gp: [N,k,chi] = [1368,1,Mod(43,1368)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1368, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 9, 12, 16]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1368.43");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,-3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1368 Z ) × \left(\mathbb{Z}/1368\mathbb{Z}\right)^\times ( Z / 1 3 6 8 Z ) × .
n n n
343 343 3 4 3
685 685 6 8 5
1009 1009 1 0 0 9
1217 1217 1 2 1 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
ζ 18 2 \zeta_{18}^{2} ζ 1 8 2
ζ 18 6 \zeta_{18}^{6} ζ 1 8 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 17 6 + 8 T 17 3 + 64 T_{17}^{6} + 8T_{17}^{3} + 64 T 1 7 6 + 8 T 1 7 3 + 6 4
T17^6 + 8*T17^3 + 64
acting on S 1 n e w ( 1368 , [ χ ] ) S_{1}^{\mathrm{new}}(1368, [\chi]) S 1 n e w ( 1 3 6 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 + T 3 + 1 T^{6} + T^{3} + 1 T 6 + T 3 + 1
T^6 + T^3 + 1
3 3 3
( T 2 + T + 1 ) 3 (T^{2} + T + 1)^{3} ( T 2 + T + 1 ) 3
(T^2 + T + 1)^3
5 5 5
T 6 T^{6} T 6
T^6
7 7 7
T 6 T^{6} T 6
T^6
11 11 1 1
T 6 + 3 T 4 + ⋯ + 1 T^{6} + 3 T^{4} + \cdots + 1 T 6 + 3 T 4 + ⋯ + 1
T^6 + 3*T^4 + 2*T^3 + 9*T^2 + 3*T + 1
13 13 1 3
T 6 T^{6} T 6
T^6
17 17 1 7
T 6 + 8 T 3 + 64 T^{6} + 8T^{3} + 64 T 6 + 8 T 3 + 6 4
T^6 + 8*T^3 + 64
19 19 1 9
T 6 + T 3 + 1 T^{6} + T^{3} + 1 T 6 + T 3 + 1
T^6 + T^3 + 1
23 23 2 3
T 6 T^{6} T 6
T^6
29 29 2 9
T 6 T^{6} T 6
T^6
31 31 3 1
T 6 T^{6} T 6
T^6
37 37 3 7
T 6 T^{6} T 6
T^6
41 41 4 1
T 6 + 3 T 5 + ⋯ + 1 T^{6} + 3 T^{5} + \cdots + 1 T 6 + 3 T 5 + ⋯ + 1
T^6 + 3*T^5 + 6*T^4 + 8*T^3 + 12*T^2 + 6*T + 1
43 43 4 3
T 6 − T 3 + 1 T^{6} - T^{3} + 1 T 6 − T 3 + 1
T^6 - T^3 + 1
47 47 4 7
T 6 T^{6} T 6
T^6
53 53 5 3
T 6 T^{6} T 6
T^6
59 59 5 9
T 6 + 3 T 5 + ⋯ + 1 T^{6} + 3 T^{5} + \cdots + 1 T 6 + 3 T 5 + ⋯ + 1
T^6 + 3*T^5 + 6*T^4 + 8*T^3 + 12*T^2 + 6*T + 1
61 61 6 1
T 6 T^{6} T 6
T^6
67 67 6 7
T 6 − 6 T 5 + ⋯ + 1 T^{6} - 6 T^{5} + \cdots + 1 T 6 − 6 T 5 + ⋯ + 1
T^6 - 6*T^5 + 15*T^4 - 19*T^3 + 12*T^2 - 3*T + 1
71 71 7 1
T 6 T^{6} T 6
T^6
73 73 7 3
T 6 + 3 T 5 + ⋯ + 1 T^{6} + 3 T^{5} + \cdots + 1 T 6 + 3 T 5 + ⋯ + 1
T^6 + 3*T^5 + 6*T^4 + 8*T^3 + 12*T^2 + 6*T + 1
79 79 7 9
T 6 T^{6} T 6
T^6
83 83 8 3
( T 3 − 3 T + 1 ) 2 (T^{3} - 3 T + 1)^{2} ( T 3 − 3 T + 1 ) 2
(T^3 - 3*T + 1)^2
89 89 8 9
T 6 − T 3 + 1 T^{6} - T^{3} + 1 T 6 − T 3 + 1
T^6 - T^3 + 1
97 97 9 7
T 6 + 3 T 5 + ⋯ + 1 T^{6} + 3 T^{5} + \cdots + 1 T 6 + 3 T 5 + ⋯ + 1
T^6 + 3*T^5 + 6*T^4 + 8*T^3 + 3*T^2 - 3*T + 1
show more
show less