Defining parameters
Level: | \( N \) | = | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 9 \) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(4608\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(136))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1824 | 994 | 830 |
Cusp forms | 1632 | 934 | 698 |
Eisenstein series | 192 | 60 | 132 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(136))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(136))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(136)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 2}\)