Properties

Label 1365.2.f.d.274.13
Level $1365$
Weight $2$
Character 1365.274
Analytic conductor $10.900$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1365,2,Mod(274,1365)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1365.274"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1365, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1365 = 3 \cdot 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1365.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8995798759\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 32x^{14} + 416x^{12} + 2802x^{10} + 10280x^{8} + 19568x^{6} + 16273x^{4} + 4072x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.13
Root \(2.21394i\) of defining polynomial
Character \(\chi\) \(=\) 1365.274
Dual form 1365.2.f.d.274.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21394i q^{2} -1.00000i q^{3} -2.90155 q^{4} +(-1.43370 + 1.71595i) q^{5} +2.21394 q^{6} -1.00000i q^{7} -1.99598i q^{8} -1.00000 q^{9} +(-3.79903 - 3.17414i) q^{10} +1.31239 q^{11} +2.90155i q^{12} -1.00000i q^{13} +2.21394 q^{14} +(1.71595 + 1.43370i) q^{15} -1.38411 q^{16} +0.961936i q^{17} -2.21394i q^{18} -6.74102 q^{19} +(4.15996 - 4.97893i) q^{20} -1.00000 q^{21} +2.90557i q^{22} -3.62489i q^{23} -1.99598 q^{24} +(-0.888995 - 4.92033i) q^{25} +2.21394 q^{26} +1.00000i q^{27} +2.90155i q^{28} -1.40802 q^{29} +(-3.17414 + 3.79903i) q^{30} -1.90547 q^{31} -7.05630i q^{32} -1.31239i q^{33} -2.12967 q^{34} +(1.71595 + 1.43370i) q^{35} +2.90155 q^{36} -0.468408i q^{37} -14.9242i q^{38} -1.00000 q^{39} +(3.42501 + 2.86164i) q^{40} +1.05570 q^{41} -2.21394i q^{42} -5.08537i q^{43} -3.80798 q^{44} +(1.43370 - 1.71595i) q^{45} +8.02530 q^{46} -0.376207i q^{47} +1.38411i q^{48} -1.00000 q^{49} +(10.8933 - 1.96819i) q^{50} +0.961936 q^{51} +2.90155i q^{52} -11.6841i q^{53} -2.21394 q^{54} +(-1.88158 + 2.25201i) q^{55} -1.99598 q^{56} +6.74102i q^{57} -3.11728i q^{58} +2.84906 q^{59} +(-4.97893 - 4.15996i) q^{60} +1.02391 q^{61} -4.21860i q^{62} +1.00000i q^{63} +12.8540 q^{64} +(1.71595 + 1.43370i) q^{65} +2.90557 q^{66} -7.67831i q^{67} -2.79111i q^{68} -3.62489 q^{69} +(-3.17414 + 3.79903i) q^{70} -2.90557 q^{71} +1.99598i q^{72} +2.39384i q^{73} +1.03703 q^{74} +(-4.92033 + 0.888995i) q^{75} +19.5594 q^{76} -1.31239i q^{77} -2.21394i q^{78} -8.28161 q^{79} +(1.98440 - 2.37507i) q^{80} +1.00000 q^{81} +2.33726i q^{82} -2.94509i q^{83} +2.90155 q^{84} +(-1.65064 - 1.37913i) q^{85} +11.2587 q^{86} +1.40802i q^{87} -2.61951i q^{88} +10.3109 q^{89} +(3.79903 + 3.17414i) q^{90} -1.00000 q^{91} +10.5178i q^{92} +1.90547i q^{93} +0.832902 q^{94} +(9.66462 - 11.5673i) q^{95} -7.05630 q^{96} +12.6919i q^{97} -2.21394i q^{98} -1.31239 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} - 2 q^{5} + 4 q^{6} - 16 q^{9} - 2 q^{10} + 4 q^{11} + 4 q^{14} + 64 q^{16} - 4 q^{19} - 2 q^{20} - 16 q^{21} - 24 q^{24} + 2 q^{25} + 4 q^{26} + 24 q^{29} + 2 q^{30} + 4 q^{31} - 4 q^{34}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1365\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(547\) \(911\) \(976\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21394i 1.56550i 0.622339 + 0.782748i \(0.286182\pi\)
−0.622339 + 0.782748i \(0.713818\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −2.90155 −1.45077
\(5\) −1.43370 + 1.71595i −0.641171 + 0.767398i
\(6\) 2.21394 0.903839
\(7\) 1.00000i 0.377964i
\(8\) 1.99598i 0.705686i
\(9\) −1.00000 −0.333333
\(10\) −3.79903 3.17414i −1.20136 1.00375i
\(11\) 1.31239 0.395702 0.197851 0.980232i \(-0.436604\pi\)
0.197851 + 0.980232i \(0.436604\pi\)
\(12\) 2.90155i 0.837605i
\(13\) 1.00000i 0.277350i
\(14\) 2.21394 0.591702
\(15\) 1.71595 + 1.43370i 0.443057 + 0.370180i
\(16\) −1.38411 −0.346027
\(17\) 0.961936i 0.233304i 0.993173 + 0.116652i \(0.0372162\pi\)
−0.993173 + 0.116652i \(0.962784\pi\)
\(18\) 2.21394i 0.521832i
\(19\) −6.74102 −1.54650 −0.773248 0.634103i \(-0.781369\pi\)
−0.773248 + 0.634103i \(0.781369\pi\)
\(20\) 4.15996 4.97893i 0.930195 1.11332i
\(21\) −1.00000 −0.218218
\(22\) 2.90557i 0.619469i
\(23\) 3.62489i 0.755842i −0.925838 0.377921i \(-0.876639\pi\)
0.925838 0.377921i \(-0.123361\pi\)
\(24\) −1.99598 −0.407428
\(25\) −0.888995 4.92033i −0.177799 0.984067i
\(26\) 2.21394 0.434190
\(27\) 1.00000i 0.192450i
\(28\) 2.90155i 0.548341i
\(29\) −1.40802 −0.261463 −0.130732 0.991418i \(-0.541733\pi\)
−0.130732 + 0.991418i \(0.541733\pi\)
\(30\) −3.17414 + 3.79903i −0.579516 + 0.693604i
\(31\) −1.90547 −0.342232 −0.171116 0.985251i \(-0.554737\pi\)
−0.171116 + 0.985251i \(0.554737\pi\)
\(32\) 7.05630i 1.24739i
\(33\) 1.31239i 0.228459i
\(34\) −2.12967 −0.365236
\(35\) 1.71595 + 1.43370i 0.290049 + 0.242340i
\(36\) 2.90155 0.483592
\(37\) 0.468408i 0.0770058i −0.999258 0.0385029i \(-0.987741\pi\)
0.999258 0.0385029i \(-0.0122589\pi\)
\(38\) 14.9242i 2.42103i
\(39\) −1.00000 −0.160128
\(40\) 3.42501 + 2.86164i 0.541542 + 0.452465i
\(41\) 1.05570 0.164873 0.0824363 0.996596i \(-0.473730\pi\)
0.0824363 + 0.996596i \(0.473730\pi\)
\(42\) 2.21394i 0.341619i
\(43\) 5.08537i 0.775511i −0.921762 0.387756i \(-0.873250\pi\)
0.921762 0.387756i \(-0.126750\pi\)
\(44\) −3.80798 −0.574074
\(45\) 1.43370 1.71595i 0.213724 0.255799i
\(46\) 8.02530 1.18327
\(47\) 0.376207i 0.0548755i −0.999624 0.0274377i \(-0.991265\pi\)
0.999624 0.0274377i \(-0.00873480\pi\)
\(48\) 1.38411i 0.199779i
\(49\) −1.00000 −0.142857
\(50\) 10.8933 1.96819i 1.54055 0.278343i
\(51\) 0.961936 0.134698
\(52\) 2.90155i 0.402373i
\(53\) 11.6841i 1.60493i −0.596697 0.802466i \(-0.703521\pi\)
0.596697 0.802466i \(-0.296479\pi\)
\(54\) −2.21394 −0.301280
\(55\) −1.88158 + 2.25201i −0.253713 + 0.303661i
\(56\) −1.99598 −0.266724
\(57\) 6.74102i 0.892870i
\(58\) 3.11728i 0.409319i
\(59\) 2.84906 0.370917 0.185458 0.982652i \(-0.440623\pi\)
0.185458 + 0.982652i \(0.440623\pi\)
\(60\) −4.97893 4.15996i −0.642777 0.537048i
\(61\) 1.02391 0.131099 0.0655494 0.997849i \(-0.479120\pi\)
0.0655494 + 0.997849i \(0.479120\pi\)
\(62\) 4.21860i 0.535763i
\(63\) 1.00000i 0.125988i
\(64\) 12.8540 1.60676
\(65\) 1.71595 + 1.43370i 0.212838 + 0.177829i
\(66\) 2.90557 0.357651
\(67\) 7.67831i 0.938054i −0.883184 0.469027i \(-0.844605\pi\)
0.883184 0.469027i \(-0.155395\pi\)
\(68\) 2.79111i 0.338471i
\(69\) −3.62489 −0.436385
\(70\) −3.17414 + 3.79903i −0.379382 + 0.454070i
\(71\) −2.90557 −0.344828 −0.172414 0.985025i \(-0.555157\pi\)
−0.172414 + 0.985025i \(0.555157\pi\)
\(72\) 1.99598i 0.235229i
\(73\) 2.39384i 0.280178i 0.990139 + 0.140089i \(0.0447389\pi\)
−0.990139 + 0.140089i \(0.955261\pi\)
\(74\) 1.03703 0.120552
\(75\) −4.92033 + 0.888995i −0.568151 + 0.102652i
\(76\) 19.5594 2.24362
\(77\) 1.31239i 0.149561i
\(78\) 2.21394i 0.250680i
\(79\) −8.28161 −0.931754 −0.465877 0.884849i \(-0.654261\pi\)
−0.465877 + 0.884849i \(0.654261\pi\)
\(80\) 1.98440 2.37507i 0.221863 0.265540i
\(81\) 1.00000 0.111111
\(82\) 2.33726i 0.258107i
\(83\) 2.94509i 0.323265i −0.986851 0.161633i \(-0.948324\pi\)
0.986851 0.161633i \(-0.0516760\pi\)
\(84\) 2.90155 0.316585
\(85\) −1.65064 1.37913i −0.179037 0.149588i
\(86\) 11.2587 1.21406
\(87\) 1.40802i 0.150956i
\(88\) 2.61951i 0.279241i
\(89\) 10.3109 1.09296 0.546479 0.837473i \(-0.315968\pi\)
0.546479 + 0.837473i \(0.315968\pi\)
\(90\) 3.79903 + 3.17414i 0.400453 + 0.334583i
\(91\) −1.00000 −0.104828
\(92\) 10.5178i 1.09656i
\(93\) 1.90547i 0.197588i
\(94\) 0.832902 0.0859073
\(95\) 9.66462 11.5673i 0.991569 1.18678i
\(96\) −7.05630 −0.720181
\(97\) 12.6919i 1.28866i 0.764746 + 0.644332i \(0.222864\pi\)
−0.764746 + 0.644332i \(0.777136\pi\)
\(98\) 2.21394i 0.223642i
\(99\) −1.31239 −0.131901
\(100\) 2.57946 + 14.2766i 0.257946 + 1.42766i
\(101\) 2.20823 0.219727 0.109863 0.993947i \(-0.464959\pi\)
0.109863 + 0.993947i \(0.464959\pi\)
\(102\) 2.12967i 0.210869i
\(103\) 12.3920i 1.22102i −0.792009 0.610509i \(-0.790965\pi\)
0.792009 0.610509i \(-0.209035\pi\)
\(104\) −1.99598 −0.195722
\(105\) 1.43370 1.71595i 0.139915 0.167460i
\(106\) 25.8679 2.51251
\(107\) 17.5241i 1.69412i 0.531497 + 0.847060i \(0.321630\pi\)
−0.531497 + 0.847060i \(0.678370\pi\)
\(108\) 2.90155i 0.279202i
\(109\) −2.29539 −0.219859 −0.109929 0.993939i \(-0.535062\pi\)
−0.109929 + 0.993939i \(0.535062\pi\)
\(110\) −4.98582 4.16572i −0.475379 0.397186i
\(111\) −0.468408 −0.0444593
\(112\) 1.38411i 0.130786i
\(113\) 18.6247i 1.75207i −0.482250 0.876034i \(-0.660180\pi\)
0.482250 0.876034i \(-0.339820\pi\)
\(114\) −14.9242 −1.39778
\(115\) 6.22014 + 5.19701i 0.580031 + 0.484624i
\(116\) 4.08545 0.379324
\(117\) 1.00000i 0.0924500i
\(118\) 6.30767i 0.580668i
\(119\) 0.961936 0.0881805
\(120\) 2.86164 3.42501i 0.261231 0.312659i
\(121\) −9.27762 −0.843420
\(122\) 2.26689i 0.205234i
\(123\) 1.05570i 0.0951893i
\(124\) 5.52881 0.496502
\(125\) 9.71762 + 5.52882i 0.869170 + 0.494513i
\(126\) −2.21394 −0.197234
\(127\) 19.8495i 1.76136i −0.473713 0.880680i \(-0.657086\pi\)
0.473713 0.880680i \(-0.342914\pi\)
\(128\) 14.3455i 1.26798i
\(129\) −5.08537 −0.447742
\(130\) −3.17414 + 3.79903i −0.278390 + 0.333197i
\(131\) −15.4353 −1.34859 −0.674293 0.738464i \(-0.735552\pi\)
−0.674293 + 0.738464i \(0.735552\pi\)
\(132\) 3.80798i 0.331442i
\(133\) 6.74102i 0.584521i
\(134\) 16.9993 1.46852
\(135\) −1.71595 1.43370i −0.147686 0.123393i
\(136\) 1.92001 0.164639
\(137\) 17.4660i 1.49222i −0.665824 0.746109i \(-0.731920\pi\)
0.665824 0.746109i \(-0.268080\pi\)
\(138\) 8.02530i 0.683159i
\(139\) −16.8610 −1.43013 −0.715065 0.699058i \(-0.753603\pi\)
−0.715065 + 0.699058i \(0.753603\pi\)
\(140\) −4.97893 4.15996i −0.420796 0.351581i
\(141\) −0.376207 −0.0316824
\(142\) 6.43277i 0.539826i
\(143\) 1.31239i 0.109748i
\(144\) 1.38411 0.115342
\(145\) 2.01868 2.41610i 0.167643 0.200646i
\(146\) −5.29984 −0.438618
\(147\) 1.00000i 0.0824786i
\(148\) 1.35911i 0.111718i
\(149\) 1.90560 0.156113 0.0780563 0.996949i \(-0.475129\pi\)
0.0780563 + 0.996949i \(0.475129\pi\)
\(150\) −1.96819 10.8933i −0.160702 0.889438i
\(151\) −7.73417 −0.629398 −0.314699 0.949192i \(-0.601904\pi\)
−0.314699 + 0.949192i \(0.601904\pi\)
\(152\) 13.4550i 1.09134i
\(153\) 0.961936i 0.0777679i
\(154\) 2.90557 0.234137
\(155\) 2.73188 3.26970i 0.219429 0.262628i
\(156\) 2.90155 0.232310
\(157\) 17.8129i 1.42162i 0.703383 + 0.710811i \(0.251672\pi\)
−0.703383 + 0.710811i \(0.748328\pi\)
\(158\) 18.3350i 1.45866i
\(159\) −11.6841 −0.926608
\(160\) 12.1083 + 10.1166i 0.957244 + 0.799790i
\(161\) −3.62489 −0.285681
\(162\) 2.21394i 0.173944i
\(163\) 3.84000i 0.300772i −0.988627 0.150386i \(-0.951948\pi\)
0.988627 0.150386i \(-0.0480516\pi\)
\(164\) −3.06317 −0.239193
\(165\) 2.25201 + 1.88158i 0.175319 + 0.146481i
\(166\) 6.52026 0.506070
\(167\) 6.14901i 0.475825i 0.971287 + 0.237912i \(0.0764631\pi\)
−0.971287 + 0.237912i \(0.923537\pi\)
\(168\) 1.99598i 0.153993i
\(169\) −1.00000 −0.0769231
\(170\) 3.05332 3.65442i 0.234179 0.280281i
\(171\) 6.74102 0.515499
\(172\) 14.7554i 1.12509i
\(173\) 17.9828i 1.36721i 0.729852 + 0.683605i \(0.239589\pi\)
−0.729852 + 0.683605i \(0.760411\pi\)
\(174\) −3.11728 −0.236321
\(175\) −4.92033 + 0.888995i −0.371942 + 0.0672017i
\(176\) −1.81650 −0.136924
\(177\) 2.84906i 0.214149i
\(178\) 22.8279i 1.71102i
\(179\) −10.7729 −0.805206 −0.402603 0.915375i \(-0.631894\pi\)
−0.402603 + 0.915375i \(0.631894\pi\)
\(180\) −4.15996 + 4.97893i −0.310065 + 0.371107i
\(181\) −0.731579 −0.0543778 −0.0271889 0.999630i \(-0.508656\pi\)
−0.0271889 + 0.999630i \(0.508656\pi\)
\(182\) 2.21394i 0.164108i
\(183\) 1.02391i 0.0756899i
\(184\) −7.23521 −0.533387
\(185\) 0.803767 + 0.671558i 0.0590941 + 0.0493739i
\(186\) −4.21860 −0.309323
\(187\) 1.26244i 0.0923187i
\(188\) 1.09158i 0.0796120i
\(189\) 1.00000 0.0727393
\(190\) 25.6093 + 21.3969i 1.85790 + 1.55230i
\(191\) −3.41082 −0.246798 −0.123399 0.992357i \(-0.539380\pi\)
−0.123399 + 0.992357i \(0.539380\pi\)
\(192\) 12.8540i 0.927661i
\(193\) 22.5412i 1.62255i 0.584665 + 0.811275i \(0.301226\pi\)
−0.584665 + 0.811275i \(0.698774\pi\)
\(194\) −28.0991 −2.01740
\(195\) 1.43370 1.71595i 0.102670 0.122882i
\(196\) 2.90155 0.207254
\(197\) 8.50143i 0.605702i 0.953038 + 0.302851i \(0.0979385\pi\)
−0.953038 + 0.302851i \(0.902062\pi\)
\(198\) 2.90557i 0.206490i
\(199\) −5.25603 −0.372590 −0.186295 0.982494i \(-0.559648\pi\)
−0.186295 + 0.982494i \(0.559648\pi\)
\(200\) −9.82089 + 1.77442i −0.694442 + 0.125470i
\(201\) −7.67831 −0.541586
\(202\) 4.88889i 0.343981i
\(203\) 1.40802i 0.0988238i
\(204\) −2.79111 −0.195416
\(205\) −1.51356 + 1.81153i −0.105712 + 0.126523i
\(206\) 27.4352 1.91150
\(207\) 3.62489i 0.251947i
\(208\) 1.38411i 0.0959706i
\(209\) −8.84688 −0.611952
\(210\) 3.79903 + 3.17414i 0.262158 + 0.219036i
\(211\) −7.55756 −0.520284 −0.260142 0.965570i \(-0.583769\pi\)
−0.260142 + 0.965570i \(0.583769\pi\)
\(212\) 33.9020i 2.32840i
\(213\) 2.90557i 0.199086i
\(214\) −38.7974 −2.65214
\(215\) 8.72626 + 7.29090i 0.595126 + 0.497236i
\(216\) 1.99598 0.135809
\(217\) 1.90547i 0.129352i
\(218\) 5.08187i 0.344188i
\(219\) 2.39384 0.161761
\(220\) 5.45951 6.53431i 0.368080 0.440543i
\(221\) 0.961936 0.0647068
\(222\) 1.03703i 0.0696009i
\(223\) 17.3850i 1.16419i 0.813122 + 0.582093i \(0.197766\pi\)
−0.813122 + 0.582093i \(0.802234\pi\)
\(224\) −7.05630 −0.471469
\(225\) 0.888995 + 4.92033i 0.0592663 + 0.328022i
\(226\) 41.2341 2.74285
\(227\) 7.21108i 0.478616i 0.970944 + 0.239308i \(0.0769206\pi\)
−0.970944 + 0.239308i \(0.923079\pi\)
\(228\) 19.5594i 1.29535i
\(229\) −9.36239 −0.618684 −0.309342 0.950951i \(-0.600109\pi\)
−0.309342 + 0.950951i \(0.600109\pi\)
\(230\) −11.5059 + 13.7710i −0.758676 + 0.908036i
\(231\) −1.31239 −0.0863492
\(232\) 2.81039i 0.184511i
\(233\) 3.92008i 0.256813i 0.991722 + 0.128407i \(0.0409862\pi\)
−0.991722 + 0.128407i \(0.959014\pi\)
\(234\) −2.21394 −0.144730
\(235\) 0.645554 + 0.539369i 0.0421113 + 0.0351846i
\(236\) −8.26670 −0.538117
\(237\) 8.28161i 0.537948i
\(238\) 2.12967i 0.138046i
\(239\) −0.661837 −0.0428107 −0.0214053 0.999771i \(-0.506814\pi\)
−0.0214053 + 0.999771i \(0.506814\pi\)
\(240\) −2.37507 1.98440i −0.153310 0.128092i
\(241\) −6.92832 −0.446292 −0.223146 0.974785i \(-0.571633\pi\)
−0.223146 + 0.974785i \(0.571633\pi\)
\(242\) 20.5401i 1.32037i
\(243\) 1.00000i 0.0641500i
\(244\) −2.97094 −0.190195
\(245\) 1.43370 1.71595i 0.0915959 0.109628i
\(246\) 2.33726 0.149018
\(247\) 6.74102i 0.428921i
\(248\) 3.80328i 0.241509i
\(249\) −2.94509 −0.186637
\(250\) −12.2405 + 21.5143i −0.774157 + 1.36068i
\(251\) −31.3623 −1.97957 −0.989785 0.142567i \(-0.954464\pi\)
−0.989785 + 0.142567i \(0.954464\pi\)
\(252\) 2.90155i 0.182780i
\(253\) 4.75728i 0.299088i
\(254\) 43.9457 2.75740
\(255\) −1.37913 + 1.65064i −0.0863645 + 0.103367i
\(256\) −6.05213 −0.378258
\(257\) 7.87232i 0.491062i 0.969389 + 0.245531i \(0.0789623\pi\)
−0.969389 + 0.245531i \(0.921038\pi\)
\(258\) 11.2587i 0.700937i
\(259\) −0.468408 −0.0291055
\(260\) −4.97893 4.15996i −0.308780 0.257990i
\(261\) 1.40802 0.0871544
\(262\) 34.1728i 2.11121i
\(263\) 23.6347i 1.45738i 0.684846 + 0.728688i \(0.259870\pi\)
−0.684846 + 0.728688i \(0.740130\pi\)
\(264\) −2.61951 −0.161220
\(265\) 20.0494 + 16.7515i 1.23162 + 1.02904i
\(266\) −14.9242 −0.915064
\(267\) 10.3109i 0.631020i
\(268\) 22.2790i 1.36091i
\(269\) −9.64340 −0.587968 −0.293984 0.955810i \(-0.594981\pi\)
−0.293984 + 0.955810i \(0.594981\pi\)
\(270\) 3.17414 3.79903i 0.193172 0.231201i
\(271\) 11.5739 0.703067 0.351533 0.936175i \(-0.385660\pi\)
0.351533 + 0.936175i \(0.385660\pi\)
\(272\) 1.33142i 0.0807294i
\(273\) 1.00000i 0.0605228i
\(274\) 38.6687 2.33606
\(275\) −1.16671 6.45742i −0.0703554 0.389397i
\(276\) 10.5178 0.633097
\(277\) 3.95685i 0.237744i 0.992910 + 0.118872i \(0.0379278\pi\)
−0.992910 + 0.118872i \(0.962072\pi\)
\(278\) 37.3293i 2.23886i
\(279\) 1.90547 0.114077
\(280\) 2.86164 3.42501i 0.171016 0.204684i
\(281\) −8.33607 −0.497288 −0.248644 0.968595i \(-0.579985\pi\)
−0.248644 + 0.968595i \(0.579985\pi\)
\(282\) 0.832902i 0.0495986i
\(283\) 12.8317i 0.762763i −0.924418 0.381382i \(-0.875448\pi\)
0.924418 0.381382i \(-0.124552\pi\)
\(284\) 8.43065 0.500267
\(285\) −11.5673 9.66462i −0.685187 0.572483i
\(286\) 2.90557 0.171810
\(287\) 1.05570i 0.0623160i
\(288\) 7.05630i 0.415797i
\(289\) 16.0747 0.945569
\(290\) 5.34911 + 4.46926i 0.314111 + 0.262444i
\(291\) 12.6919 0.744010
\(292\) 6.94586i 0.406475i
\(293\) 24.8191i 1.44995i −0.688777 0.724973i \(-0.741852\pi\)
0.688777 0.724973i \(-0.258148\pi\)
\(294\) −2.21394 −0.129120
\(295\) −4.08471 + 4.88886i −0.237821 + 0.284641i
\(296\) −0.934934 −0.0543419
\(297\) 1.31239i 0.0761529i
\(298\) 4.21889i 0.244393i
\(299\) −3.62489 −0.209633
\(300\) 14.2766 2.57946i 0.824260 0.148925i
\(301\) −5.08537 −0.293116
\(302\) 17.1230i 0.985319i
\(303\) 2.20823i 0.126859i
\(304\) 9.33030 0.535130
\(305\) −1.46799 + 1.75699i −0.0840567 + 0.100605i
\(306\) 2.12967 0.121745
\(307\) 28.2873i 1.61444i −0.590249 0.807221i \(-0.700970\pi\)
0.590249 0.807221i \(-0.299030\pi\)
\(308\) 3.80798i 0.216980i
\(309\) −12.3920 −0.704956
\(310\) 7.23893 + 6.04822i 0.411143 + 0.343516i
\(311\) −5.62324 −0.318865 −0.159432 0.987209i \(-0.550966\pi\)
−0.159432 + 0.987209i \(0.550966\pi\)
\(312\) 1.99598i 0.113000i
\(313\) 11.2246i 0.634450i −0.948350 0.317225i \(-0.897249\pi\)
0.948350 0.317225i \(-0.102751\pi\)
\(314\) −39.4367 −2.22554
\(315\) −1.71595 1.43370i −0.0966830 0.0807800i
\(316\) 24.0295 1.35177
\(317\) 4.83778i 0.271717i −0.990728 0.135859i \(-0.956621\pi\)
0.990728 0.135859i \(-0.0433793\pi\)
\(318\) 25.8679i 1.45060i
\(319\) −1.84788 −0.103461
\(320\) −18.4289 + 22.0569i −1.03021 + 1.23302i
\(321\) 17.5241 0.978101
\(322\) 8.02530i 0.447233i
\(323\) 6.48443i 0.360803i
\(324\) −2.90155 −0.161197
\(325\) −4.92033 + 0.888995i −0.272931 + 0.0493126i
\(326\) 8.50154 0.470857
\(327\) 2.29539i 0.126936i
\(328\) 2.10716i 0.116348i
\(329\) −0.376207 −0.0207410
\(330\) −4.16572 + 4.98582i −0.229315 + 0.274460i
\(331\) −29.9041 −1.64368 −0.821839 0.569720i \(-0.807052\pi\)
−0.821839 + 0.569720i \(0.807052\pi\)
\(332\) 8.54532i 0.468985i
\(333\) 0.468408i 0.0256686i
\(334\) −13.6136 −0.744901
\(335\) 13.1756 + 11.0084i 0.719861 + 0.601453i
\(336\) 1.38411 0.0755093
\(337\) 32.8948i 1.79190i −0.444160 0.895948i \(-0.646498\pi\)
0.444160 0.895948i \(-0.353502\pi\)
\(338\) 2.21394i 0.120423i
\(339\) −18.6247 −1.01156
\(340\) 4.78941 + 4.00161i 0.259742 + 0.217018i
\(341\) −2.50073 −0.135422
\(342\) 14.9242i 0.807011i
\(343\) 1.00000i 0.0539949i
\(344\) −10.1503 −0.547267
\(345\) 5.19701 6.22014i 0.279798 0.334881i
\(346\) −39.8130 −2.14036
\(347\) 35.6847i 1.91565i −0.287347 0.957827i \(-0.592773\pi\)
0.287347 0.957827i \(-0.407227\pi\)
\(348\) 4.08545i 0.219003i
\(349\) −16.2559 −0.870158 −0.435079 0.900392i \(-0.643280\pi\)
−0.435079 + 0.900392i \(0.643280\pi\)
\(350\) −1.96819 10.8933i −0.105204 0.582274i
\(351\) 1.00000 0.0533761
\(352\) 9.26065i 0.493594i
\(353\) 26.7866i 1.42571i 0.701313 + 0.712854i \(0.252598\pi\)
−0.701313 + 0.712854i \(0.747402\pi\)
\(354\) 6.30767 0.335249
\(355\) 4.16572 4.98582i 0.221093 0.264620i
\(356\) −29.9177 −1.58564
\(357\) 0.961936i 0.0509110i
\(358\) 23.8506i 1.26055i
\(359\) 23.1586 1.22227 0.611133 0.791528i \(-0.290714\pi\)
0.611133 + 0.791528i \(0.290714\pi\)
\(360\) −3.42501 2.86164i −0.180514 0.150822i
\(361\) 26.4414 1.39165
\(362\) 1.61967i 0.0851282i
\(363\) 9.27762i 0.486949i
\(364\) 2.90155 0.152083
\(365\) −4.10772 3.43206i −0.215008 0.179642i
\(366\) 2.26689 0.118492
\(367\) 16.3496i 0.853445i −0.904383 0.426722i \(-0.859668\pi\)
0.904383 0.426722i \(-0.140332\pi\)
\(368\) 5.01724i 0.261542i
\(369\) −1.05570 −0.0549576
\(370\) −1.48679 + 1.77949i −0.0772946 + 0.0925115i
\(371\) −11.6841 −0.606608
\(372\) 5.52881i 0.286656i
\(373\) 28.5777i 1.47970i 0.672773 + 0.739849i \(0.265103\pi\)
−0.672773 + 0.739849i \(0.734897\pi\)
\(374\) −2.79497 −0.144525
\(375\) 5.52882 9.71762i 0.285507 0.501816i
\(376\) −0.750903 −0.0387249
\(377\) 1.40802i 0.0725168i
\(378\) 2.21394i 0.113873i
\(379\) 19.8566 1.01997 0.509983 0.860185i \(-0.329652\pi\)
0.509983 + 0.860185i \(0.329652\pi\)
\(380\) −28.0424 + 33.5630i −1.43854 + 1.72175i
\(381\) −19.8495 −1.01692
\(382\) 7.55137i 0.386361i
\(383\) 15.7082i 0.802652i −0.915935 0.401326i \(-0.868550\pi\)
0.915935 0.401326i \(-0.131450\pi\)
\(384\) 14.3455 0.732067
\(385\) 2.25201 + 1.88158i 0.114773 + 0.0958944i
\(386\) −49.9049 −2.54009
\(387\) 5.08537i 0.258504i
\(388\) 36.8261i 1.86956i
\(389\) 18.0392 0.914626 0.457313 0.889306i \(-0.348812\pi\)
0.457313 + 0.889306i \(0.348812\pi\)
\(390\) 3.79903 + 3.17414i 0.192371 + 0.160729i
\(391\) 3.48691 0.176341
\(392\) 1.99598i 0.100812i
\(393\) 15.4353i 0.778607i
\(394\) −18.8217 −0.948224
\(395\) 11.8734 14.2109i 0.597414 0.715026i
\(396\) 3.80798 0.191358
\(397\) 0.0326359i 0.00163795i 1.00000 0.000818974i \(0.000260688\pi\)
−1.00000 0.000818974i \(0.999739\pi\)
\(398\) 11.6366i 0.583288i
\(399\) 6.74102 0.337473
\(400\) 1.23047 + 6.81028i 0.0615233 + 0.340514i
\(401\) −11.9135 −0.594933 −0.297466 0.954732i \(-0.596142\pi\)
−0.297466 + 0.954732i \(0.596142\pi\)
\(402\) 16.9993i 0.847850i
\(403\) 1.90547i 0.0949182i
\(404\) −6.40728 −0.318774
\(405\) −1.43370 + 1.71595i −0.0712412 + 0.0852664i
\(406\) −3.11728 −0.154708
\(407\) 0.614736i 0.0304713i
\(408\) 1.92001i 0.0950545i
\(409\) −16.5244 −0.817081 −0.408541 0.912740i \(-0.633962\pi\)
−0.408541 + 0.912740i \(0.633962\pi\)
\(410\) −4.01063 3.35094i −0.198071 0.165491i
\(411\) −17.4660 −0.861532
\(412\) 35.9560i 1.77142i
\(413\) 2.84906i 0.140193i
\(414\) −8.02530 −0.394422
\(415\) 5.05363 + 4.22238i 0.248073 + 0.207268i
\(416\) −7.05630 −0.345964
\(417\) 16.8610i 0.825686i
\(418\) 19.5865i 0.958007i
\(419\) −8.69657 −0.424855 −0.212428 0.977177i \(-0.568137\pi\)
−0.212428 + 0.977177i \(0.568137\pi\)
\(420\) −4.15996 + 4.97893i −0.202985 + 0.242947i
\(421\) 3.58737 0.174838 0.0874188 0.996172i \(-0.472138\pi\)
0.0874188 + 0.996172i \(0.472138\pi\)
\(422\) 16.7320i 0.814502i
\(423\) 0.376207i 0.0182918i
\(424\) −23.3212 −1.13258
\(425\) 4.73305 0.855156i 0.229586 0.0414812i
\(426\) −6.43277 −0.311669
\(427\) 1.02391i 0.0495507i
\(428\) 50.8471i 2.45779i
\(429\) −1.31239 −0.0633630
\(430\) −16.1417 + 19.3194i −0.778420 + 0.931666i
\(431\) 19.7370 0.950697 0.475348 0.879798i \(-0.342322\pi\)
0.475348 + 0.879798i \(0.342322\pi\)
\(432\) 1.38411i 0.0665929i
\(433\) 6.28972i 0.302265i 0.988514 + 0.151132i \(0.0482919\pi\)
−0.988514 + 0.151132i \(0.951708\pi\)
\(434\) −4.21860 −0.202499
\(435\) −2.41610 2.01868i −0.115843 0.0967885i
\(436\) 6.66020 0.318966
\(437\) 24.4355i 1.16891i
\(438\) 5.29984i 0.253236i
\(439\) −5.22802 −0.249520 −0.124760 0.992187i \(-0.539816\pi\)
−0.124760 + 0.992187i \(0.539816\pi\)
\(440\) 4.49497 + 3.75560i 0.214289 + 0.179041i
\(441\) 1.00000 0.0476190
\(442\) 2.12967i 0.101298i
\(443\) 19.9130i 0.946097i 0.881036 + 0.473049i \(0.156846\pi\)
−0.881036 + 0.473049i \(0.843154\pi\)
\(444\) 1.35911 0.0645005
\(445\) −14.7828 + 17.6931i −0.700773 + 0.838734i
\(446\) −38.4894 −1.82253
\(447\) 1.90560i 0.0901316i
\(448\) 12.8540i 0.607296i
\(449\) 6.76117 0.319079 0.159540 0.987192i \(-0.448999\pi\)
0.159540 + 0.987192i \(0.448999\pi\)
\(450\) −10.8933 + 1.96819i −0.513517 + 0.0927811i
\(451\) 1.38550 0.0652404
\(452\) 54.0406i 2.54186i
\(453\) 7.73417i 0.363383i
\(454\) −15.9649 −0.749271
\(455\) 1.43370 1.71595i 0.0672130 0.0804452i
\(456\) 13.4550 0.630086
\(457\) 26.5031i 1.23976i 0.784696 + 0.619881i \(0.212819\pi\)
−0.784696 + 0.619881i \(0.787181\pi\)
\(458\) 20.7278i 0.968547i
\(459\) −0.961936 −0.0448993
\(460\) −18.0481 15.0794i −0.841495 0.703080i
\(461\) 9.98485 0.465041 0.232520 0.972592i \(-0.425303\pi\)
0.232520 + 0.972592i \(0.425303\pi\)
\(462\) 2.90557i 0.135179i
\(463\) 28.2047i 1.31078i −0.755289 0.655392i \(-0.772503\pi\)
0.755289 0.655392i \(-0.227497\pi\)
\(464\) 1.94885 0.0904733
\(465\) −3.26970 2.73188i −0.151629 0.126688i
\(466\) −8.67885 −0.402040
\(467\) 8.20146i 0.379518i 0.981831 + 0.189759i \(0.0607707\pi\)
−0.981831 + 0.189759i \(0.939229\pi\)
\(468\) 2.90155i 0.134124i
\(469\) −7.67831 −0.354551
\(470\) −1.19413 + 1.42922i −0.0550813 + 0.0659251i
\(471\) 17.8129 0.820774
\(472\) 5.68668i 0.261751i
\(473\) 6.67401i 0.306871i
\(474\) −18.3350 −0.842156
\(475\) 5.99273 + 33.1681i 0.274966 + 1.52186i
\(476\) −2.79111 −0.127930
\(477\) 11.6841i 0.534978i
\(478\) 1.46527i 0.0670199i
\(479\) 25.1767 1.15035 0.575177 0.818029i \(-0.304933\pi\)
0.575177 + 0.818029i \(0.304933\pi\)
\(480\) 10.1166 12.1083i 0.461759 0.552665i
\(481\) −0.468408 −0.0213576
\(482\) 15.3389i 0.698668i
\(483\) 3.62489i 0.164938i
\(484\) 26.9195 1.22361
\(485\) −21.7787 18.1964i −0.988918 0.826254i
\(486\) 2.21394 0.100427
\(487\) 13.7244i 0.621913i 0.950424 + 0.310957i \(0.100649\pi\)
−0.950424 + 0.310957i \(0.899351\pi\)
\(488\) 2.04371i 0.0925145i
\(489\) −3.84000 −0.173651
\(490\) 3.79903 + 3.17414i 0.171623 + 0.143393i
\(491\) 5.45181 0.246037 0.123018 0.992404i \(-0.460743\pi\)
0.123018 + 0.992404i \(0.460743\pi\)
\(492\) 3.06317i 0.138098i
\(493\) 1.35443i 0.0610003i
\(494\) −14.9242 −0.671474
\(495\) 1.88158 2.25201i 0.0845709 0.101220i
\(496\) 2.63738 0.118422
\(497\) 2.90557i 0.130333i
\(498\) 6.52026i 0.292180i
\(499\) 36.7954 1.64719 0.823595 0.567179i \(-0.191965\pi\)
0.823595 + 0.567179i \(0.191965\pi\)
\(500\) −28.1962 16.0421i −1.26097 0.717427i
\(501\) 6.14901 0.274717
\(502\) 69.4344i 3.09901i
\(503\) 7.17093i 0.319736i 0.987138 + 0.159868i \(0.0511069\pi\)
−0.987138 + 0.159868i \(0.948893\pi\)
\(504\) 1.99598 0.0889081
\(505\) −3.16594 + 3.78922i −0.140883 + 0.168618i
\(506\) 10.5324 0.468221
\(507\) 1.00000i 0.0444116i
\(508\) 57.5943i 2.55534i
\(509\) 24.2551 1.07509 0.537545 0.843235i \(-0.319352\pi\)
0.537545 + 0.843235i \(0.319352\pi\)
\(510\) −3.65442 3.05332i −0.161820 0.135203i
\(511\) 2.39384 0.105897
\(512\) 15.2920i 0.675817i
\(513\) 6.74102i 0.297623i
\(514\) −17.4289 −0.768755
\(515\) 21.2641 + 17.7664i 0.937007 + 0.782882i
\(516\) 14.7554 0.649572
\(517\) 0.493732i 0.0217143i
\(518\) 1.03703i 0.0455645i
\(519\) 17.9828 0.789359
\(520\) 2.86164 3.42501i 0.125491 0.150197i
\(521\) −6.95695 −0.304789 −0.152395 0.988320i \(-0.548698\pi\)
−0.152395 + 0.988320i \(0.548698\pi\)
\(522\) 3.11728i 0.136440i
\(523\) 21.7172i 0.949626i −0.880087 0.474813i \(-0.842516\pi\)
0.880087 0.474813i \(-0.157484\pi\)
\(524\) 44.7862 1.95650
\(525\) 0.888995 + 4.92033i 0.0387989 + 0.214741i
\(526\) −52.3258 −2.28152
\(527\) 1.83294i 0.0798441i
\(528\) 1.81650i 0.0790528i
\(529\) 9.86018 0.428703
\(530\) −37.0869 + 44.3882i −1.61095 + 1.92810i
\(531\) −2.84906 −0.123639
\(532\) 19.5594i 0.848008i
\(533\) 1.05570i 0.0457275i
\(534\) 22.8279 0.987858
\(535\) −30.0706 25.1244i −1.30006 1.08622i
\(536\) −15.3258 −0.661972
\(537\) 10.7729i 0.464886i
\(538\) 21.3499i 0.920461i
\(539\) −1.31239 −0.0565288
\(540\) 4.97893 + 4.15996i 0.214259 + 0.179016i
\(541\) −29.3660 −1.26254 −0.631272 0.775562i \(-0.717467\pi\)
−0.631272 + 0.775562i \(0.717467\pi\)
\(542\) 25.6240i 1.10065i
\(543\) 0.731579i 0.0313950i
\(544\) 6.78771 0.291021
\(545\) 3.29091 3.93879i 0.140967 0.168719i
\(546\) −2.21394 −0.0947481
\(547\) 20.7560i 0.887462i 0.896160 + 0.443731i \(0.146346\pi\)
−0.896160 + 0.443731i \(0.853654\pi\)
\(548\) 50.6784i 2.16487i
\(549\) −1.02391 −0.0436996
\(550\) 14.2964 2.58304i 0.609599 0.110141i
\(551\) 9.49151 0.404352
\(552\) 7.23521i 0.307951i
\(553\) 8.28161i 0.352170i
\(554\) −8.76024 −0.372187
\(555\) 0.671558 0.803767i 0.0285060 0.0341180i
\(556\) 48.9230 2.07480
\(557\) 7.26865i 0.307983i 0.988072 + 0.153991i \(0.0492128\pi\)
−0.988072 + 0.153991i \(0.950787\pi\)
\(558\) 4.21860i 0.178588i
\(559\) −5.08537 −0.215088
\(560\) −2.37507 1.98440i −0.100365 0.0838562i
\(561\) 1.26244 0.0533002
\(562\) 18.4556i 0.778503i
\(563\) 4.89336i 0.206230i 0.994669 + 0.103115i \(0.0328810\pi\)
−0.994669 + 0.103115i \(0.967119\pi\)
\(564\) 1.09158 0.0459640
\(565\) 31.9592 + 26.7023i 1.34453 + 1.12338i
\(566\) 28.4086 1.19410
\(567\) 1.00000i 0.0419961i
\(568\) 5.79946i 0.243340i
\(569\) 15.0651 0.631561 0.315781 0.948832i \(-0.397734\pi\)
0.315781 + 0.948832i \(0.397734\pi\)
\(570\) 21.3969 25.6093i 0.896219 1.07266i
\(571\) 8.10710 0.339272 0.169636 0.985507i \(-0.445741\pi\)
0.169636 + 0.985507i \(0.445741\pi\)
\(572\) 3.80798i 0.159220i
\(573\) 3.41082i 0.142489i
\(574\) 2.33726 0.0975554
\(575\) −17.8357 + 3.22251i −0.743799 + 0.134388i
\(576\) −12.8540 −0.535585
\(577\) 36.3014i 1.51125i −0.655006 0.755624i \(-0.727334\pi\)
0.655006 0.755624i \(-0.272666\pi\)
\(578\) 35.5884i 1.48028i
\(579\) 22.5412 0.936779
\(580\) −5.85731 + 7.01044i −0.243212 + 0.291093i
\(581\) −2.94509 −0.122183
\(582\) 28.0991i 1.16474i
\(583\) 15.3341i 0.635075i
\(584\) 4.77807 0.197718
\(585\) −1.71595 1.43370i −0.0709460 0.0592763i
\(586\) 54.9481 2.26988
\(587\) 6.22753i 0.257038i 0.991707 + 0.128519i \(0.0410223\pi\)
−0.991707 + 0.128519i \(0.958978\pi\)
\(588\) 2.90155i 0.119658i
\(589\) 12.8448 0.529261
\(590\) −10.8237 9.04332i −0.445604 0.372308i
\(591\) 8.50143 0.349702
\(592\) 0.648328i 0.0266461i
\(593\) 1.33243i 0.0547165i −0.999626 0.0273583i \(-0.991291\pi\)
0.999626 0.0273583i \(-0.00870950\pi\)
\(594\) −2.90557 −0.119217
\(595\) −1.37913 + 1.65064i −0.0565388 + 0.0676695i
\(596\) −5.52918 −0.226484
\(597\) 5.25603i 0.215115i
\(598\) 8.02530i 0.328179i
\(599\) 38.0056 1.55287 0.776433 0.630200i \(-0.217027\pi\)
0.776433 + 0.630200i \(0.217027\pi\)
\(600\) 1.77442 + 9.82089i 0.0724403 + 0.400936i
\(601\) −25.8801 −1.05567 −0.527837 0.849346i \(-0.676997\pi\)
−0.527837 + 0.849346i \(0.676997\pi\)
\(602\) 11.2587i 0.458871i
\(603\) 7.67831i 0.312685i
\(604\) 22.4411 0.913115
\(605\) 13.3013 15.9200i 0.540777 0.647239i
\(606\) 4.88889 0.198598
\(607\) 27.6938i 1.12406i −0.827118 0.562029i \(-0.810021\pi\)
0.827118 0.562029i \(-0.189979\pi\)
\(608\) 47.5667i 1.92908i
\(609\) 1.40802 0.0570559
\(610\) −3.88988 3.25004i −0.157496 0.131590i
\(611\) −0.376207 −0.0152197
\(612\) 2.79111i 0.112824i
\(613\) 29.3432i 1.18516i −0.805511 0.592581i \(-0.798109\pi\)
0.805511 0.592581i \(-0.201891\pi\)
\(614\) 62.6266 2.52740
\(615\) 1.81153 + 1.51356i 0.0730481 + 0.0610326i
\(616\) −2.61951 −0.105543
\(617\) 30.4475i 1.22577i 0.790172 + 0.612885i \(0.209991\pi\)
−0.790172 + 0.612885i \(0.790009\pi\)
\(618\) 27.4352i 1.10360i
\(619\) −39.5946 −1.59144 −0.795722 0.605663i \(-0.792908\pi\)
−0.795722 + 0.605663i \(0.792908\pi\)
\(620\) −7.92667 + 9.48719i −0.318343 + 0.381015i
\(621\) 3.62489 0.145462
\(622\) 12.4495i 0.499181i
\(623\) 10.3109i 0.413099i
\(624\) 1.38411 0.0554087
\(625\) −23.4194 + 8.74830i −0.936775 + 0.349932i
\(626\) 24.8506 0.993229
\(627\) 8.84688i 0.353310i
\(628\) 51.6850i 2.06245i
\(629\) 0.450579 0.0179657
\(630\) 3.17414 3.79903i 0.126461 0.151357i
\(631\) −24.0453 −0.957230 −0.478615 0.878025i \(-0.658861\pi\)
−0.478615 + 0.878025i \(0.658861\pi\)
\(632\) 16.5299i 0.657526i
\(633\) 7.55756i 0.300386i
\(634\) 10.7106 0.425372
\(635\) 34.0608 + 28.4583i 1.35166 + 1.12933i
\(636\) 33.9020 1.34430
\(637\) 1.00000i 0.0396214i
\(638\) 4.09110i 0.161968i
\(639\) 2.90557 0.114943
\(640\) −24.6163 20.5672i −0.973044 0.812991i
\(641\) −24.4052 −0.963949 −0.481975 0.876185i \(-0.660080\pi\)
−0.481975 + 0.876185i \(0.660080\pi\)
\(642\) 38.7974i 1.53121i
\(643\) 12.7923i 0.504478i 0.967665 + 0.252239i \(0.0811669\pi\)
−0.967665 + 0.252239i \(0.918833\pi\)
\(644\) 10.5178 0.414459
\(645\) 7.29090 8.72626i 0.287079 0.343596i
\(646\) 14.3562 0.564836
\(647\) 30.1091i 1.18371i 0.806044 + 0.591855i \(0.201604\pi\)
−0.806044 + 0.591855i \(0.798396\pi\)
\(648\) 1.99598i 0.0784095i
\(649\) 3.73910 0.146772
\(650\) −1.96819 10.8933i −0.0771986 0.427272i
\(651\) 1.90547 0.0746812
\(652\) 11.1419i 0.436352i
\(653\) 47.1317i 1.84440i 0.386708 + 0.922202i \(0.373612\pi\)
−0.386708 + 0.922202i \(0.626388\pi\)
\(654\) −5.08187 −0.198717
\(655\) 22.1296 26.4862i 0.864675 1.03490i
\(656\) −1.46120 −0.0570504
\(657\) 2.39384i 0.0933927i
\(658\) 0.832902i 0.0324699i
\(659\) 14.3200 0.557828 0.278914 0.960316i \(-0.410026\pi\)
0.278914 + 0.960316i \(0.410026\pi\)
\(660\) −6.53431 5.45951i −0.254348 0.212511i
\(661\) 0.151327 0.00588593 0.00294297 0.999996i \(-0.499063\pi\)
0.00294297 + 0.999996i \(0.499063\pi\)
\(662\) 66.2060i 2.57317i
\(663\) 0.961936i 0.0373585i
\(664\) −5.87834 −0.228124
\(665\) −11.5673 9.66462i −0.448560 0.374778i
\(666\) −1.03703 −0.0401841
\(667\) 5.10392i 0.197625i
\(668\) 17.8417i 0.690314i
\(669\) 17.3850 0.672143
\(670\) −24.3720 + 29.1701i −0.941572 + 1.12694i
\(671\) 1.34378 0.0518760
\(672\) 7.05630i 0.272203i
\(673\) 20.1434i 0.776470i −0.921560 0.388235i \(-0.873085\pi\)
0.921560 0.388235i \(-0.126915\pi\)
\(674\) 72.8273 2.80520
\(675\) 4.92033 0.888995i 0.189384 0.0342174i
\(676\) 2.90155 0.111598
\(677\) 29.2800i 1.12532i 0.826688 + 0.562661i \(0.190222\pi\)
−0.826688 + 0.562661i \(0.809778\pi\)
\(678\) 41.2341i 1.58359i
\(679\) 12.6919 0.487069
\(680\) −2.75272 + 3.29464i −0.105562 + 0.126344i
\(681\) 7.21108 0.276329
\(682\) 5.53647i 0.212002i
\(683\) 41.9206i 1.60405i −0.597293 0.802023i \(-0.703757\pi\)
0.597293 0.802023i \(-0.296243\pi\)
\(684\) −19.5594 −0.747873
\(685\) 29.9708 + 25.0410i 1.14512 + 0.956767i
\(686\) −2.21394 −0.0845288
\(687\) 9.36239i 0.357197i
\(688\) 7.03870i 0.268348i
\(689\) −11.6841 −0.445128
\(690\) 13.7710 + 11.5059i 0.524255 + 0.438022i
\(691\) 37.3266 1.41997 0.709985 0.704217i \(-0.248702\pi\)
0.709985 + 0.704217i \(0.248702\pi\)
\(692\) 52.1781i 1.98351i
\(693\) 1.31239i 0.0498537i
\(694\) 79.0039 2.99895
\(695\) 24.1736 28.9327i 0.916959 1.09748i
\(696\) 2.81039 0.106527
\(697\) 1.01552i 0.0384654i
\(698\) 35.9897i 1.36223i
\(699\) 3.92008 0.148271
\(700\) 14.2766 2.57946i 0.539605 0.0974945i
\(701\) −37.3462 −1.41055 −0.705273 0.708936i \(-0.749175\pi\)
−0.705273 + 0.708936i \(0.749175\pi\)
\(702\) 2.21394i 0.0835599i
\(703\) 3.15755i 0.119089i
\(704\) 16.8696 0.635796
\(705\) 0.539369 0.645554i 0.0203138 0.0243130i
\(706\) −59.3041 −2.23194
\(707\) 2.20823i 0.0830490i
\(708\) 8.26670i 0.310682i
\(709\) 12.3937 0.465457 0.232729 0.972542i \(-0.425235\pi\)
0.232729 + 0.972542i \(0.425235\pi\)
\(710\) 11.0383 + 9.22267i 0.414261 + 0.346121i
\(711\) 8.28161 0.310585
\(712\) 20.5805i 0.771285i
\(713\) 6.90711i 0.258673i
\(714\) 2.12967 0.0797010
\(715\) 2.25201 + 1.88158i 0.0842203 + 0.0703672i
\(716\) 31.2582 1.16817
\(717\) 0.661837i 0.0247167i
\(718\) 51.2719i 1.91345i
\(719\) 23.9746 0.894102 0.447051 0.894508i \(-0.352474\pi\)
0.447051 + 0.894508i \(0.352474\pi\)
\(720\) −1.98440 + 2.37507i −0.0739542 + 0.0885135i
\(721\) −12.3920 −0.461502
\(722\) 58.5397i 2.17862i
\(723\) 6.92832i 0.257667i
\(724\) 2.12271 0.0788900
\(725\) 1.25172 + 6.92794i 0.0464879 + 0.257297i
\(726\) −20.5401 −0.762316
\(727\) 20.0330i 0.742983i 0.928436 + 0.371492i \(0.121154\pi\)
−0.928436 + 0.371492i \(0.878846\pi\)
\(728\) 1.99598i 0.0739760i
\(729\) −1.00000 −0.0370370
\(730\) 7.59839 9.09427i 0.281229 0.336594i
\(731\) 4.89180 0.180930
\(732\) 2.97094i 0.109809i
\(733\) 34.4602i 1.27282i −0.771352 0.636408i \(-0.780419\pi\)
0.771352 0.636408i \(-0.219581\pi\)
\(734\) 36.1972 1.33606
\(735\) −1.71595 1.43370i −0.0632939 0.0528829i
\(736\) −25.5783 −0.942829
\(737\) 10.0770i 0.371190i
\(738\) 2.33726i 0.0860358i
\(739\) −1.55512 −0.0572060 −0.0286030 0.999591i \(-0.509106\pi\)
−0.0286030 + 0.999591i \(0.509106\pi\)
\(740\) −2.33217 1.94856i −0.0857322 0.0716304i
\(741\) 6.74102 0.247638
\(742\) 25.8679i 0.949641i
\(743\) 2.56709i 0.0941774i −0.998891 0.0470887i \(-0.985006\pi\)
0.998891 0.0470887i \(-0.0149943\pi\)
\(744\) 3.80328 0.139435
\(745\) −2.73206 + 3.26992i −0.100095 + 0.119800i
\(746\) −63.2695 −2.31646
\(747\) 2.94509i 0.107755i
\(748\) 3.66303i 0.133934i
\(749\) 17.5241 0.640317
\(750\) 21.5143 + 12.2405i 0.785590 + 0.446960i
\(751\) 33.1988 1.21144 0.605720 0.795678i \(-0.292885\pi\)
0.605720 + 0.795678i \(0.292885\pi\)
\(752\) 0.520712i 0.0189884i
\(753\) 31.3623i 1.14291i
\(754\) −3.11728 −0.113525
\(755\) 11.0885 13.2715i 0.403552 0.482999i
\(756\) −2.90155 −0.105528
\(757\) 5.34377i 0.194222i 0.995274 + 0.0971112i \(0.0309603\pi\)
−0.995274 + 0.0971112i \(0.969040\pi\)
\(758\) 43.9614i 1.59675i
\(759\) −4.75728 −0.172678
\(760\) −23.0881 19.2904i −0.837493 0.699736i
\(761\) 30.9794 1.12300 0.561501 0.827476i \(-0.310224\pi\)
0.561501 + 0.827476i \(0.310224\pi\)
\(762\) 43.9457i 1.59199i
\(763\) 2.29539i 0.0830988i
\(764\) 9.89666 0.358049
\(765\) 1.65064 + 1.37913i 0.0596789 + 0.0498625i
\(766\) 34.7771 1.25655
\(767\) 2.84906i 0.102874i
\(768\) 6.05213i 0.218387i
\(769\) −20.9410 −0.755152 −0.377576 0.925979i \(-0.623242\pi\)
−0.377576 + 0.925979i \(0.623242\pi\)
\(770\) −4.16572 + 4.98582i −0.150122 + 0.179677i
\(771\) 7.87232 0.283515
\(772\) 65.4043i 2.35395i
\(773\) 20.3744i 0.732815i 0.930455 + 0.366407i \(0.119412\pi\)
−0.930455 + 0.366407i \(0.880588\pi\)
\(774\) −11.2587 −0.404686
\(775\) 1.69395 + 9.37554i 0.0608486 + 0.336779i
\(776\) 25.3327 0.909392
\(777\) 0.468408i 0.0168040i
\(778\) 39.9379i 1.43184i
\(779\) −7.11650 −0.254975
\(780\) −4.15996 + 4.97893i −0.148950 + 0.178274i
\(781\) −3.81325 −0.136449
\(782\) 7.71983i 0.276060i
\(783\) 1.40802i 0.0503186i
\(784\) 1.38411 0.0494324
\(785\) −30.5661 25.5384i −1.09095 0.911503i
\(786\) −34.1728 −1.21890
\(787\) 21.0425i 0.750085i 0.927008 + 0.375043i \(0.122372\pi\)
−0.927008 + 0.375043i \(0.877628\pi\)
\(788\) 24.6673i 0.878737i
\(789\) 23.6347 0.841416
\(790\) 31.4621 + 26.2870i 1.11937 + 0.935248i
\(791\) −18.6247 −0.662219
\(792\) 2.61951i 0.0930804i
\(793\) 1.02391i 0.0363602i
\(794\) −0.0722541 −0.00256420
\(795\) 16.7515 20.0494i 0.594115 0.711077i
\(796\) 15.2506 0.540544
\(797\) 7.69130i 0.272440i 0.990679 + 0.136220i \(0.0434954\pi\)
−0.990679 + 0.136220i \(0.956505\pi\)
\(798\) 14.9242i 0.528313i
\(799\) 0.361887 0.0128027
\(800\) −34.7194 + 6.27302i −1.22751 + 0.221785i
\(801\) −10.3109 −0.364319
\(802\) 26.3759i 0.931364i
\(803\) 3.14167i 0.110867i
\(804\) 22.2790 0.785719
\(805\) 5.19701 6.22014i 0.183171 0.219231i
\(806\) −4.21860 −0.148594
\(807\) 9.64340i 0.339464i
\(808\) 4.40758i 0.155058i
\(809\) −49.2709 −1.73227 −0.866137 0.499807i \(-0.833404\pi\)
−0.866137 + 0.499807i \(0.833404\pi\)
\(810\) −3.79903 3.17414i −0.133484 0.111528i
\(811\) −47.2650 −1.65970 −0.829849 0.557988i \(-0.811573\pi\)
−0.829849 + 0.557988i \(0.811573\pi\)
\(812\) 4.08545i 0.143371i
\(813\) 11.5739i 0.405916i
\(814\) 1.36099 0.0477027
\(815\) 6.58926 + 5.50541i 0.230812 + 0.192846i
\(816\) −1.33142 −0.0466091
\(817\) 34.2806i 1.19933i
\(818\) 36.5842i 1.27914i
\(819\) 1.00000 0.0349428
\(820\) 4.39167 5.25625i 0.153364 0.183556i
\(821\) 29.6834 1.03596 0.517979 0.855394i \(-0.326685\pi\)
0.517979 + 0.855394i \(0.326685\pi\)
\(822\) 38.6687i 1.34872i
\(823\) 49.6019i 1.72902i −0.502620 0.864508i \(-0.667630\pi\)
0.502620 0.864508i \(-0.332370\pi\)
\(824\) −24.7342 −0.861656
\(825\) −6.45742 + 1.16671i −0.224819 + 0.0406197i
\(826\) 6.30767 0.219472
\(827\) 7.59316i 0.264040i 0.991247 + 0.132020i \(0.0421463\pi\)
−0.991247 + 0.132020i \(0.957854\pi\)
\(828\) 10.5178i 0.365519i
\(829\) −3.19718 −0.111043 −0.0555214 0.998457i \(-0.517682\pi\)
−0.0555214 + 0.998457i \(0.517682\pi\)
\(830\) −9.34811 + 11.1885i −0.324478 + 0.388357i
\(831\) 3.95685 0.137262
\(832\) 12.8540i 0.445634i
\(833\) 0.961936i 0.0333291i
\(834\) −37.3293 −1.29261
\(835\) −10.5514 8.81585i −0.365147 0.305085i
\(836\) 25.6697 0.887804
\(837\) 1.90547i 0.0658626i
\(838\) 19.2537i 0.665109i
\(839\) 46.6361 1.61006 0.805028 0.593236i \(-0.202150\pi\)
0.805028 + 0.593236i \(0.202150\pi\)
\(840\) −3.42501 2.86164i −0.118174 0.0987361i
\(841\) −27.0175 −0.931637
\(842\) 7.94223i 0.273707i
\(843\) 8.33607i 0.287110i
\(844\) 21.9286 0.754815
\(845\) 1.43370 1.71595i 0.0493209 0.0590306i
\(846\) −0.832902 −0.0286358
\(847\) 9.27762i 0.318783i
\(848\) 16.1720i 0.555350i
\(849\) −12.8317 −0.440382
\(850\) 1.89327 + 10.4787i 0.0649386 + 0.359416i
\(851\) −1.69793 −0.0582042
\(852\) 8.43065i 0.288829i
\(853\) 8.46888i 0.289969i −0.989434 0.144984i \(-0.953687\pi\)
0.989434 0.144984i \(-0.0463132\pi\)
\(854\) 2.26689 0.0775713
\(855\) −9.66462 + 11.5673i −0.330523 + 0.395593i
\(856\) 34.9778 1.19552
\(857\) 12.0676i 0.412220i −0.978529 0.206110i \(-0.933919\pi\)
0.978529 0.206110i \(-0.0660806\pi\)
\(858\) 2.90557i 0.0991945i
\(859\) −11.1054 −0.378911 −0.189455 0.981889i \(-0.560672\pi\)
−0.189455 + 0.981889i \(0.560672\pi\)
\(860\) −25.3197 21.1549i −0.863394 0.721377i
\(861\) −1.05570 −0.0359782
\(862\) 43.6966i 1.48831i
\(863\) 52.4943i 1.78693i −0.449134 0.893464i \(-0.648268\pi\)
0.449134 0.893464i \(-0.351732\pi\)
\(864\) 7.05630 0.240060
\(865\) −30.8577 25.7820i −1.04919 0.876616i
\(866\) −13.9251 −0.473194
\(867\) 16.0747i 0.545925i
\(868\) 5.52881i 0.187660i
\(869\) −10.8687 −0.368697
\(870\) 4.46926 5.34911i 0.151522 0.181352i
\(871\) −7.67831 −0.260169
\(872\) 4.58156i 0.155151i
\(873\) 12.6919i 0.429555i
\(874\) −54.0987 −1.82992
\(875\) 5.52882 9.71762i 0.186908 0.328516i
\(876\) −6.94586 −0.234679
\(877\) 17.8109i 0.601432i 0.953714 + 0.300716i \(0.0972256\pi\)
−0.953714 + 0.300716i \(0.902774\pi\)
\(878\) 11.5746i 0.390622i
\(879\) −24.8191 −0.837127
\(880\) 2.60431 3.11702i 0.0877914 0.105075i
\(881\) 5.08831 0.171429 0.0857147 0.996320i \(-0.472683\pi\)
0.0857147 + 0.996320i \(0.472683\pi\)
\(882\) 2.21394i 0.0745474i
\(883\) 13.4240i 0.451754i 0.974156 + 0.225877i \(0.0725247\pi\)
−0.974156 + 0.225877i \(0.927475\pi\)
\(884\) −2.79111 −0.0938750
\(885\) 4.88886 + 4.08471i 0.164337 + 0.137306i
\(886\) −44.0864 −1.48111
\(887\) 26.2023i 0.879786i −0.898050 0.439893i \(-0.855016\pi\)
0.898050 0.439893i \(-0.144984\pi\)
\(888\) 0.934934i 0.0313743i
\(889\) −19.8495 −0.665731
\(890\) −39.1716 32.7284i −1.31303 1.09706i
\(891\) 1.31239 0.0439669
\(892\) 50.4435i 1.68897i
\(893\) 2.53602i 0.0848647i
\(894\) 4.21889 0.141101
\(895\) 15.4452 18.4858i 0.516275 0.617913i
\(896\) 14.3455 0.479251
\(897\) 3.62489i 0.121032i
\(898\) 14.9689i 0.499517i
\(899\) 2.68294 0.0894811
\(900\) −2.57946 14.2766i −0.0859821 0.475886i
\(901\) 11.2393 0.374437
\(902\) 3.06741i 0.102134i
\(903\) 5.08537i 0.169230i
\(904\) −37.1746 −1.23641
\(905\) 1.04887 1.25536i 0.0348655 0.0417294i
\(906\) −17.1230 −0.568874
\(907\) 17.6095i 0.584714i 0.956309 + 0.292357i \(0.0944396\pi\)
−0.956309 + 0.292357i \(0.905560\pi\)
\(908\) 20.9233i 0.694364i
\(909\) −2.20823 −0.0732423
\(910\) 3.79903 + 3.17414i 0.125936 + 0.105222i
\(911\) 32.1496 1.06516 0.532582 0.846378i \(-0.321222\pi\)
0.532582 + 0.846378i \(0.321222\pi\)
\(912\) 9.33030i 0.308957i
\(913\) 3.86512i 0.127917i
\(914\) −58.6763 −1.94084
\(915\) 1.75699 + 1.46799i 0.0580843 + 0.0485302i
\(916\) 27.1654 0.897571
\(917\) 15.4353i 0.509718i
\(918\) 2.12967i 0.0702897i
\(919\) 41.7527 1.37729 0.688647 0.725096i \(-0.258205\pi\)
0.688647 + 0.725096i \(0.258205\pi\)
\(920\) 10.3731 12.4153i 0.341992 0.409320i
\(921\) −28.2873 −0.932099
\(922\) 22.1059i 0.728019i
\(923\) 2.90557i 0.0956380i
\(924\) 3.80798 0.125273
\(925\) −2.30472 + 0.416412i −0.0757789 + 0.0136916i
\(926\) 62.4437 2.05203
\(927\) 12.3920i 0.407006i
\(928\) 9.93543i 0.326146i
\(929\) 54.1717 1.77732 0.888658 0.458570i \(-0.151638\pi\)
0.888658 + 0.458570i \(0.151638\pi\)
\(930\) 6.04822 7.23893i 0.198329 0.237374i
\(931\) 6.74102 0.220928
\(932\) 11.3743i 0.372578i
\(933\) 5.62324i 0.184097i
\(934\) −18.1576 −0.594134
\(935\) −2.16629 1.80996i −0.0708452 0.0591921i
\(936\) 1.99598 0.0652407
\(937\) 11.6548i 0.380745i −0.981712 0.190372i \(-0.939031\pi\)
0.981712 0.190372i \(-0.0609695\pi\)
\(938\) 16.9993i 0.555048i
\(939\) −11.2246 −0.366300
\(940\) −1.87311 1.56501i −0.0610941 0.0510449i
\(941\) −1.09707 −0.0357634 −0.0178817 0.999840i \(-0.505692\pi\)
−0.0178817 + 0.999840i \(0.505692\pi\)
\(942\) 39.4367i 1.28492i
\(943\) 3.82680i 0.124618i
\(944\) −3.94341 −0.128347
\(945\) −1.43370 + 1.71595i −0.0466383 + 0.0558200i
\(946\) 14.7759 0.480405
\(947\) 8.91437i 0.289678i 0.989455 + 0.144839i \(0.0462665\pi\)
−0.989455 + 0.144839i \(0.953734\pi\)
\(948\) 24.0295i 0.780442i
\(949\) 2.39384 0.0777074
\(950\) −73.4323 + 13.2676i −2.38246 + 0.430457i
\(951\) −4.83778 −0.156876
\(952\) 1.92001i 0.0622278i
\(953\) 17.4179i 0.564222i −0.959382 0.282111i \(-0.908965\pi\)
0.959382 0.282111i \(-0.0910347\pi\)
\(954\) −25.8679 −0.837505
\(955\) 4.89010 5.85281i 0.158240 0.189392i
\(956\) 1.92035 0.0621086
\(957\) 1.84788i 0.0597335i
\(958\) 55.7398i 1.80087i
\(959\) −17.4660 −0.564005
\(960\) 22.0569 + 18.4289i 0.711885 + 0.594789i
\(961\) −27.3692 −0.882877
\(962\) 1.03703i 0.0334352i
\(963\) 17.5241i 0.564707i
\(964\) 20.1029 0.647469
\(965\) −38.6796 32.3173i −1.24514 1.04033i
\(966\) −8.02530 −0.258210
\(967\) 40.0216i 1.28701i 0.765443 + 0.643503i \(0.222520\pi\)
−0.765443 + 0.643503i \(0.777480\pi\)
\(968\) 18.5180i 0.595190i
\(969\) −6.48443 −0.208310
\(970\) 40.2857 48.2167i 1.29350 1.54815i
\(971\) 37.8074 1.21330 0.606648 0.794970i \(-0.292514\pi\)
0.606648 + 0.794970i \(0.292514\pi\)
\(972\) 2.90155i 0.0930673i
\(973\) 16.8610i 0.540539i
\(974\) −30.3851 −0.973602
\(975\) 0.888995 + 4.92033i 0.0284706 + 0.157577i
\(976\) −1.41721 −0.0453637
\(977\) 41.2256i 1.31892i −0.751738 0.659462i \(-0.770784\pi\)
0.751738 0.659462i \(-0.229216\pi\)
\(978\) 8.50154i 0.271849i
\(979\) 13.5320 0.432486
\(980\) −4.15996 + 4.97893i −0.132885 + 0.159046i
\(981\) 2.29539 0.0732863
\(982\) 12.0700i 0.385169i
\(983\) 51.4552i 1.64117i 0.571527 + 0.820583i \(0.306351\pi\)
−0.571527 + 0.820583i \(0.693649\pi\)
\(984\) −2.10716 −0.0671737
\(985\) −14.5881 12.1885i −0.464814 0.388359i
\(986\) 2.99863 0.0954957
\(987\) 0.376207i 0.0119748i
\(988\) 19.5594i 0.622268i
\(989\) −18.4339 −0.586164
\(990\) 4.98582 + 4.16572i 0.158460 + 0.132395i
\(991\) −39.2567 −1.24703 −0.623515 0.781811i \(-0.714296\pi\)
−0.623515 + 0.781811i \(0.714296\pi\)
\(992\) 13.4456i 0.426897i
\(993\) 29.9041i 0.948978i
\(994\) −6.43277 −0.204035
\(995\) 7.53558 9.01910i 0.238894 0.285925i
\(996\) 8.54532 0.270769
\(997\) 9.99230i 0.316459i −0.987402 0.158230i \(-0.949421\pi\)
0.987402 0.158230i \(-0.0505786\pi\)
\(998\) 81.4630i 2.57867i
\(999\) 0.468408 0.0148198
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1365.2.f.d.274.13 yes 16
5.2 odd 4 6825.2.a.bv.1.3 8
5.3 odd 4 6825.2.a.ca.1.6 8
5.4 even 2 inner 1365.2.f.d.274.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1365.2.f.d.274.4 16 5.4 even 2 inner
1365.2.f.d.274.13 yes 16 1.1 even 1 trivial
6825.2.a.bv.1.3 8 5.2 odd 4
6825.2.a.ca.1.6 8 5.3 odd 4