Properties

Label 1350.5.d.e
Level $1350$
Weight $5$
Character orbit 1350.d
Analytic conductor $139.549$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,5,Mod(701,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.701"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1350.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-32,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(139.549450163\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-33})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} + 289 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 8 q^{4} + ( - \beta_{2} + 1) q^{7} + 8 \beta_1 q^{8} + (\beta_{3} + 9 \beta_1) q^{11} + ( - 4 \beta_{2} - 74) q^{13} + (4 \beta_{3} - \beta_1) q^{14} + 64 q^{16} + ( - 2 \beta_{3} - 24 \beta_1) q^{17}+ \cdots + (8 \beta_{3} + 24 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{4} + 4 q^{7} - 296 q^{13} + 256 q^{16} - 364 q^{19} + 288 q^{22} - 32 q^{28} - 196 q^{31} - 768 q^{34} + 460 q^{37} - 3284 q^{43} + 1824 q^{46} - 96 q^{49} + 2368 q^{52} + 384 q^{58} + 3716 q^{61}+ \cdots + 22084 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 32x^{2} + 289 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} - 30\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -6\nu^{3} + 294\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{2} - 96 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 96 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{2} + 49\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
701.1
4.06202 + 0.707107i
−4.06202 + 0.707107i
4.06202 0.707107i
−4.06202 0.707107i
2.82843i 0 −8.00000 0 0 −47.7442 22.6274i 0 0
701.2 2.82843i 0 −8.00000 0 0 49.7442 22.6274i 0 0
701.3 2.82843i 0 −8.00000 0 0 −47.7442 22.6274i 0 0
701.4 2.82843i 0 −8.00000 0 0 49.7442 22.6274i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.5.d.e yes 4
3.b odd 2 1 inner 1350.5.d.e yes 4
5.b even 2 1 1350.5.d.d 4
5.c odd 4 2 1350.5.b.f 8
15.d odd 2 1 1350.5.d.d 4
15.e even 4 2 1350.5.b.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1350.5.b.f 8 5.c odd 4 2
1350.5.b.f 8 15.e even 4 2
1350.5.d.d 4 5.b even 2 1
1350.5.d.d 4 15.d odd 2 1
1350.5.d.e yes 4 1.a even 1 1 trivial
1350.5.d.e yes 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - 2T_{7} - 2375 \) acting on \(S_{5}^{\mathrm{new}}(1350, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T - 2375)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 3672 T^{2} + 291600 \) Copy content Toggle raw display
$13$ \( (T^{2} + 148 T - 32540)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 18720 T^{2} + 20736 \) Copy content Toggle raw display
$19$ \( (T^{2} + 182 T - 1223)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 54360 T^{2} + 615238416 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 643101348096 \) Copy content Toggle raw display
$31$ \( (T^{2} + 98 T + 25)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 230 T - 521375)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 14368799984400 \) Copy content Toggle raw display
$43$ \( (T^{2} + 1642 T - 475943)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 39805752272400 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 64614781342224 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 2514419118864 \) Copy content Toggle raw display
$61$ \( (T^{2} - 1858 T + 670585)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 3500 T - 2411804)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 23324147522064 \) Copy content Toggle raw display
$73$ \( (T^{2} + 4414 T + 4785313)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8782 T + 9850537)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 110015261081856 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 524452686468624 \) Copy content Toggle raw display
$97$ \( (T^{2} - 11042 T + 30015745)^{2} \) Copy content Toggle raw display
show more
show less