Properties

Label 1360.2.bt.f.1041.1
Level $1360$
Weight $2$
Character 1360.1041
Analytic conductor $10.860$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(81,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bt (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 38 x^{18} + 597 x^{16} + 5004 x^{14} + 24072 x^{12} + 66452 x^{10} + 99328 x^{8} + 70784 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1041.1
Root \(-2.91112i\) of defining polynomial
Character \(\chi\) \(=\) 1360.1041
Dual form 1360.2.bt.f.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05847 + 2.05847i) q^{3} +(-0.707107 + 0.707107i) q^{5} +(-2.82095 - 2.82095i) q^{7} -5.47464i q^{9} +(-4.19898 - 4.19898i) q^{11} -2.09669 q^{13} -2.91112i q^{15} +(3.90859 + 1.31259i) q^{17} +2.76433i q^{19} +11.6137 q^{21} +(4.94663 + 4.94663i) q^{23} -1.00000i q^{25} +(5.09398 + 5.09398i) q^{27} +(-3.23769 + 3.23769i) q^{29} +(2.83189 - 2.83189i) q^{31} +17.2870 q^{33} +3.98942 q^{35} +(1.73551 - 1.73551i) q^{37} +(4.31599 - 4.31599i) q^{39} +(-6.82233 - 6.82233i) q^{41} +8.10856i q^{43} +(3.87115 + 3.87115i) q^{45} -2.89927 q^{47} +8.91549i q^{49} +(-10.7477 + 5.34380i) q^{51} +7.53227i q^{53} +5.93825 q^{55} +(-5.69030 - 5.69030i) q^{57} +5.43616i q^{59} +(-10.1370 - 10.1370i) q^{61} +(-15.4437 + 15.4437i) q^{63} +(1.48259 - 1.48259i) q^{65} +10.9061 q^{67} -20.3650 q^{69} +(2.59393 - 2.59393i) q^{71} +(0.889261 - 0.889261i) q^{73} +(2.05847 + 2.05847i) q^{75} +23.6902i q^{77} +(3.27892 + 3.27892i) q^{79} -4.54775 q^{81} -2.84677i q^{83} +(-3.69194 + 1.83565i) q^{85} -13.3294i q^{87} +13.9998 q^{89} +(5.91466 + 5.91466i) q^{91} +11.6588i q^{93} +(-1.95468 - 1.95468i) q^{95} +(1.92396 - 1.92396i) q^{97} +(-22.9879 + 22.9879i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} - 4 q^{7} - 12 q^{11} + 4 q^{13} + 4 q^{17} + 16 q^{21} + 4 q^{23} + 16 q^{27} - 4 q^{29} + 4 q^{31} + 16 q^{33} + 8 q^{35} - 8 q^{37} + 8 q^{39} - 8 q^{41} - 4 q^{47} + 4 q^{51} + 8 q^{55}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.05847 + 2.05847i −1.18846 + 1.18846i −0.210968 + 0.977493i \(0.567662\pi\)
−0.977493 + 0.210968i \(0.932338\pi\)
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) −2.82095 2.82095i −1.06622 1.06622i −0.997646 0.0685719i \(-0.978156\pi\)
−0.0685719 0.997646i \(-0.521844\pi\)
\(8\) 0 0
\(9\) 5.47464i 1.82488i
\(10\) 0 0
\(11\) −4.19898 4.19898i −1.26604 1.26604i −0.948117 0.317922i \(-0.897015\pi\)
−0.317922 0.948117i \(-0.602985\pi\)
\(12\) 0 0
\(13\) −2.09669 −0.581518 −0.290759 0.956796i \(-0.593908\pi\)
−0.290759 + 0.956796i \(0.593908\pi\)
\(14\) 0 0
\(15\) 2.91112i 0.751649i
\(16\) 0 0
\(17\) 3.90859 + 1.31259i 0.947973 + 0.318351i
\(18\) 0 0
\(19\) 2.76433i 0.634181i 0.948395 + 0.317090i \(0.102706\pi\)
−0.948395 + 0.317090i \(0.897294\pi\)
\(20\) 0 0
\(21\) 11.6137 2.53432
\(22\) 0 0
\(23\) 4.94663 + 4.94663i 1.03144 + 1.03144i 0.999489 + 0.0319542i \(0.0101731\pi\)
0.0319542 + 0.999489i \(0.489827\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 5.09398 + 5.09398i 0.980337 + 0.980337i
\(28\) 0 0
\(29\) −3.23769 + 3.23769i −0.601224 + 0.601224i −0.940637 0.339413i \(-0.889772\pi\)
0.339413 + 0.940637i \(0.389772\pi\)
\(30\) 0 0
\(31\) 2.83189 2.83189i 0.508623 0.508623i −0.405481 0.914104i \(-0.632896\pi\)
0.914104 + 0.405481i \(0.132896\pi\)
\(32\) 0 0
\(33\) 17.2870 3.00928
\(34\) 0 0
\(35\) 3.98942 0.674336
\(36\) 0 0
\(37\) 1.73551 1.73551i 0.285316 0.285316i −0.549909 0.835225i \(-0.685337\pi\)
0.835225 + 0.549909i \(0.185337\pi\)
\(38\) 0 0
\(39\) 4.31599 4.31599i 0.691112 0.691112i
\(40\) 0 0
\(41\) −6.82233 6.82233i −1.06547 1.06547i −0.997701 0.0677679i \(-0.978412\pi\)
−0.0677679 0.997701i \(-0.521588\pi\)
\(42\) 0 0
\(43\) 8.10856i 1.23654i 0.785964 + 0.618272i \(0.212167\pi\)
−0.785964 + 0.618272i \(0.787833\pi\)
\(44\) 0 0
\(45\) 3.87115 + 3.87115i 0.577078 + 0.577078i
\(46\) 0 0
\(47\) −2.89927 −0.422902 −0.211451 0.977389i \(-0.567819\pi\)
−0.211451 + 0.977389i \(0.567819\pi\)
\(48\) 0 0
\(49\) 8.91549i 1.27364i
\(50\) 0 0
\(51\) −10.7477 + 5.34380i −1.50498 + 0.748281i
\(52\) 0 0
\(53\) 7.53227i 1.03464i 0.855793 + 0.517318i \(0.173070\pi\)
−0.855793 + 0.517318i \(0.826930\pi\)
\(54\) 0 0
\(55\) 5.93825 0.800713
\(56\) 0 0
\(57\) −5.69030 5.69030i −0.753699 0.753699i
\(58\) 0 0
\(59\) 5.43616i 0.707727i 0.935297 + 0.353864i \(0.115132\pi\)
−0.935297 + 0.353864i \(0.884868\pi\)
\(60\) 0 0
\(61\) −10.1370 10.1370i −1.29792 1.29792i −0.929767 0.368149i \(-0.879992\pi\)
−0.368149 0.929767i \(-0.620008\pi\)
\(62\) 0 0
\(63\) −15.4437 + 15.4437i −1.94572 + 1.94572i
\(64\) 0 0
\(65\) 1.48259 1.48259i 0.183892 0.183892i
\(66\) 0 0
\(67\) 10.9061 1.33240 0.666198 0.745775i \(-0.267920\pi\)
0.666198 + 0.745775i \(0.267920\pi\)
\(68\) 0 0
\(69\) −20.3650 −2.45166
\(70\) 0 0
\(71\) 2.59393 2.59393i 0.307843 0.307843i −0.536230 0.844072i \(-0.680152\pi\)
0.844072 + 0.536230i \(0.180152\pi\)
\(72\) 0 0
\(73\) 0.889261 0.889261i 0.104080 0.104080i −0.653149 0.757229i \(-0.726553\pi\)
0.757229 + 0.653149i \(0.226553\pi\)
\(74\) 0 0
\(75\) 2.05847 + 2.05847i 0.237692 + 0.237692i
\(76\) 0 0
\(77\) 23.6902i 2.69975i
\(78\) 0 0
\(79\) 3.27892 + 3.27892i 0.368907 + 0.368907i 0.867078 0.498172i \(-0.165995\pi\)
−0.498172 + 0.867078i \(0.665995\pi\)
\(80\) 0 0
\(81\) −4.54775 −0.505306
\(82\) 0 0
\(83\) 2.84677i 0.312473i −0.987720 0.156237i \(-0.950064\pi\)
0.987720 0.156237i \(-0.0499362\pi\)
\(84\) 0 0
\(85\) −3.69194 + 1.83565i −0.400447 + 0.199104i
\(86\) 0 0
\(87\) 13.3294i 1.42906i
\(88\) 0 0
\(89\) 13.9998 1.48397 0.741987 0.670414i \(-0.233883\pi\)
0.741987 + 0.670414i \(0.233883\pi\)
\(90\) 0 0
\(91\) 5.91466 + 5.91466i 0.620025 + 0.620025i
\(92\) 0 0
\(93\) 11.6588i 1.20896i
\(94\) 0 0
\(95\) −1.95468 1.95468i −0.200546 0.200546i
\(96\) 0 0
\(97\) 1.92396 1.92396i 0.195349 0.195349i −0.602654 0.798003i \(-0.705890\pi\)
0.798003 + 0.602654i \(0.205890\pi\)
\(98\) 0 0
\(99\) −22.9879 + 22.9879i −2.31037 + 2.31037i
\(100\) 0 0
\(101\) 11.5378 1.14805 0.574027 0.818837i \(-0.305381\pi\)
0.574027 + 0.818837i \(0.305381\pi\)
\(102\) 0 0
\(103\) −10.1567 −1.00077 −0.500385 0.865803i \(-0.666808\pi\)
−0.500385 + 0.865803i \(0.666808\pi\)
\(104\) 0 0
\(105\) −8.21213 + 8.21213i −0.801422 + 0.801422i
\(106\) 0 0
\(107\) 5.57763 5.57763i 0.539210 0.539210i −0.384087 0.923297i \(-0.625484\pi\)
0.923297 + 0.384087i \(0.125484\pi\)
\(108\) 0 0
\(109\) −1.38413 1.38413i −0.132576 0.132576i 0.637705 0.770281i \(-0.279884\pi\)
−0.770281 + 0.637705i \(0.779884\pi\)
\(110\) 0 0
\(111\) 7.14501i 0.678174i
\(112\) 0 0
\(113\) 14.2440 + 14.2440i 1.33996 + 1.33996i 0.896093 + 0.443866i \(0.146393\pi\)
0.443866 + 0.896093i \(0.353607\pi\)
\(114\) 0 0
\(115\) −6.99559 −0.652342
\(116\) 0 0
\(117\) 11.4786i 1.06120i
\(118\) 0 0
\(119\) −7.32317 14.7287i −0.671314 1.35018i
\(120\) 0 0
\(121\) 24.2628i 2.20571i
\(122\) 0 0
\(123\) 28.0872 2.53254
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 4.63445i 0.411241i 0.978632 + 0.205620i \(0.0659212\pi\)
−0.978632 + 0.205620i \(0.934079\pi\)
\(128\) 0 0
\(129\) −16.6913 16.6913i −1.46958 1.46958i
\(130\) 0 0
\(131\) 13.3285 13.3285i 1.16452 1.16452i 0.181043 0.983475i \(-0.442053\pi\)
0.983475 0.181043i \(-0.0579474\pi\)
\(132\) 0 0
\(133\) 7.79803 7.79803i 0.676175 0.676175i
\(134\) 0 0
\(135\) −7.20398 −0.620020
\(136\) 0 0
\(137\) 0.159296 0.0136096 0.00680479 0.999977i \(-0.497834\pi\)
0.00680479 + 0.999977i \(0.497834\pi\)
\(138\) 0 0
\(139\) 12.1081 12.1081i 1.02699 1.02699i 0.0273687 0.999625i \(-0.491287\pi\)
0.999625 0.0273687i \(-0.00871281\pi\)
\(140\) 0 0
\(141\) 5.96808 5.96808i 0.502603 0.502603i
\(142\) 0 0
\(143\) 8.80397 + 8.80397i 0.736225 + 0.736225i
\(144\) 0 0
\(145\) 4.57879i 0.380248i
\(146\) 0 0
\(147\) −18.3523 18.3523i −1.51367 1.51367i
\(148\) 0 0
\(149\) 3.66668 0.300386 0.150193 0.988657i \(-0.452010\pi\)
0.150193 + 0.988657i \(0.452010\pi\)
\(150\) 0 0
\(151\) 12.9239i 1.05173i 0.850568 + 0.525865i \(0.176258\pi\)
−0.850568 + 0.525865i \(0.823742\pi\)
\(152\) 0 0
\(153\) 7.18598 21.3981i 0.580952 1.72994i
\(154\) 0 0
\(155\) 4.00490i 0.321682i
\(156\) 0 0
\(157\) −4.71806 −0.376542 −0.188271 0.982117i \(-0.560288\pi\)
−0.188271 + 0.982117i \(0.560288\pi\)
\(158\) 0 0
\(159\) −15.5050 15.5050i −1.22963 1.22963i
\(160\) 0 0
\(161\) 27.9084i 2.19949i
\(162\) 0 0
\(163\) 8.67514 + 8.67514i 0.679489 + 0.679489i 0.959885 0.280395i \(-0.0904656\pi\)
−0.280395 + 0.959885i \(0.590466\pi\)
\(164\) 0 0
\(165\) −12.2237 + 12.2237i −0.951617 + 0.951617i
\(166\) 0 0
\(167\) 5.70359 5.70359i 0.441357 0.441357i −0.451111 0.892468i \(-0.648972\pi\)
0.892468 + 0.451111i \(0.148972\pi\)
\(168\) 0 0
\(169\) −8.60388 −0.661837
\(170\) 0 0
\(171\) 15.1337 1.15730
\(172\) 0 0
\(173\) −13.6664 + 13.6664i −1.03904 + 1.03904i −0.0398333 + 0.999206i \(0.512683\pi\)
−0.999206 + 0.0398333i \(0.987317\pi\)
\(174\) 0 0
\(175\) −2.82095 + 2.82095i −0.213244 + 0.213244i
\(176\) 0 0
\(177\) −11.1902 11.1902i −0.841106 0.841106i
\(178\) 0 0
\(179\) 14.7409i 1.10179i 0.834575 + 0.550895i \(0.185713\pi\)
−0.834575 + 0.550895i \(0.814287\pi\)
\(180\) 0 0
\(181\) 4.34077 + 4.34077i 0.322647 + 0.322647i 0.849782 0.527135i \(-0.176734\pi\)
−0.527135 + 0.849782i \(0.676734\pi\)
\(182\) 0 0
\(183\) 41.7337 3.08505
\(184\) 0 0
\(185\) 2.45438i 0.180450i
\(186\) 0 0
\(187\) −10.9005 21.9236i −0.797126 1.60322i
\(188\) 0 0
\(189\) 28.7397i 2.09051i
\(190\) 0 0
\(191\) −9.49122 −0.686761 −0.343380 0.939196i \(-0.611572\pi\)
−0.343380 + 0.939196i \(0.611572\pi\)
\(192\) 0 0
\(193\) 3.18113 + 3.18113i 0.228983 + 0.228983i 0.812268 0.583285i \(-0.198233\pi\)
−0.583285 + 0.812268i \(0.698233\pi\)
\(194\) 0 0
\(195\) 6.10373i 0.437097i
\(196\) 0 0
\(197\) 8.97616 + 8.97616i 0.639525 + 0.639525i 0.950438 0.310913i \(-0.100635\pi\)
−0.310913 + 0.950438i \(0.600635\pi\)
\(198\) 0 0
\(199\) −16.8897 + 16.8897i −1.19728 + 1.19728i −0.222298 + 0.974979i \(0.571356\pi\)
−0.974979 + 0.222298i \(0.928644\pi\)
\(200\) 0 0
\(201\) −22.4500 + 22.4500i −1.58350 + 1.58350i
\(202\) 0 0
\(203\) 18.2667 1.28207
\(204\) 0 0
\(205\) 9.64823 0.673862
\(206\) 0 0
\(207\) 27.0810 27.0810i 1.88226 1.88226i
\(208\) 0 0
\(209\) 11.6074 11.6074i 0.802897 0.802897i
\(210\) 0 0
\(211\) 6.98903 + 6.98903i 0.481145 + 0.481145i 0.905497 0.424352i \(-0.139498\pi\)
−0.424352 + 0.905497i \(0.639498\pi\)
\(212\) 0 0
\(213\) 10.6791i 0.731718i
\(214\) 0 0
\(215\) −5.73362 5.73362i −0.391029 0.391029i
\(216\) 0 0
\(217\) −15.9772 −1.08461
\(218\) 0 0
\(219\) 3.66104i 0.247390i
\(220\) 0 0
\(221\) −8.19512 2.75211i −0.551264 0.185127i
\(222\) 0 0
\(223\) 15.3642i 1.02886i −0.857531 0.514432i \(-0.828003\pi\)
0.857531 0.514432i \(-0.171997\pi\)
\(224\) 0 0
\(225\) −5.47464 −0.364976
\(226\) 0 0
\(227\) 12.9872 + 12.9872i 0.861990 + 0.861990i 0.991569 0.129579i \(-0.0413625\pi\)
−0.129579 + 0.991569i \(0.541363\pi\)
\(228\) 0 0
\(229\) 25.2673i 1.66971i −0.550471 0.834854i \(-0.685552\pi\)
0.550471 0.834854i \(-0.314448\pi\)
\(230\) 0 0
\(231\) −48.7656 48.7656i −3.20854 3.20854i
\(232\) 0 0
\(233\) −6.43800 + 6.43800i −0.421768 + 0.421768i −0.885812 0.464044i \(-0.846398\pi\)
0.464044 + 0.885812i \(0.346398\pi\)
\(234\) 0 0
\(235\) 2.05010 2.05010i 0.133733 0.133733i
\(236\) 0 0
\(237\) −13.4991 −0.876863
\(238\) 0 0
\(239\) 9.90234 0.640529 0.320265 0.947328i \(-0.396228\pi\)
0.320265 + 0.947328i \(0.396228\pi\)
\(240\) 0 0
\(241\) −0.262472 + 0.262472i −0.0169073 + 0.0169073i −0.715510 0.698603i \(-0.753806\pi\)
0.698603 + 0.715510i \(0.253806\pi\)
\(242\) 0 0
\(243\) −5.92051 + 5.92051i −0.379801 + 0.379801i
\(244\) 0 0
\(245\) −6.30421 6.30421i −0.402761 0.402761i
\(246\) 0 0
\(247\) 5.79595i 0.368788i
\(248\) 0 0
\(249\) 5.86000 + 5.86000i 0.371362 + 0.371362i
\(250\) 0 0
\(251\) 24.0817 1.52002 0.760011 0.649911i \(-0.225194\pi\)
0.760011 + 0.649911i \(0.225194\pi\)
\(252\) 0 0
\(253\) 41.5416i 2.61170i
\(254\) 0 0
\(255\) 3.82112 11.3784i 0.239288 0.712543i
\(256\) 0 0
\(257\) 5.67250i 0.353841i 0.984225 + 0.176920i \(0.0566135\pi\)
−0.984225 + 0.176920i \(0.943386\pi\)
\(258\) 0 0
\(259\) −9.79157 −0.608418
\(260\) 0 0
\(261\) 17.7252 + 17.7252i 1.09716 + 1.09716i
\(262\) 0 0
\(263\) 24.0031i 1.48009i −0.672555 0.740047i \(-0.734803\pi\)
0.672555 0.740047i \(-0.265197\pi\)
\(264\) 0 0
\(265\) −5.32612 5.32612i −0.327181 0.327181i
\(266\) 0 0
\(267\) −28.8182 + 28.8182i −1.76365 + 1.76365i
\(268\) 0 0
\(269\) 12.6651 12.6651i 0.772204 0.772204i −0.206288 0.978491i \(-0.566138\pi\)
0.978491 + 0.206288i \(0.0661383\pi\)
\(270\) 0 0
\(271\) −1.45621 −0.0884586 −0.0442293 0.999021i \(-0.514083\pi\)
−0.0442293 + 0.999021i \(0.514083\pi\)
\(272\) 0 0
\(273\) −24.3504 −1.47375
\(274\) 0 0
\(275\) −4.19898 + 4.19898i −0.253208 + 0.253208i
\(276\) 0 0
\(277\) −9.01170 + 9.01170i −0.541460 + 0.541460i −0.923957 0.382497i \(-0.875064\pi\)
0.382497 + 0.923957i \(0.375064\pi\)
\(278\) 0 0
\(279\) −15.5036 15.5036i −0.928176 0.928176i
\(280\) 0 0
\(281\) 15.8563i 0.945908i −0.881087 0.472954i \(-0.843188\pi\)
0.881087 0.472954i \(-0.156812\pi\)
\(282\) 0 0
\(283\) −2.73612 2.73612i −0.162645 0.162645i 0.621092 0.783737i \(-0.286689\pi\)
−0.783737 + 0.621092i \(0.786689\pi\)
\(284\) 0 0
\(285\) 8.04730 0.476681
\(286\) 0 0
\(287\) 38.4909i 2.27204i
\(288\) 0 0
\(289\) 13.5542 + 10.2608i 0.797305 + 0.603576i
\(290\) 0 0
\(291\) 7.92087i 0.464329i
\(292\) 0 0
\(293\) 18.3190 1.07021 0.535104 0.844786i \(-0.320272\pi\)
0.535104 + 0.844786i \(0.320272\pi\)
\(294\) 0 0
\(295\) −3.84394 3.84394i −0.223803 0.223803i
\(296\) 0 0
\(297\) 42.7790i 2.48229i
\(298\) 0 0
\(299\) −10.3716 10.3716i −0.599803 0.599803i
\(300\) 0 0
\(301\) 22.8738 22.8738i 1.31843 1.31843i
\(302\) 0 0
\(303\) −23.7503 + 23.7503i −1.36442 + 1.36442i
\(304\) 0 0
\(305\) 14.3360 0.820874
\(306\) 0 0
\(307\) −6.82114 −0.389303 −0.194651 0.980872i \(-0.562358\pi\)
−0.194651 + 0.980872i \(0.562358\pi\)
\(308\) 0 0
\(309\) 20.9073 20.9073i 1.18938 1.18938i
\(310\) 0 0
\(311\) 9.76974 9.76974i 0.553991 0.553991i −0.373599 0.927590i \(-0.621876\pi\)
0.927590 + 0.373599i \(0.121876\pi\)
\(312\) 0 0
\(313\) 2.55820 + 2.55820i 0.144598 + 0.144598i 0.775700 0.631102i \(-0.217397\pi\)
−0.631102 + 0.775700i \(0.717397\pi\)
\(314\) 0 0
\(315\) 21.8406i 1.23058i
\(316\) 0 0
\(317\) −10.7924 10.7924i −0.606161 0.606161i 0.335780 0.941940i \(-0.391000\pi\)
−0.941940 + 0.335780i \(0.891000\pi\)
\(318\) 0 0
\(319\) 27.1900 1.52235
\(320\) 0 0
\(321\) 22.9628i 1.28166i
\(322\) 0 0
\(323\) −3.62844 + 10.8046i −0.201892 + 0.601186i
\(324\) 0 0
\(325\) 2.09669i 0.116304i
\(326\) 0 0
\(327\) 5.69841 0.315123
\(328\) 0 0
\(329\) 8.17870 + 8.17870i 0.450906 + 0.450906i
\(330\) 0 0
\(331\) 27.3436i 1.50294i 0.659767 + 0.751470i \(0.270655\pi\)
−0.659767 + 0.751470i \(0.729345\pi\)
\(332\) 0 0
\(333\) −9.50129 9.50129i −0.520668 0.520668i
\(334\) 0 0
\(335\) −7.71180 + 7.71180i −0.421341 + 0.421341i
\(336\) 0 0
\(337\) −5.41215 + 5.41215i −0.294818 + 0.294818i −0.838980 0.544162i \(-0.816848\pi\)
0.544162 + 0.838980i \(0.316848\pi\)
\(338\) 0 0
\(339\) −58.6417 −3.18498
\(340\) 0 0
\(341\) −23.7821 −1.28787
\(342\) 0 0
\(343\) 5.40351 5.40351i 0.291762 0.291762i
\(344\) 0 0
\(345\) 14.4002 14.4002i 0.775283 0.775283i
\(346\) 0 0
\(347\) −23.3630 23.3630i −1.25419 1.25419i −0.953824 0.300365i \(-0.902892\pi\)
−0.300365 0.953824i \(-0.597108\pi\)
\(348\) 0 0
\(349\) 0.517999i 0.0277278i 0.999904 + 0.0138639i \(0.00441316\pi\)
−0.999904 + 0.0138639i \(0.995587\pi\)
\(350\) 0 0
\(351\) −10.6805 10.6805i −0.570084 0.570084i
\(352\) 0 0
\(353\) 31.2253 1.66195 0.830976 0.556308i \(-0.187782\pi\)
0.830976 + 0.556308i \(0.187782\pi\)
\(354\) 0 0
\(355\) 3.66837i 0.194697i
\(356\) 0 0
\(357\) 45.3932 + 15.2441i 2.40246 + 0.806802i
\(358\) 0 0
\(359\) 11.6951i 0.617243i −0.951185 0.308622i \(-0.900132\pi\)
0.951185 0.308622i \(-0.0998677\pi\)
\(360\) 0 0
\(361\) 11.3585 0.597815
\(362\) 0 0
\(363\) −49.9444 49.9444i −2.62140 2.62140i
\(364\) 0 0
\(365\) 1.25760i 0.0658260i
\(366\) 0 0
\(367\) −0.454347 0.454347i −0.0237167 0.0237167i 0.695149 0.718866i \(-0.255338\pi\)
−0.718866 + 0.695149i \(0.755338\pi\)
\(368\) 0 0
\(369\) −37.3498 + 37.3498i −1.94435 + 1.94435i
\(370\) 0 0
\(371\) 21.2481 21.2481i 1.10315 1.10315i
\(372\) 0 0
\(373\) −13.9448 −0.722035 −0.361017 0.932559i \(-0.617571\pi\)
−0.361017 + 0.932559i \(0.617571\pi\)
\(374\) 0 0
\(375\) −2.91112 −0.150330
\(376\) 0 0
\(377\) 6.78845 6.78845i 0.349623 0.349623i
\(378\) 0 0
\(379\) 15.0574 15.0574i 0.773447 0.773447i −0.205261 0.978707i \(-0.565804\pi\)
0.978707 + 0.205261i \(0.0658042\pi\)
\(380\) 0 0
\(381\) −9.53989 9.53989i −0.488743 0.488743i
\(382\) 0 0
\(383\) 27.7632i 1.41863i −0.704889 0.709317i \(-0.749003\pi\)
0.704889 0.709317i \(-0.250997\pi\)
\(384\) 0 0
\(385\) −16.7515 16.7515i −0.853735 0.853735i
\(386\) 0 0
\(387\) 44.3914 2.25654
\(388\) 0 0
\(389\) 15.8342i 0.802828i −0.915897 0.401414i \(-0.868519\pi\)
0.915897 0.401414i \(-0.131481\pi\)
\(390\) 0 0
\(391\) 12.8414 + 25.8273i 0.649420 + 1.30614i
\(392\) 0 0
\(393\) 54.8729i 2.76797i
\(394\) 0 0
\(395\) −4.63709 −0.233317
\(396\) 0 0
\(397\) 11.4157 + 11.4157i 0.572936 + 0.572936i 0.932948 0.360012i \(-0.117227\pi\)
−0.360012 + 0.932948i \(0.617227\pi\)
\(398\) 0 0
\(399\) 32.1041i 1.60721i
\(400\) 0 0
\(401\) 1.96450 + 1.96450i 0.0981022 + 0.0981022i 0.754455 0.656352i \(-0.227901\pi\)
−0.656352 + 0.754455i \(0.727901\pi\)
\(402\) 0 0
\(403\) −5.93761 + 5.93761i −0.295774 + 0.295774i
\(404\) 0 0
\(405\) 3.21574 3.21574i 0.159792 0.159792i
\(406\) 0 0
\(407\) −14.5747 −0.722443
\(408\) 0 0
\(409\) −3.92333 −0.193996 −0.0969982 0.995285i \(-0.530924\pi\)
−0.0969982 + 0.995285i \(0.530924\pi\)
\(410\) 0 0
\(411\) −0.327907 + 0.327907i −0.0161745 + 0.0161745i
\(412\) 0 0
\(413\) 15.3351 15.3351i 0.754592 0.754592i
\(414\) 0 0
\(415\) 2.01297 + 2.01297i 0.0988127 + 0.0988127i
\(416\) 0 0
\(417\) 49.8484i 2.44108i
\(418\) 0 0
\(419\) −7.79273 7.79273i −0.380700 0.380700i 0.490654 0.871354i \(-0.336758\pi\)
−0.871354 + 0.490654i \(0.836758\pi\)
\(420\) 0 0
\(421\) −13.7575 −0.670502 −0.335251 0.942129i \(-0.608821\pi\)
−0.335251 + 0.942129i \(0.608821\pi\)
\(422\) 0 0
\(423\) 15.8725i 0.771746i
\(424\) 0 0
\(425\) 1.31259 3.90859i 0.0636702 0.189595i
\(426\) 0 0
\(427\) 57.1922i 2.76772i
\(428\) 0 0
\(429\) −36.2455 −1.74995
\(430\) 0 0
\(431\) 9.54879 + 9.54879i 0.459949 + 0.459949i 0.898639 0.438690i \(-0.144557\pi\)
−0.438690 + 0.898639i \(0.644557\pi\)
\(432\) 0 0
\(433\) 3.19820i 0.153696i −0.997043 0.0768478i \(-0.975514\pi\)
0.997043 0.0768478i \(-0.0244856\pi\)
\(434\) 0 0
\(435\) 9.42532 + 9.42532i 0.451910 + 0.451910i
\(436\) 0 0
\(437\) −13.6741 + 13.6741i −0.654122 + 0.654122i
\(438\) 0 0
\(439\) −14.2608 + 14.2608i −0.680632 + 0.680632i −0.960143 0.279511i \(-0.909828\pi\)
0.279511 + 0.960143i \(0.409828\pi\)
\(440\) 0 0
\(441\) 48.8091 2.32424
\(442\) 0 0
\(443\) −13.4708 −0.640017 −0.320009 0.947415i \(-0.603686\pi\)
−0.320009 + 0.947415i \(0.603686\pi\)
\(444\) 0 0
\(445\) −9.89935 + 9.89935i −0.469274 + 0.469274i
\(446\) 0 0
\(447\) −7.54778 + 7.54778i −0.356998 + 0.356998i
\(448\) 0 0
\(449\) 17.4688 + 17.4688i 0.824402 + 0.824402i 0.986736 0.162334i \(-0.0519022\pi\)
−0.162334 + 0.986736i \(0.551902\pi\)
\(450\) 0 0
\(451\) 57.2936i 2.69785i
\(452\) 0 0
\(453\) −26.6035 26.6035i −1.24994 1.24994i
\(454\) 0 0
\(455\) −8.36460 −0.392138
\(456\) 0 0
\(457\) 0.458058i 0.0214271i 0.999943 + 0.0107135i \(0.00341029\pi\)
−0.999943 + 0.0107135i \(0.996590\pi\)
\(458\) 0 0
\(459\) 13.2240 + 26.5966i 0.617242 + 1.24142i
\(460\) 0 0
\(461\) 32.3110i 1.50487i −0.658664 0.752437i \(-0.728878\pi\)
0.658664 0.752437i \(-0.271122\pi\)
\(462\) 0 0
\(463\) 11.4592 0.532555 0.266278 0.963896i \(-0.414206\pi\)
0.266278 + 0.963896i \(0.414206\pi\)
\(464\) 0 0
\(465\) −8.24399 8.24399i −0.382306 0.382306i
\(466\) 0 0
\(467\) 34.5948i 1.60086i −0.599429 0.800428i \(-0.704606\pi\)
0.599429 0.800428i \(-0.295394\pi\)
\(468\) 0 0
\(469\) −30.7656 30.7656i −1.42063 1.42063i
\(470\) 0 0
\(471\) 9.71200 9.71200i 0.447505 0.447505i
\(472\) 0 0
\(473\) 34.0476 34.0476i 1.56551 1.56551i
\(474\) 0 0
\(475\) 2.76433 0.126836
\(476\) 0 0
\(477\) 41.2365 1.88809
\(478\) 0 0
\(479\) −30.3280 + 30.3280i −1.38572 + 1.38572i −0.551641 + 0.834082i \(0.685998\pi\)
−0.834082 + 0.551641i \(0.814002\pi\)
\(480\) 0 0
\(481\) −3.63883 + 3.63883i −0.165917 + 0.165917i
\(482\) 0 0
\(483\) 57.4487 + 57.4487i 2.61401 + 2.61401i
\(484\) 0 0
\(485\) 2.72090i 0.123550i
\(486\) 0 0
\(487\) −6.53184 6.53184i −0.295986 0.295986i 0.543453 0.839439i \(-0.317116\pi\)
−0.839439 + 0.543453i \(0.817116\pi\)
\(488\) 0 0
\(489\) −35.7151 −1.61509
\(490\) 0 0
\(491\) 16.8643i 0.761074i 0.924766 + 0.380537i \(0.124261\pi\)
−0.924766 + 0.380537i \(0.875739\pi\)
\(492\) 0 0
\(493\) −16.9046 + 8.40504i −0.761345 + 0.378544i
\(494\) 0 0
\(495\) 32.5098i 1.46121i
\(496\) 0 0
\(497\) −14.6347 −0.656455
\(498\) 0 0
\(499\) 5.12740 + 5.12740i 0.229534 + 0.229534i 0.812498 0.582964i \(-0.198107\pi\)
−0.582964 + 0.812498i \(0.698107\pi\)
\(500\) 0 0
\(501\) 23.4814i 1.04907i
\(502\) 0 0
\(503\) 7.43245 + 7.43245i 0.331396 + 0.331396i 0.853117 0.521720i \(-0.174709\pi\)
−0.521720 + 0.853117i \(0.674709\pi\)
\(504\) 0 0
\(505\) −8.15845 + 8.15845i −0.363046 + 0.363046i
\(506\) 0 0
\(507\) 17.7109 17.7109i 0.786567 0.786567i
\(508\) 0 0
\(509\) −22.7759 −1.00953 −0.504763 0.863258i \(-0.668420\pi\)
−0.504763 + 0.863258i \(0.668420\pi\)
\(510\) 0 0
\(511\) −5.01712 −0.221944
\(512\) 0 0
\(513\) −14.0814 + 14.0814i −0.621711 + 0.621711i
\(514\) 0 0
\(515\) 7.18187 7.18187i 0.316471 0.316471i
\(516\) 0 0
\(517\) 12.1740 + 12.1740i 0.535411 + 0.535411i
\(518\) 0 0
\(519\) 56.2640i 2.46972i
\(520\) 0 0
\(521\) −1.57543 1.57543i −0.0690208 0.0690208i 0.671754 0.740775i \(-0.265541\pi\)
−0.740775 + 0.671754i \(0.765541\pi\)
\(522\) 0 0
\(523\) −18.2385 −0.797513 −0.398757 0.917057i \(-0.630558\pi\)
−0.398757 + 0.917057i \(0.630558\pi\)
\(524\) 0 0
\(525\) 11.6137i 0.506863i
\(526\) 0 0
\(527\) 14.7858 7.35159i 0.644082 0.320240i
\(528\) 0 0
\(529\) 25.9383i 1.12775i
\(530\) 0 0
\(531\) 29.7610 1.29152
\(532\) 0 0
\(533\) 14.3043 + 14.3043i 0.619590 + 0.619590i
\(534\) 0 0
\(535\) 7.88796i 0.341026i
\(536\) 0 0
\(537\) −30.3439 30.3439i −1.30943 1.30943i
\(538\) 0 0
\(539\) 37.4359 37.4359i 1.61248 1.61248i
\(540\) 0 0
\(541\) −5.62690 + 5.62690i −0.241919 + 0.241919i −0.817644 0.575724i \(-0.804720\pi\)
0.575724 + 0.817644i \(0.304720\pi\)
\(542\) 0 0
\(543\) −17.8707 −0.766906
\(544\) 0 0
\(545\) 1.95746 0.0838484
\(546\) 0 0
\(547\) −8.47076 + 8.47076i −0.362183 + 0.362183i −0.864616 0.502433i \(-0.832438\pi\)
0.502433 + 0.864616i \(0.332438\pi\)
\(548\) 0 0
\(549\) −55.4967 + 55.4967i −2.36854 + 2.36854i
\(550\) 0 0
\(551\) −8.95005 8.95005i −0.381285 0.381285i
\(552\) 0 0
\(553\) 18.4993i 0.786670i
\(554\) 0 0
\(555\) −5.05228 5.05228i −0.214458 0.214458i
\(556\) 0 0
\(557\) 47.0602 1.99400 0.997002 0.0773775i \(-0.0246547\pi\)
0.997002 + 0.0773775i \(0.0246547\pi\)
\(558\) 0 0
\(559\) 17.0012i 0.719073i
\(560\) 0 0
\(561\) 67.5677 + 22.6908i 2.85271 + 0.958006i
\(562\) 0 0
\(563\) 14.2723i 0.601505i 0.953702 + 0.300752i \(0.0972378\pi\)
−0.953702 + 0.300752i \(0.902762\pi\)
\(564\) 0 0
\(565\) −20.1440 −0.847464
\(566\) 0 0
\(567\) 12.8290 + 12.8290i 0.538766 + 0.538766i
\(568\) 0 0
\(569\) 34.8997i 1.46307i 0.681802 + 0.731537i \(0.261197\pi\)
−0.681802 + 0.731537i \(0.738803\pi\)
\(570\) 0 0
\(571\) −11.6490 11.6490i −0.487494 0.487494i 0.420020 0.907515i \(-0.362023\pi\)
−0.907515 + 0.420020i \(0.862023\pi\)
\(572\) 0 0
\(573\) 19.5374 19.5374i 0.816188 0.816188i
\(574\) 0 0
\(575\) 4.94663 4.94663i 0.206289 0.206289i
\(576\) 0 0
\(577\) 43.2867 1.80205 0.901024 0.433768i \(-0.142816\pi\)
0.901024 + 0.433768i \(0.142816\pi\)
\(578\) 0 0
\(579\) −13.0966 −0.544274
\(580\) 0 0
\(581\) −8.03058 + 8.03058i −0.333165 + 0.333165i
\(582\) 0 0
\(583\) 31.6278 31.6278i 1.30989 1.30989i
\(584\) 0 0
\(585\) −8.11662 8.11662i −0.335581 0.335581i
\(586\) 0 0
\(587\) 15.9381i 0.657835i 0.944359 + 0.328917i \(0.106684\pi\)
−0.944359 + 0.328917i \(0.893316\pi\)
\(588\) 0 0
\(589\) 7.82829 + 7.82829i 0.322559 + 0.322559i
\(590\) 0 0
\(591\) −36.9544 −1.52010
\(592\) 0 0
\(593\) 13.4044i 0.550454i −0.961379 0.275227i \(-0.911247\pi\)
0.961379 0.275227i \(-0.0887530\pi\)
\(594\) 0 0
\(595\) 15.5930 + 5.23649i 0.639252 + 0.214675i
\(596\) 0 0
\(597\) 69.5339i 2.84583i
\(598\) 0 0
\(599\) 32.0456 1.30935 0.654674 0.755911i \(-0.272806\pi\)
0.654674 + 0.755911i \(0.272806\pi\)
\(600\) 0 0
\(601\) −6.15901 6.15901i −0.251231 0.251231i 0.570244 0.821475i \(-0.306849\pi\)
−0.821475 + 0.570244i \(0.806849\pi\)
\(602\) 0 0
\(603\) 59.7072i 2.43146i
\(604\) 0 0
\(605\) −17.1564 17.1564i −0.697506 0.697506i
\(606\) 0 0
\(607\) −4.72727 + 4.72727i −0.191874 + 0.191874i −0.796505 0.604631i \(-0.793320\pi\)
0.604631 + 0.796505i \(0.293320\pi\)
\(608\) 0 0
\(609\) −37.6016 + 37.6016i −1.52369 + 1.52369i
\(610\) 0 0
\(611\) 6.07889 0.245925
\(612\) 0 0
\(613\) −36.4982 −1.47415 −0.737074 0.675812i \(-0.763793\pi\)
−0.737074 + 0.675812i \(0.763793\pi\)
\(614\) 0 0
\(615\) −19.8606 + 19.8606i −0.800858 + 0.800858i
\(616\) 0 0
\(617\) −8.42292 + 8.42292i −0.339094 + 0.339094i −0.856026 0.516932i \(-0.827074\pi\)
0.516932 + 0.856026i \(0.327074\pi\)
\(618\) 0 0
\(619\) −4.71037 4.71037i −0.189326 0.189326i 0.606079 0.795405i \(-0.292742\pi\)
−0.795405 + 0.606079i \(0.792742\pi\)
\(620\) 0 0
\(621\) 50.3961i 2.02232i
\(622\) 0 0
\(623\) −39.4927 39.4927i −1.58224 1.58224i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 47.7869i 1.90842i
\(628\) 0 0
\(629\) 9.06142 4.50538i 0.361303 0.179641i
\(630\) 0 0
\(631\) 10.9619i 0.436388i 0.975905 + 0.218194i \(0.0700166\pi\)
−0.975905 + 0.218194i \(0.929983\pi\)
\(632\) 0 0
\(633\) −28.7735 −1.14364
\(634\) 0 0
\(635\) −3.27705 3.27705i −0.130046 0.130046i
\(636\) 0 0
\(637\) 18.6931i 0.740646i
\(638\) 0 0
\(639\) −14.2008 14.2008i −0.561776 0.561776i
\(640\) 0 0
\(641\) −2.15336 + 2.15336i −0.0850524 + 0.0850524i −0.748353 0.663301i \(-0.769155\pi\)
0.663301 + 0.748353i \(0.269155\pi\)
\(642\) 0 0
\(643\) 3.35423 3.35423i 0.132278 0.132278i −0.637868 0.770146i \(-0.720183\pi\)
0.770146 + 0.637868i \(0.220183\pi\)
\(644\) 0 0
\(645\) 23.6050 0.929447
\(646\) 0 0
\(647\) 40.1686 1.57919 0.789595 0.613629i \(-0.210291\pi\)
0.789595 + 0.613629i \(0.210291\pi\)
\(648\) 0 0
\(649\) 22.8263 22.8263i 0.896010 0.896010i
\(650\) 0 0
\(651\) 32.8888 32.8888i 1.28901 1.28901i
\(652\) 0 0
\(653\) −6.83933 6.83933i −0.267644 0.267644i 0.560506 0.828150i \(-0.310607\pi\)
−0.828150 + 0.560506i \(0.810607\pi\)
\(654\) 0 0
\(655\) 18.8494i 0.736506i
\(656\) 0 0
\(657\) −4.86838 4.86838i −0.189934 0.189934i
\(658\) 0 0
\(659\) 41.3724 1.61164 0.805819 0.592161i \(-0.201725\pi\)
0.805819 + 0.592161i \(0.201725\pi\)
\(660\) 0 0
\(661\) 38.9890i 1.51650i 0.651966 + 0.758248i \(0.273945\pi\)
−0.651966 + 0.758248i \(0.726055\pi\)
\(662\) 0 0
\(663\) 22.5346 11.2043i 0.875171 0.435139i
\(664\) 0 0
\(665\) 11.0281i 0.427651i
\(666\) 0 0
\(667\) −32.0313 −1.24026
\(668\) 0 0
\(669\) 31.6268 + 31.6268i 1.22276 + 1.22276i
\(670\) 0 0
\(671\) 85.1304i 3.28642i
\(672\) 0 0
\(673\) −15.7018 15.7018i −0.605258 0.605258i 0.336445 0.941703i \(-0.390775\pi\)
−0.941703 + 0.336445i \(0.890775\pi\)
\(674\) 0 0
\(675\) 5.09398 5.09398i 0.196067 0.196067i
\(676\) 0 0
\(677\) 8.42888 8.42888i 0.323948 0.323948i −0.526331 0.850279i \(-0.676433\pi\)
0.850279 + 0.526331i \(0.176433\pi\)
\(678\) 0 0
\(679\) −10.8548 −0.416569
\(680\) 0 0
\(681\) −53.4676 −2.04888
\(682\) 0 0
\(683\) −14.2584 + 14.2584i −0.545583 + 0.545583i −0.925160 0.379577i \(-0.876069\pi\)
0.379577 + 0.925160i \(0.376069\pi\)
\(684\) 0 0
\(685\) −0.112639 + 0.112639i −0.00430373 + 0.00430373i
\(686\) 0 0
\(687\) 52.0121 + 52.0121i 1.98438 + 1.98438i
\(688\) 0 0
\(689\) 15.7929i 0.601660i
\(690\) 0 0
\(691\) −13.0060 13.0060i −0.494771 0.494771i 0.415035 0.909806i \(-0.363769\pi\)
−0.909806 + 0.415035i \(0.863769\pi\)
\(692\) 0 0
\(693\) 129.695 4.92671
\(694\) 0 0
\(695\) 17.1234i 0.649528i
\(696\) 0 0
\(697\) −17.7108 35.6207i −0.670843 1.34923i
\(698\) 0 0
\(699\) 26.5049i 1.00251i
\(700\) 0 0
\(701\) 47.4735 1.79305 0.896525 0.442994i \(-0.146084\pi\)
0.896525 + 0.442994i \(0.146084\pi\)
\(702\) 0 0
\(703\) 4.79752 + 4.79752i 0.180942 + 0.180942i
\(704\) 0 0
\(705\) 8.44014i 0.317874i
\(706\) 0 0
\(707\) −32.5475 32.5475i −1.22408 1.22408i
\(708\) 0 0
\(709\) −8.88457 + 8.88457i −0.333667 + 0.333667i −0.853977 0.520310i \(-0.825816\pi\)
0.520310 + 0.853977i \(0.325816\pi\)
\(710\) 0 0
\(711\) 17.9509 17.9509i 0.673211 0.673211i
\(712\) 0 0
\(713\) 28.0167 1.04923
\(714\) 0 0
\(715\) −12.4507 −0.465629
\(716\) 0 0
\(717\) −20.3837 + 20.3837i −0.761244 + 0.761244i
\(718\) 0 0
\(719\) 12.8819 12.8819i 0.480413 0.480413i −0.424850 0.905264i \(-0.639673\pi\)
0.905264 + 0.424850i \(0.139673\pi\)
\(720\) 0 0
\(721\) 28.6515 + 28.6515i 1.06704 + 1.06704i
\(722\) 0 0
\(723\) 1.08059i 0.0401874i
\(724\) 0 0
\(725\) 3.23769 + 3.23769i 0.120245 + 0.120245i
\(726\) 0 0
\(727\) −42.0417 −1.55924 −0.779621 0.626252i \(-0.784588\pi\)
−0.779621 + 0.626252i \(0.784588\pi\)
\(728\) 0 0
\(729\) 38.0177i 1.40806i
\(730\) 0 0
\(731\) −10.6433 + 31.6931i −0.393655 + 1.17221i
\(732\) 0 0
\(733\) 5.75421i 0.212537i 0.994337 + 0.106268i \(0.0338902\pi\)
−0.994337 + 0.106268i \(0.966110\pi\)
\(734\) 0 0
\(735\) 25.9541 0.957331
\(736\) 0 0
\(737\) −45.7946 45.7946i −1.68687 1.68687i
\(738\) 0 0
\(739\) 44.6567i 1.64272i −0.570408 0.821361i \(-0.693215\pi\)
0.570408 0.821361i \(-0.306785\pi\)
\(740\) 0 0
\(741\) 11.9308 + 11.9308i 0.438290 + 0.438290i
\(742\) 0 0
\(743\) 10.0237 10.0237i 0.367733 0.367733i −0.498917 0.866650i \(-0.666269\pi\)
0.866650 + 0.498917i \(0.166269\pi\)
\(744\) 0 0
\(745\) −2.59274 + 2.59274i −0.0949905 + 0.0949905i
\(746\) 0 0
\(747\) −15.5850 −0.570226
\(748\) 0 0
\(749\) −31.4684 −1.14983
\(750\) 0 0
\(751\) 0.387773 0.387773i 0.0141500 0.0141500i −0.699996 0.714146i \(-0.746815\pi\)
0.714146 + 0.699996i \(0.246815\pi\)
\(752\) 0 0
\(753\) −49.5715 + 49.5715i −1.80649 + 1.80649i
\(754\) 0 0
\(755\) −9.13855 9.13855i −0.332586 0.332586i
\(756\) 0 0
\(757\) 5.35045i 0.194466i 0.995262 + 0.0972328i \(0.0309991\pi\)
−0.995262 + 0.0972328i \(0.969001\pi\)
\(758\) 0 0
\(759\) 85.5122 + 85.5122i 3.10390 + 3.10390i
\(760\) 0 0
\(761\) −5.74506 −0.208258 −0.104129 0.994564i \(-0.533206\pi\)
−0.104129 + 0.994564i \(0.533206\pi\)
\(762\) 0 0
\(763\) 7.80913i 0.282710i
\(764\) 0 0
\(765\) 10.0495 + 20.2120i 0.363341 + 0.730767i
\(766\) 0 0
\(767\) 11.3980i 0.411556i
\(768\) 0 0
\(769\) 19.9110 0.718008 0.359004 0.933336i \(-0.383116\pi\)
0.359004 + 0.933336i \(0.383116\pi\)
\(770\) 0 0
\(771\) −11.6767 11.6767i −0.420526 0.420526i
\(772\) 0 0
\(773\) 3.80237i 0.136762i 0.997659 + 0.0683808i \(0.0217833\pi\)
−0.997659 + 0.0683808i \(0.978217\pi\)
\(774\) 0 0
\(775\) −2.83189 2.83189i −0.101725 0.101725i
\(776\) 0 0
\(777\) 20.1557 20.1557i 0.723082 0.723082i
\(778\) 0 0
\(779\) 18.8592 18.8592i 0.675700 0.675700i
\(780\) 0 0
\(781\) −21.7837 −0.779482
\(782\) 0 0
\(783\) −32.9855 −1.17881
\(784\) 0 0
\(785\) 3.33617 3.33617i 0.119073 0.119073i
\(786\) 0 0
\(787\) 7.00665 7.00665i 0.249760 0.249760i −0.571112 0.820872i \(-0.693488\pi\)
0.820872 + 0.571112i \(0.193488\pi\)
\(788\) 0 0
\(789\) 49.4098 + 49.4098i 1.75904 + 1.75904i
\(790\) 0 0
\(791\) 80.3629i 2.85738i
\(792\) 0 0
\(793\) 21.2543 + 21.2543i 0.754762 + 0.754762i
\(794\) 0 0
\(795\) 21.9274 0.777684
\(796\) 0 0
\(797\) 31.9487i 1.13168i 0.824515 + 0.565841i \(0.191448\pi\)
−0.824515 + 0.565841i \(0.808552\pi\)
\(798\) 0 0
\(799\) −11.3321 3.80557i −0.400900 0.134631i
\(800\) 0 0
\(801\) 76.6438i 2.70808i
\(802\) 0 0
\(803\) −7.46797 −0.263539
\(804\) 0 0
\(805\) 19.7342 + 19.7342i 0.695539 + 0.695539i
\(806\) 0 0
\(807\) 52.1415i 1.83547i
\(808\) 0 0
\(809\) −11.2944 11.2944i −0.397092 0.397092i 0.480114 0.877206i \(-0.340595\pi\)
−0.877206 + 0.480114i \(0.840595\pi\)
\(810\) 0 0
\(811\) −32.9954 + 32.9954i −1.15863 + 1.15863i −0.173855 + 0.984771i \(0.555622\pi\)
−0.984771 + 0.173855i \(0.944378\pi\)
\(812\) 0 0
\(813\) 2.99758 2.99758i 0.105130 0.105130i
\(814\) 0 0
\(815\) −12.2685 −0.429747
\(816\) 0 0
\(817\) −22.4147 −0.784192
\(818\) 0 0
\(819\) 32.3806 32.3806i 1.13147 1.13147i
\(820\) 0 0
\(821\) −31.4040 + 31.4040i −1.09601 + 1.09601i −0.101134 + 0.994873i \(0.532247\pi\)
−0.994873 + 0.101134i \(0.967753\pi\)
\(822\) 0 0
\(823\) 8.35292 + 8.35292i 0.291165 + 0.291165i 0.837540 0.546376i \(-0.183993\pi\)
−0.546376 + 0.837540i \(0.683993\pi\)
\(824\) 0 0
\(825\) 17.2870i 0.601855i
\(826\) 0 0
\(827\) 34.2825 + 34.2825i 1.19212 + 1.19212i 0.976471 + 0.215648i \(0.0691863\pi\)
0.215648 + 0.976471i \(0.430814\pi\)
\(828\) 0 0
\(829\) 32.1189 1.11554 0.557768 0.829997i \(-0.311658\pi\)
0.557768 + 0.829997i \(0.311658\pi\)
\(830\) 0 0
\(831\) 37.1007i 1.28701i
\(832\) 0 0
\(833\) −11.7024 + 34.8470i −0.405465 + 1.20738i
\(834\) 0 0
\(835\) 8.06609i 0.279139i
\(836\) 0 0
\(837\) 28.8512 0.997244
\(838\) 0 0
\(839\) 5.02151 + 5.02151i 0.173362 + 0.173362i 0.788455 0.615093i \(-0.210882\pi\)
−0.615093 + 0.788455i \(0.710882\pi\)
\(840\) 0 0
\(841\) 8.03470i 0.277059i
\(842\) 0 0
\(843\) 32.6398 + 32.6398i 1.12417 + 1.12417i
\(844\) 0 0
\(845\) 6.08386 6.08386i 0.209291 0.209291i
\(846\) 0 0
\(847\) 68.4441 68.4441i 2.35177 2.35177i
\(848\) 0 0
\(849\) 11.2645 0.386595
\(850\) 0 0
\(851\) 17.1699 0.588575
\(852\) 0 0
\(853\) −8.61501 + 8.61501i −0.294972 + 0.294972i −0.839041 0.544068i \(-0.816883\pi\)
0.544068 + 0.839041i \(0.316883\pi\)
\(854\) 0 0
\(855\) −10.7011 + 10.7011i −0.365971 + 0.365971i
\(856\) 0 0
\(857\) 14.7705 + 14.7705i 0.504551 + 0.504551i 0.912849 0.408298i \(-0.133878\pi\)
−0.408298 + 0.912849i \(0.633878\pi\)
\(858\) 0 0
\(859\) 7.89536i 0.269386i 0.990887 + 0.134693i \(0.0430049\pi\)
−0.990887 + 0.134693i \(0.956995\pi\)
\(860\) 0 0
\(861\) −79.2325 79.2325i −2.70024 2.70024i
\(862\) 0 0
\(863\) −14.4016 −0.490237 −0.245119 0.969493i \(-0.578827\pi\)
−0.245119 + 0.969493i \(0.578827\pi\)
\(864\) 0 0
\(865\) 19.3273i 0.657146i
\(866\) 0 0
\(867\) −49.0226 + 6.77937i −1.66489 + 0.230240i
\(868\) 0 0
\(869\) 27.5362i 0.934101i
\(870\) 0 0
\(871\) −22.8668 −0.774813
\(872\) 0 0
\(873\) −10.5330 10.5330i −0.356488 0.356488i
\(874\) 0 0
\(875\) 3.98942i 0.134867i
\(876\) 0 0
\(877\) 11.0389 + 11.0389i 0.372757 + 0.372757i 0.868480 0.495724i \(-0.165097\pi\)
−0.495724 + 0.868480i \(0.665097\pi\)
\(878\) 0 0
\(879\) −37.7092 + 37.7092i −1.27190 + 1.27190i
\(880\) 0 0
\(881\) −11.9814 + 11.9814i −0.403663 + 0.403663i −0.879522 0.475858i \(-0.842137\pi\)
0.475858 + 0.879522i \(0.342137\pi\)
\(882\) 0 0
\(883\) 23.3753 0.786642 0.393321 0.919401i \(-0.371326\pi\)
0.393321 + 0.919401i \(0.371326\pi\)
\(884\) 0 0
\(885\) 15.8253 0.531962
\(886\) 0 0
\(887\) −14.8185 + 14.8185i −0.497556 + 0.497556i −0.910676 0.413121i \(-0.864439\pi\)
0.413121 + 0.910676i \(0.364439\pi\)
\(888\) 0 0
\(889\) 13.0735 13.0735i 0.438472 0.438472i
\(890\) 0 0
\(891\) 19.0959 + 19.0959i 0.639736 + 0.639736i
\(892\) 0 0
\(893\) 8.01454i 0.268196i
\(894\) 0 0
\(895\) −10.4234 10.4234i −0.348417 0.348417i
\(896\) 0 0
\(897\) 42.6992 1.42569
\(898\) 0 0
\(899\) 18.3376i 0.611593i
\(900\) 0 0
\(901\) −9.88682 + 29.4406i −0.329378 + 0.980808i
\(902\) 0 0
\(903\) 94.1704i 3.13379i
\(904\) 0 0
\(905\) −6.13877 −0.204060
\(906\) 0 0
\(907\) −32.7366 32.7366i −1.08700 1.08700i −0.995836 0.0911645i \(-0.970941\pi\)
−0.0911645 0.995836i \(-0.529059\pi\)
\(908\) 0 0
\(909\) 63.1653i 2.09506i
\(910\) 0 0
\(911\) 37.7922 + 37.7922i 1.25211 + 1.25211i 0.954771 + 0.297341i \(0.0961000\pi\)
0.297341 + 0.954771i \(0.403900\pi\)
\(912\) 0 0
\(913\) −11.9535 + 11.9535i −0.395603 + 0.395603i
\(914\) 0 0
\(915\) −29.5102 + 29.5102i −0.975577 + 0.975577i
\(916\) 0 0
\(917\) −75.1981 −2.48326
\(918\) 0 0
\(919\) 5.67563 0.187222 0.0936108 0.995609i \(-0.470159\pi\)
0.0936108 + 0.995609i \(0.470159\pi\)
\(920\) 0 0
\(921\) 14.0411 14.0411i 0.462671 0.462671i
\(922\) 0 0
\(923\) −5.43867 + 5.43867i −0.179016 + 0.179016i
\(924\) 0 0
\(925\) −1.73551 1.73551i −0.0570632 0.0570632i
\(926\) 0 0
\(927\) 55.6043i 1.82628i
\(928\) 0 0
\(929\) 38.6326 + 38.6326i 1.26750 + 1.26750i 0.947377 + 0.320119i \(0.103723\pi\)
0.320119 + 0.947377i \(0.396277\pi\)
\(930\) 0 0
\(931\) −24.6454 −0.807719
\(932\) 0 0
\(933\) 40.2215i 1.31679i
\(934\) 0 0
\(935\) 23.2102 + 7.79451i 0.759054 + 0.254908i
\(936\) 0 0
\(937\) 0.717134i 0.0234278i 0.999931 + 0.0117139i \(0.00372873\pi\)
−0.999931 + 0.0117139i \(0.996271\pi\)
\(938\) 0 0
\(939\) −10.5320 −0.343699
\(940\) 0 0
\(941\) −1.45190 1.45190i −0.0473305 0.0473305i 0.683045 0.730376i \(-0.260655\pi\)
−0.730376 + 0.683045i \(0.760655\pi\)
\(942\) 0 0
\(943\) 67.4951i 2.19794i
\(944\) 0 0
\(945\) 20.3220 + 20.3220i 0.661076 + 0.661076i
\(946\) 0 0
\(947\) −17.4393 + 17.4393i −0.566701 + 0.566701i −0.931203 0.364502i \(-0.881239\pi\)
0.364502 + 0.931203i \(0.381239\pi\)
\(948\) 0 0
\(949\) −1.86451 + 1.86451i −0.0605245 + 0.0605245i
\(950\) 0 0
\(951\) 44.4317 1.44080
\(952\) 0 0
\(953\) −8.89683 −0.288197 −0.144098 0.989563i \(-0.546028\pi\)
−0.144098 + 0.989563i \(0.546028\pi\)
\(954\) 0 0
\(955\) 6.71131 6.71131i 0.217173 0.217173i
\(956\) 0 0
\(957\) −55.9699 + 55.9699i −1.80925 + 1.80925i
\(958\) 0 0
\(959\) −0.449366 0.449366i −0.0145108 0.0145108i
\(960\) 0 0
\(961\) 14.9608i 0.482605i
\(962\) 0 0
\(963\) −30.5355 30.5355i −0.983992 0.983992i
\(964\) 0 0
\(965\) −4.49880 −0.144821
\(966\) 0 0
\(967\) 11.9808i 0.385277i 0.981270 + 0.192639i \(0.0617045\pi\)
−0.981270 + 0.192639i \(0.938295\pi\)
\(968\) 0 0
\(969\) −14.7720 29.7101i −0.474545 0.954427i
\(970\) 0 0
\(971\) 6.41275i 0.205795i 0.994692 + 0.102897i \(0.0328114\pi\)
−0.994692 + 0.102897i \(0.967189\pi\)
\(972\) 0 0
\(973\) −68.3125 −2.19000
\(974\) 0 0
\(975\) −4.31599 4.31599i −0.138222 0.138222i
\(976\) 0 0
\(977\) 7.73116i 0.247342i −0.992323 0.123671i \(-0.960533\pi\)
0.992323 0.123671i \(-0.0394667\pi\)
\(978\) 0 0
\(979\) −58.7848 58.7848i −1.87877 1.87877i
\(980\) 0 0
\(981\) −7.57763 + 7.57763i −0.241935 + 0.241935i
\(982\) 0 0
\(983\) −10.6322 + 10.6322i −0.339113 + 0.339113i −0.856034 0.516920i \(-0.827078\pi\)
0.516920 + 0.856034i \(0.327078\pi\)
\(984\) 0 0
\(985\) −12.6942 −0.404471
\(986\) 0 0
\(987\) −33.6713 −1.07177
\(988\) 0 0
\(989\) −40.1100 + 40.1100i −1.27543 + 1.27543i
\(990\) 0 0
\(991\) −2.34983 + 2.34983i −0.0746448 + 0.0746448i −0.743444 0.668799i \(-0.766809\pi\)
0.668799 + 0.743444i \(0.266809\pi\)
\(992\) 0 0
\(993\) −56.2861 56.2861i −1.78619 1.78619i
\(994\) 0 0
\(995\) 23.8856i 0.757224i
\(996\) 0 0
\(997\) 26.2242 + 26.2242i 0.830528 + 0.830528i 0.987589 0.157061i \(-0.0502018\pi\)
−0.157061 + 0.987589i \(0.550202\pi\)
\(998\) 0 0
\(999\) 17.6813 0.559412
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bt.f.1041.1 20
4.3 odd 2 680.2.bd.b.361.10 yes 20
17.13 even 4 inner 1360.2.bt.f.81.1 20
68.47 odd 4 680.2.bd.b.81.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bd.b.81.10 20 68.47 odd 4
680.2.bd.b.361.10 yes 20 4.3 odd 2
1360.2.bt.f.81.1 20 17.13 even 4 inner
1360.2.bt.f.1041.1 20 1.1 even 1 trivial