Properties

Label 1352.4.a.l
Level $1352$
Weight $4$
Character orbit 1352.a
Self dual yes
Analytic conductor $79.771$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,4,Mod(1,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7705823278\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 83x^{3} + 112x^{2} + 804x + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{3} + 2) q^{5} + (\beta_{2} + \beta_1 - 4) q^{7} + (\beta_{4} - \beta_{2} - 2 \beta_1 + 8) q^{9} + (\beta_{4} - \beta_{3} + 2 \beta_1 - 2) q^{11} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots - 2) q^{15}+ \cdots + (5 \beta_{4} + 35 \beta_{3} + \cdots + 542) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} + 9 q^{5} - 17 q^{7} + 36 q^{9} - 4 q^{11} - 19 q^{15} - 29 q^{17} - 46 q^{19} - 113 q^{21} - 90 q^{23} - 14 q^{25} + 177 q^{27} - 196 q^{29} - 84 q^{31} - 352 q^{33} + 77 q^{35} - 327 q^{37}+ \cdots + 2844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 83x^{3} + 112x^{2} + 804x + 144 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 3\nu^{2} - 66\nu + 96 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 77\nu^{2} + 118\nu + 432 ) / 24 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{3} + 5\nu^{2} - 66\nu - 176 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{2} + 34 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{4} + 5\beta_{2} + 66\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 83\beta_{4} + 24\beta_{3} - 67\beta_{2} + 14\beta _1 + 2198 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.78626
4.21876
−0.184491
−2.54428
−8.27625
0 −7.78626 0 7.31325 0 0.135778 0 33.6258 0
1.2 0 −3.21876 0 −9.41803 0 −19.8746 0 −16.6396 0
1.3 0 1.18449 0 18.9843 0 9.32401 0 −25.5970 0
1.4 0 3.54428 0 −10.1595 0 21.9598 0 −14.4381 0
1.5 0 9.27625 0 2.27999 0 −28.5449 0 59.0489 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1352.4.a.l 5
13.b even 2 1 1352.4.a.k 5
13.d odd 4 2 104.4.f.a 10
39.f even 4 2 936.4.c.a 10
52.f even 4 2 208.4.f.e 10
104.j odd 4 2 832.4.f.k 10
104.m even 4 2 832.4.f.l 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.4.f.a 10 13.d odd 4 2
208.4.f.e 10 52.f even 4 2
832.4.f.k 10 104.j odd 4 2
832.4.f.l 10 104.m even 4 2
936.4.c.a 10 39.f even 4 2
1352.4.a.k 5 13.b even 2 1
1352.4.a.l 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1352))\):

\( T_{3}^{5} - 3T_{3}^{4} - 81T_{3}^{3} + 139T_{3}^{2} + 776T_{3} - 976 \) Copy content Toggle raw display
\( T_{5}^{5} - 9T_{5}^{4} - 265T_{5}^{3} + 841T_{5}^{2} + 12824T_{5} - 30288 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 3 T^{4} + \cdots - 976 \) Copy content Toggle raw display
$5$ \( T^{5} - 9 T^{4} + \cdots - 30288 \) Copy content Toggle raw display
$7$ \( T^{5} + 17 T^{4} + \cdots - 15772 \) Copy content Toggle raw display
$11$ \( T^{5} + 4 T^{4} + \cdots + 131072 \) Copy content Toggle raw display
$13$ \( T^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 1264419564 \) Copy content Toggle raw display
$19$ \( T^{5} + 46 T^{4} + \cdots + 148852896 \) Copy content Toggle raw display
$23$ \( T^{5} + 90 T^{4} + \cdots + 786703872 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 77894516736 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 106655862784 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 157797094832 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 67714940928 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 156039593008 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 1378246395812 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 3566476576 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 6732388323936 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 159706376192 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 5761248471808 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 40179792804948 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 41114038915584 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 26292758095872 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 17826052367712 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 195373952257536 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 8511025938432 \) Copy content Toggle raw display
show more
show less