Properties

Label 1368.1.dh.a
Level 13681368
Weight 11
Character orbit 1368.dh
Analytic conductor 0.6830.683
Analytic rank 00
Dimension 66
Projective image D9D_{9}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1368,1,Mod(43,1368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1368, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 12, 16])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1368.43"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1368=233219 1368 = 2^{3} \cdot 3^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1368.dh (of order 1818, degree 66, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6827209372820.682720937282
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ18)\Q(\zeta_{18})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D9D_{9}
Projective field: Galois closure of Q[x]/(x9+)\mathbb{Q}[x]/(x^{9} + \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ184q2+ζ186q3+ζ188q4ζ18q6ζ183q8ζ183q9+(ζ188+ζ184)q11ζ185q12++(ζ187+ζ182)q99+O(q100) q + \zeta_{18}^{4} q^{2} + \zeta_{18}^{6} q^{3} + \zeta_{18}^{8} q^{4} - \zeta_{18} q^{6} - \zeta_{18}^{3} q^{8} - \zeta_{18}^{3} q^{9} + (\zeta_{18}^{8} + \zeta_{18}^{4}) q^{11} - \zeta_{18}^{5} q^{12} + \cdots + ( - \zeta_{18}^{7} + \zeta_{18}^{2}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q3q33q83q93q22+6q24+6q273q383q413q44+6q493q503q593q64+6q66+6q67+12q683q723q733q81+3q97+O(q100) 6 q - 3 q^{3} - 3 q^{8} - 3 q^{9} - 3 q^{22} + 6 q^{24} + 6 q^{27} - 3 q^{38} - 3 q^{41} - 3 q^{44} + 6 q^{49} - 3 q^{50} - 3 q^{59} - 3 q^{64} + 6 q^{66} + 6 q^{67} + 12 q^{68} - 3 q^{72} - 3 q^{73} - 3 q^{81}+ \cdots - 3 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1368Z)×\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times.

nn 343343 685685 10091009 12171217
χ(n)\chi(n) 1-1 1-1 ζ182\zeta_{18}^{2} ζ186\zeta_{18}^{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
43.1
0.939693 0.342020i
−0.766044 + 0.642788i
−0.766044 0.642788i
−0.173648 0.984808i
0.939693 + 0.342020i
−0.173648 + 0.984808i
0.173648 0.984808i −0.500000 0.866025i −0.939693 0.342020i 0 −0.939693 + 0.342020i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0
139.1 −0.939693 0.342020i −0.500000 + 0.866025i 0.766044 + 0.642788i 0 0.766044 0.642788i 0 −0.500000 0.866025i −0.500000 0.866025i 0
187.1 −0.939693 + 0.342020i −0.500000 0.866025i 0.766044 0.642788i 0 0.766044 + 0.642788i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0
427.1 0.766044 0.642788i −0.500000 + 0.866025i 0.173648 0.984808i 0 0.173648 + 0.984808i 0 −0.500000 0.866025i −0.500000 0.866025i 0
859.1 0.173648 + 0.984808i −0.500000 + 0.866025i −0.939693 + 0.342020i 0 −0.939693 0.342020i 0 −0.500000 0.866025i −0.500000 0.866025i 0
1195.1 0.766044 + 0.642788i −0.500000 0.866025i 0.173648 + 0.984808i 0 0.173648 0.984808i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
171.w even 9 1 inner
1368.dh odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.1.dh.a 6
8.d odd 2 1 CM 1368.1.dh.a 6
9.c even 3 1 1368.1.en.a yes 6
19.e even 9 1 1368.1.en.a yes 6
72.p odd 6 1 1368.1.en.a yes 6
152.u odd 18 1 1368.1.en.a yes 6
171.w even 9 1 inner 1368.1.dh.a 6
1368.dh odd 18 1 inner 1368.1.dh.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.1.dh.a 6 1.a even 1 1 trivial
1368.1.dh.a 6 8.d odd 2 1 CM
1368.1.dh.a 6 171.w even 9 1 inner
1368.1.dh.a 6 1368.dh odd 18 1 inner
1368.1.en.a yes 6 9.c even 3 1
1368.1.en.a yes 6 19.e even 9 1
1368.1.en.a yes 6 72.p odd 6 1
1368.1.en.a yes 6 152.u odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T176+8T173+64 T_{17}^{6} + 8T_{17}^{3} + 64 acting on S1new(1368,[χ])S_{1}^{\mathrm{new}}(1368, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+T3+1 T^{6} + T^{3} + 1 Copy content Toggle raw display
33 (T2+T+1)3 (T^{2} + T + 1)^{3} Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6+3T4++1 T^{6} + 3 T^{4} + \cdots + 1 Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 T6+8T3+64 T^{6} + 8T^{3} + 64 Copy content Toggle raw display
1919 T6+T3+1 T^{6} + T^{3} + 1 Copy content Toggle raw display
2323 T6 T^{6} Copy content Toggle raw display
2929 T6 T^{6} Copy content Toggle raw display
3131 T6 T^{6} Copy content Toggle raw display
3737 T6 T^{6} Copy content Toggle raw display
4141 T6+3T5++1 T^{6} + 3 T^{5} + \cdots + 1 Copy content Toggle raw display
4343 T6T3+1 T^{6} - T^{3} + 1 Copy content Toggle raw display
4747 T6 T^{6} Copy content Toggle raw display
5353 T6 T^{6} Copy content Toggle raw display
5959 T6+3T5++1 T^{6} + 3 T^{5} + \cdots + 1 Copy content Toggle raw display
6161 T6 T^{6} Copy content Toggle raw display
6767 T66T5++1 T^{6} - 6 T^{5} + \cdots + 1 Copy content Toggle raw display
7171 T6 T^{6} Copy content Toggle raw display
7373 T6+3T5++1 T^{6} + 3 T^{5} + \cdots + 1 Copy content Toggle raw display
7979 T6 T^{6} Copy content Toggle raw display
8383 (T33T+1)2 (T^{3} - 3 T + 1)^{2} Copy content Toggle raw display
8989 T6T3+1 T^{6} - T^{3} + 1 Copy content Toggle raw display
9797 T6+3T5++1 T^{6} + 3 T^{5} + \cdots + 1 Copy content Toggle raw display
show more
show less