\) 27.6489 0.979373 0.489687 0.871899i \(-0.337111\pi\)
0.489687 + 0.871899i \(0.337111\pi\)
\(798\) −7.04014 −0.249218
\(799\) 1.94389 0.0687700
\(800\) 27.2505 0.963452
\(801\) −27.0690 −0.956436
\(802\) 4.80731 0.169752
\(803\) −30.0574 −1.06070
\(804\) 5.07315 0.178916
\(805\) −3.44528 −0.121430
\(806\) 8.84423 0.311525
\(807\) −23.9277 −0.842294
\(808\) −25.1107 −0.883391
\(809\) −17.0004 −0.597704 −0.298852 0.954299i \(-0.596604\pi\)
−0.298852 + 0.954299i \(0.596604\pi\)
\(810\) 0.119960 0.00421498
\(811\) 3.43649 0.120671 0.0603357 0.998178i \(-0.480783\pi\)
0.0603357 + 0.998178i \(0.480783\pi\)
\(812\) −7.36418 −0.258432
\(813\) 19.5800 0.686699
\(814\) 0 0
\(815\) −1.45993 −0.0511390
\(816\) 0.586030 0.0205152
\(817\) −26.2987 −0.920074
\(818\) −2.24061 −0.0783411
\(819\) 9.65071 0.337223
\(820\) −1.74736 −0.0610206
\(821\) −16.5396 −0.577236 −0.288618 0.957444i \(-0.593196\pi\)
−0.288618 + 0.957444i \(0.593196\pi\)
\(822\) −6.27510 −0.218869
\(823\) −30.0080 −1.04601 −0.523006 0.852329i \(-0.675189\pi\)
−0.523006 + 0.852329i \(0.675189\pi\)
\(824\) 3.85540 0.134309
\(825\) 26.4309 0.920205
\(826\) −12.3634 −0.430178
\(827\) −0.382375 −0.0132965 −0.00664824 0.999978i \(-0.502116\pi\)
−0.00664824 + 0.999978i \(0.502116\pi\)
\(828\) 20.0900 0.698174
\(829\) −0.605322 −0.0210237 −0.0105119 0.999945i \(-0.503346\pi\)
−0.0105119 + 0.999945i \(0.503346\pi\)
\(830\) 0.372903 0.0129436
\(831\) 12.6284 0.438075
\(832\) −1.74247 −0.0604091
\(833\) −1.09605 −0.0379759
\(834\) −3.56685 −0.123510
\(835\) −1.56054 −0.0540048
\(836\) −22.7214 −0.785836
\(837\) −47.1657 −1.63028
\(838\) 4.55962 0.157510
\(839\) 29.0031 1.00130 0.500650 0.865650i \(-0.333095\pi\)
0.500650 + 0.865650i \(0.333095\pi\)
\(840\) 1.15435 0.0398289
\(841\) −27.3061 −0.941588
\(842\) −5.04727 −0.173940
\(843\) −34.5571 −1.19021
\(844\) −1.26669 −0.0436012
\(845\) −1.34659 −0.0463240
\(846\) −7.65583 −0.263213
\(847\) −31.9384 −1.09742
\(848\) 23.6847 0.813335
\(849\) −11.6266 −0.399025
\(850\) −0.691760 −0.0237272
\(851\) 0 0
\(852\) 7.03568 0.241038
\(853\) −56.5657 −1.93677 −0.968387 0.249453i \(-0.919749\pi\)
−0.968387 + 0.249453i \(0.919749\pi\)
\(854\) −26.3342 −0.901138
\(855\) −0.664498 −0.0227254
\(856\) 0.199446 0.00681693
\(857\) −0.990424 −0.0338322 −0.0169161 0.999857i \(-0.505385\pi\)
−0.0169161 + 0.999857i \(0.505385\pi\)
\(858\) 5.40040 0.184367
\(859\) 4.84248 0.165223 0.0826116 0.996582i \(-0.473674\pi\)
0.0826116 + 0.996582i \(0.473674\pi\)
\(860\) 1.95717 0.0667390
\(861\) 31.0220 1.05723
\(862\) 6.22359 0.211976
\(863\) 30.9388 1.05317 0.526585 0.850122i \(-0.323472\pi\)
0.526585 + 0.850122i \(0.323472\pi\)
\(864\) −29.6931 −1.01018
\(865\) 1.53671 0.0522497
\(866\) 11.9906 0.407458
\(867\) 19.9114 0.676226
\(868\) −49.1643 −1.66875
\(869\) −20.5460 −0.696975
\(870\) −0.120517 −0.00408592
\(871\) 4.54809 0.154106
\(872\) −31.6280 −1.07106
\(873\) 4.85574 0.164342
\(874\) −13.1387 −0.444423
\(875\) 4.60621 0.155718
\(876\) −13.0051 −0.439402
\(877\) 54.8462 1.85203 0.926013 0.377492i \(-0.123213\pi\)
0.926013 + 0.377492i \(0.123213\pi\)
\(878\) 18.2021 0.614291
\(879\) 20.1993 0.681304
\(880\) 1.27743 0.0430623
\(881\) 39.1318 1.31838 0.659192 0.751974i \(-0.270898\pi\)
0.659192 + 0.751974i \(0.270898\pi\)
\(882\) 4.31668 0.145350
\(883\) 16.6988 0.561959 0.280979 0.959714i \(-0.409341\pi\)
0.280979 + 0.959714i \(0.409341\pi\)
\(884\) 0.695445 0.0233904
\(885\) 0.995536 0.0334646
\(886\) −20.9745 −0.704651
\(887\) 22.4696 0.754457 0.377228 0.926120i \(-0.376877\pi\)
0.377228 + 0.926120i \(0.376877\pi\)
\(888\) 0 0
\(889\) 4.02713 0.135066
\(890\) −1.31747 −0.0441617
\(891\) −6.87350 −0.230271
\(892\) −18.0607 −0.604717
\(893\) −24.6354 −0.824391
\(894\) −2.71183 −0.0906971
\(895\) −1.98228 −0.0662604
\(896\) −39.2105 −1.30993
\(897\) −15.3651 −0.513027
\(898\) 4.68645 0.156389
\(899\) 11.3090 0.377176
\(900\) −13.4051 −0.446835
\(901\) −2.71109 −0.0903196
\(902\) −20.3484 −0.677527
\(903\) −34.7468 −1.15630
\(904\) 9.51588 0.316493
\(905\) 0.0241401 0.000802443 0
\(906\) −2.40116 −0.0797733
\(907\) 1.57002 0.0521316 0.0260658 0.999660i \(-0.491702\pi\)
0.0260658 + 0.999660i \(0.491702\pi\)
\(908\) −4.35705 −0.144594
\(909\) 19.0984 0.633452
\(910\) 0.469708 0.0155707
\(911\) −23.1298 −0.766324 −0.383162 0.923681i \(-0.625165\pi\)
−0.383162 + 0.923681i \(0.625165\pi\)
\(912\) −7.42688 −0.245929
\(913\) −21.3666 −0.707131
\(914\) −13.4368 −0.444448
\(915\) 2.12050 0.0701017
\(916\) −26.0678 −0.861306
\(917\) 39.5820 1.30711
\(918\) 0.753765 0.0248779
\(919\) 31.8709 1.05132 0.525662 0.850693i \(-0.323818\pi\)
0.525662 + 0.850693i \(0.323818\pi\)
\(920\) 2.15431 0.0710256
\(921\) 11.4813 0.378323
\(922\) −0.790544 −0.0260352
\(923\) 6.30751 0.207614
\(924\) −30.0204 −0.987598
\(925\) 0 0
\(926\) −5.60297 −0.184125
\(927\) −2.93229 −0.0963091
\(928\) 7.11956 0.233711
\(929\) −28.0517 −0.920346 −0.460173 0.887829i \(-0.652213\pi\)
−0.460173 + 0.887829i \(0.652213\pi\)
\(930\) −0.804592 −0.0263836
\(931\) 13.8905 0.455241
\(932\) −32.8587 −1.07632
\(933\) 1.86410 0.0610278
\(934\) −6.66350 −0.218036
\(935\) −0.146223 −0.00478200
\(936\) −6.03454 −0.197245
\(937\) 38.6097 1.26133 0.630663 0.776057i \(-0.282783\pi\)
0.630663 + 0.776057i \(0.282783\pi\)
\(938\) 5.13838 0.167774
\(939\) 14.0696 0.459144
\(940\) 1.83339 0.0597984
\(941\) 12.2716 0.400043 0.200021 0.979792i \(-0.435899\pi\)
0.200021 + 0.979792i \(0.435899\pi\)
\(942\) 2.85645 0.0930681
\(943\) 57.8950 1.88532
\(944\) −13.0426 −0.424500
\(945\) −2.50492 −0.0814851
\(946\) 22.7916 0.741020
\(947\) 33.3992 1.08533 0.542665 0.839949i \(-0.317415\pi\)
0.542665 + 0.839949i \(0.317415\pi\)
\(948\) −8.88975 −0.288726
\(949\) −11.6591 −0.378471
\(950\) 8.76682 0.284433
\(951\) 5.06105 0.164116
\(952\) 1.73110 0.0561052
\(953\) −1.71781 −0.0556454 −0.0278227 0.999613i \(-0.508857\pi\)
−0.0278227 + 0.999613i \(0.508857\pi\)
\(954\) 10.6774 0.345693
\(955\) 0.813120 0.0263120
\(956\) 25.1068 0.812013
\(957\) 6.90542 0.223220
\(958\) 11.6101 0.375105
\(959\) 31.2725 1.00984
\(960\) 0.158518 0.00511616
\(961\) 44.5004 1.43550
\(962\) 0 0
\(963\) −0.151692 −0.00488821
\(964\) −20.4479 −0.658583
\(965\) 2.32828 0.0749499
\(966\) −17.3594 −0.558528
\(967\) 23.1071 0.743076 0.371538 0.928418i \(-0.378831\pi\)
0.371538 + 0.928418i \(0.378831\pi\)
\(968\) 19.9709 0.641889
\(969\) 0.850127 0.0273100
\(970\) 0.236333 0.00758818
\(971\) 37.9148 1.21674 0.608372 0.793652i \(-0.291823\pi\)
0.608372 + 0.793652i \(0.291823\pi\)
\(972\) 24.0937 0.772804
\(973\) 17.7757 0.569864
\(974\) 1.85442 0.0594196
\(975\) 10.2524 0.328340
\(976\) −27.7808 −0.889243
\(977\) 35.6149 1.13942 0.569711 0.821845i \(-0.307055\pi\)
0.569711 + 0.821845i \(0.307055\pi\)
\(978\) −7.35598 −0.235218
\(979\) 75.4885 2.41262
\(980\) −1.03374 −0.0330216
\(981\) 24.0552 0.768023
\(982\) −3.15238 −0.100597
\(983\) 12.1991 0.389092 0.194546 0.980893i \(-0.437677\pi\)
0.194546 + 0.980893i \(0.437677\pi\)
\(984\) −19.3979 −0.618382
\(985\) −1.32674 −0.0422734
\(986\) −0.180731 −0.00575566
\(987\) −32.5492 −1.03605
\(988\) −8.81352 −0.280396
\(989\) −64.8465 −2.06200
\(990\) 0.575885 0.0183028
\(991\) 12.0888 0.384013 0.192007 0.981394i \(-0.438500\pi\)
0.192007 + 0.981394i \(0.438500\pi\)
\(992\) 47.5312 1.50912
\(993\) 9.49902 0.301442
\(994\) 7.12615 0.226028
\(995\) −3.23735 −0.102631
\(996\) −9.24482 −0.292933
\(997\) −45.9879 −1.45645 −0.728226 0.685338i \(-0.759655\pi\)
−0.728226 + 0.685338i \(0.759655\pi\)
\(998\) −0.633386 −0.0200495
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1369.2.a.n.1.13 27
37.6 odd 4 1369.2.b.h.1368.33 54
37.31 odd 4 1369.2.b.h.1368.22 54
37.36 even 2 1369.2.a.o.1.15 yes 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1369.2.a.n.1.13 27 1.1 even 1 trivial
1369.2.a.o.1.15 yes 27 37.36 even 2
1369.2.b.h.1368.22 54 37.31 odd 4
1369.2.b.h.1368.33 54 37.6 odd 4