Properties

Label 1360.2.o.d
Level $1360$
Weight $2$
Character orbit 1360.o
Analytic conductor $10.860$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(849,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,20,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{3} q^{3} + ( - \beta_{3} + \beta_{2}) q^{5} - 3 \beta_{3} q^{7} + 5 q^{9} + 2 \beta_1 q^{13} + (2 \beta_1 - 2) q^{15} + ( - 2 \beta_{3} + \beta_1) q^{17} - 2 q^{19} - 12 q^{21} - \beta_{3} q^{23}+ \cdots + (2 \beta_{3} - 2 \beta_{2}) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{9} - 8 q^{15} - 8 q^{19} - 48 q^{21} - 16 q^{25} + 12 q^{35} + 44 q^{49} - 32 q^{51} + 48 q^{59} - 16 q^{69} + 4 q^{81} + 8 q^{85} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 3\zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -2\beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
849.1
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 −2.82843 0 0.707107 2.12132i 0 4.24264 0 5.00000 0
849.2 0 −2.82843 0 0.707107 + 2.12132i 0 4.24264 0 5.00000 0
849.3 0 2.82843 0 −0.707107 2.12132i 0 −4.24264 0 5.00000 0
849.4 0 2.82843 0 −0.707107 + 2.12132i 0 −4.24264 0 5.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
17.b even 2 1 inner
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1360.2.o.d 4
4.b odd 2 1 170.2.d.c 4
5.b even 2 1 inner 1360.2.o.d 4
12.b even 2 1 1530.2.f.h 4
17.b even 2 1 inner 1360.2.o.d 4
20.d odd 2 1 170.2.d.c 4
20.e even 4 1 850.2.b.b 2
20.e even 4 1 850.2.b.g 2
60.h even 2 1 1530.2.f.h 4
68.d odd 2 1 170.2.d.c 4
85.c even 2 1 inner 1360.2.o.d 4
204.h even 2 1 1530.2.f.h 4
340.d odd 2 1 170.2.d.c 4
340.r even 4 1 850.2.b.b 2
340.r even 4 1 850.2.b.g 2
1020.b even 2 1 1530.2.f.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.d.c 4 4.b odd 2 1
170.2.d.c 4 20.d odd 2 1
170.2.d.c 4 68.d odd 2 1
170.2.d.c 4 340.d odd 2 1
850.2.b.b 2 20.e even 4 1
850.2.b.b 2 340.r even 4 1
850.2.b.g 2 20.e even 4 1
850.2.b.g 2 340.r even 4 1
1360.2.o.d 4 1.a even 1 1 trivial
1360.2.o.d 4 5.b even 2 1 inner
1360.2.o.d 4 17.b even 2 1 inner
1360.2.o.d 4 85.c even 2 1 inner
1530.2.f.h 4 12.b even 2 1
1530.2.f.h 4 60.h even 2 1
1530.2.f.h 4 204.h even 2 1
1530.2.f.h 4 1020.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1360, [\chi])\):

\( T_{3}^{2} - 8 \) Copy content Toggle raw display
\( T_{7}^{2} - 18 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 289 \) Copy content Toggle raw display
$19$ \( (T + 2)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( (T - 12)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T - 12)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less