Properties

Label 136.4
Level 136
Weight 4
Dimension 934
Nonzero newspaces 9
Newform subspaces 18
Sturm bound 4608
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 18 \)
Sturm bound: \(4608\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(136))\).

Total New Old
Modular forms 1824 994 830
Cusp forms 1632 934 698
Eisenstein series 192 60 132

Trace form

\( 934 q - 12 q^{2} - 8 q^{3} + 8 q^{4} + 4 q^{5} - 72 q^{6} - 32 q^{7} - 96 q^{8} - 6 q^{9} + 96 q^{10} + 72 q^{11} + 96 q^{12} - 44 q^{13} - 48 q^{14} - 256 q^{15} - 48 q^{16} - 54 q^{17} - 36 q^{18} - 104 q^{19}+ \cdots + 6288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(136))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
136.4.a \(\chi_{136}(1, \cdot)\) 136.4.a.a 2 1
136.4.a.b 3
136.4.a.c 3
136.4.a.d 4
136.4.b \(\chi_{136}(33, \cdot)\) 136.4.b.a 6 1
136.4.b.b 8
136.4.c \(\chi_{136}(69, \cdot)\) 136.4.c.a 24 1
136.4.c.b 24
136.4.h \(\chi_{136}(101, \cdot)\) 136.4.h.a 52 1
136.4.i \(\chi_{136}(13, \cdot)\) 136.4.i.a 104 2
136.4.k \(\chi_{136}(81, \cdot)\) 136.4.k.a 14 2
136.4.k.b 14
136.4.n \(\chi_{136}(9, \cdot)\) 136.4.n.a 24 4
136.4.n.b 28
136.4.o \(\chi_{136}(53, \cdot)\) 136.4.o.a 208 4
136.4.r \(\chi_{136}(7, \cdot)\) None 0 8
136.4.s \(\chi_{136}(3, \cdot)\) 136.4.s.a 8 8
136.4.s.b 8
136.4.s.c 400

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(136))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(136)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 2}\)