Properties

Label 1360.1.br.a
Level $1360$
Weight $1$
Character orbit 1360.br
Analytic conductor $0.679$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,1,Mod(319,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 2, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.319"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1360.br (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.491300.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + i q^{5} - i q^{9} + 2 i q^{13} + q^{17} - q^{25} + (i + 1) q^{29} + ( - i + 1) q^{37} + (i - 1) q^{41} + q^{45} + i q^{49} - 2 q^{53} + ( - i + 1) q^{61} - 2 q^{65} + ( - i + 1) q^{73} - q^{81} + \cdots + ( - i + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{17} - 2 q^{25} + 2 q^{29} + 2 q^{37} - 2 q^{41} + 2 q^{45} - 4 q^{53} + 2 q^{61} - 4 q^{65} + 2 q^{73} - 2 q^{81} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(i\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
319.1
1.00000i
1.00000i
0 0 0 1.00000i 0 0 0 1.00000i 0
1279.1 0 0 0 1.00000i 0 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
85.j even 4 1 inner
340.n odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1360.1.br.a 2
4.b odd 2 1 CM 1360.1.br.a 2
5.b even 2 1 1360.1.br.b yes 2
17.c even 4 1 1360.1.br.b yes 2
20.d odd 2 1 1360.1.br.b yes 2
68.f odd 4 1 1360.1.br.b yes 2
85.j even 4 1 inner 1360.1.br.a 2
340.n odd 4 1 inner 1360.1.br.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1360.1.br.a 2 1.a even 1 1 trivial
1360.1.br.a 2 4.b odd 2 1 CM
1360.1.br.a 2 85.j even 4 1 inner
1360.1.br.a 2 340.n odd 4 1 inner
1360.1.br.b yes 2 5.b even 2 1
1360.1.br.b yes 2 17.c even 4 1
1360.1.br.b yes 2 20.d odd 2 1
1360.1.br.b yes 2 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{37}^{2} - 2T_{37} + 2 \) acting on \(S_{1}^{\mathrm{new}}(1360, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
show more
show less