Properties

Label 1368.1.ba.b
Level $1368$
Weight $1$
Character orbit 1368.ba
Analytic conductor $0.683$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1368,1,Mod(619,1368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1368.619"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1368, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1368.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.682720937282\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.233928.2
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.14971392.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + q^{3} + \zeta_{6}^{2} q^{4} - \zeta_{6} q^{6} + q^{8} + q^{9} + 2 \zeta_{6}^{2} q^{11} + \zeta_{6}^{2} q^{12} - \zeta_{6} q^{16} - \zeta_{6}^{2} q^{17} - \zeta_{6} q^{18} + q^{19} + \cdots + 2 \zeta_{6}^{2} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} - q^{6} + 2 q^{8} + 2 q^{9} - 2 q^{11} - q^{12} - q^{16} + q^{17} - q^{18} + 2 q^{19} + 4 q^{22} + 2 q^{24} + 2 q^{25} + 2 q^{27} - q^{32} - 2 q^{33} - 2 q^{34} - q^{36}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
619.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 1.00000 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 1.00000 1.00000 0
1147.1 −0.500000 + 0.866025i 1.00000 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
171.g even 3 1 inner
1368.ba odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.1.ba.b 2
8.d odd 2 1 CM 1368.1.ba.b 2
9.c even 3 1 1368.1.cj.a yes 2
19.c even 3 1 1368.1.cj.a yes 2
72.p odd 6 1 1368.1.cj.a yes 2
152.k odd 6 1 1368.1.cj.a yes 2
171.g even 3 1 inner 1368.1.ba.b 2
1368.ba odd 6 1 inner 1368.1.ba.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.1.ba.b 2 1.a even 1 1 trivial
1368.1.ba.b 2 8.d odd 2 1 CM
1368.1.ba.b 2 171.g even 3 1 inner
1368.1.ba.b 2 1368.ba odd 6 1 inner
1368.1.cj.a yes 2 9.c even 3 1
1368.1.cj.a yes 2 19.c even 3 1
1368.1.cj.a yes 2 72.p odd 6 1
1368.1.cj.a yes 2 152.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1368, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$89$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
show more
show less