Properties

Label 1352.2.a.k
Level $1352$
Weight $2$
Character orbit 1352.a
Self dual yes
Analytic conductor $10.796$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(1,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.7957743533\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{5} + ( - \beta_{3} + \beta_1 - 1) q^{7} + (2 \beta_{2} + \beta_1 + 1) q^{9} + ( - \beta_{3} + \beta_1 - 1) q^{11} + (2 \beta_1 + 2) q^{15} + (2 \beta_1 - 1) q^{17}+ \cdots + (2 \beta_{3} - 4 \beta_{2} - 2 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 4 q^{5} - 4 q^{7} + 6 q^{9} - 4 q^{11} + 12 q^{15} - 16 q^{19} - 8 q^{21} + 2 q^{23} + 10 q^{25} - 14 q^{27} + 8 q^{29} - 4 q^{31} - 8 q^{33} - 16 q^{35} - 12 q^{37} + 16 q^{41} + 6 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 6\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 2\beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.27743
1.38651
−0.386509
−2.27743
0 −3.27743 0 −2.61023 0 −1.12182 0 7.74153 0
1.2 0 −1.38651 0 −3.44247 0 3.17452 0 −1.07759 0
1.3 0 0.386509 0 3.17452 0 −3.44247 0 −2.85061 0
1.4 0 2.27743 0 −1.12182 0 −2.61023 0 2.18667 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1352.2.a.k 4
4.b odd 2 1 2704.2.a.bd 4
13.b even 2 1 1352.2.a.l 4
13.c even 3 2 1352.2.i.k 8
13.d odd 4 2 1352.2.f.f 8
13.e even 6 2 1352.2.i.l 8
13.f odd 12 2 104.2.o.a 8
13.f odd 12 2 1352.2.o.f 8
39.k even 12 2 936.2.bi.b 8
52.b odd 2 1 2704.2.a.be 4
52.f even 4 2 2704.2.f.q 8
52.l even 12 2 208.2.w.c 8
104.u even 12 2 832.2.w.i 8
104.x odd 12 2 832.2.w.g 8
156.v odd 12 2 1872.2.by.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.o.a 8 13.f odd 12 2
208.2.w.c 8 52.l even 12 2
832.2.w.g 8 104.x odd 12 2
832.2.w.i 8 104.u even 12 2
936.2.bi.b 8 39.k even 12 2
1352.2.a.k 4 1.a even 1 1 trivial
1352.2.a.l 4 13.b even 2 1
1352.2.f.f 8 13.d odd 4 2
1352.2.i.k 8 13.c even 3 2
1352.2.i.l 8 13.e even 6 2
1352.2.o.f 8 13.f odd 12 2
1872.2.by.n 8 156.v odd 12 2
2704.2.a.bd 4 4.b odd 2 1
2704.2.a.be 4 52.b odd 2 1
2704.2.f.q 8 52.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1352))\):

\( T_{3}^{4} + 2T_{3}^{3} - 7T_{3}^{2} - 8T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{4} + 4T_{5}^{3} - 7T_{5}^{2} - 40T_{5} - 32 \) Copy content Toggle raw display
\( T_{7}^{4} + 4T_{7}^{3} - 7T_{7}^{2} - 40T_{7} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 34T^{2} + 97 \) Copy content Toggle raw display
$19$ \( T^{4} + 16 T^{3} + \cdots - 284 \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 61 \) Copy content Toggle raw display
$31$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{4} + 12 T^{3} + \cdots - 299 \) Copy content Toggle raw display
$41$ \( (T^{2} - 8 T + 13)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 6 T^{3} + \cdots + 832 \) Copy content Toggle raw display
$47$ \( T^{4} + 20 T^{3} + \cdots - 368 \) Copy content Toggle raw display
$53$ \( T^{4} - 10 T^{3} + \cdots - 1724 \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots + 208 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots - 947 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots - 236 \) Copy content Toggle raw display
$71$ \( T^{4} + 16 T^{3} + \cdots - 1196 \) Copy content Toggle raw display
$73$ \( T^{4} + 24 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$79$ \( T^{4} - 8 T^{3} + \cdots + 3328 \) Copy content Toggle raw display
$83$ \( T^{4} + 24 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$89$ \( T^{4} + 16 T^{3} + \cdots + 13648 \) Copy content Toggle raw display
$97$ \( T^{4} + 32 T^{3} + \cdots - 7472 \) Copy content Toggle raw display
show more
show less