Properties

Label 1350.5.d.b.701.3
Level $1350$
Weight $5$
Character 1350.701
Analytic conductor $139.549$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,5,Mod(701,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.701"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1350.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-32,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(139.549450163\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 701.3
Root \(1.58114 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1350.701
Dual form 1350.5.d.b.701.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843i q^{2} -8.00000 q^{4} -20.0000 q^{7} -22.6274i q^{8} -109.909i q^{11} +137.868 q^{13} -56.5685i q^{14} +64.0000 q^{16} -310.354i q^{17} +245.737 q^{19} +310.868 q^{22} -301.069i q^{23} +389.951i q^{26} +160.000 q^{28} +1350.84i q^{29} +1509.08 q^{31} +181.019i q^{32} +877.815 q^{34} -1947.37 q^{37} +695.048i q^{38} -813.787i q^{41} -2183.58 q^{43} +879.268i q^{44} +851.552 q^{46} +766.476i q^{47} -2001.00 q^{49} -1102.95 q^{52} -2556.32i q^{53} +452.548i q^{56} -3820.76 q^{58} +278.731i q^{59} +3023.52 q^{61} +4268.32i q^{62} -512.000 q^{64} -302.000 q^{67} +2482.84i q^{68} +2629.17i q^{71} -2993.74 q^{73} -5507.98i q^{74} -1965.89 q^{76} +2198.17i q^{77} +6697.07 q^{79} +2301.74 q^{82} +367.449i q^{83} -6176.09i q^{86} -2486.95 q^{88} +6448.51i q^{89} -2757.37 q^{91} +2408.55i q^{92} -2167.92 q^{94} -9962.26 q^{97} -5659.68i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{4} - 80 q^{7} + 172 q^{13} + 256 q^{16} + 224 q^{19} + 864 q^{22} + 640 q^{28} + 3380 q^{31} + 96 q^{34} - 200 q^{37} + 1132 q^{43} - 768 q^{46} - 8004 q^{49} - 1376 q^{52} - 8832 q^{58} - 808 q^{61}+ \cdots - 11768 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843i 0.707107i
\(3\) 0 0
\(4\) −8.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −20.0000 −0.408163 −0.204082 0.978954i \(-0.565421\pi\)
−0.204082 + 0.978954i \(0.565421\pi\)
\(8\) − 22.6274i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) − 109.909i − 0.908335i −0.890916 0.454168i \(-0.849937\pi\)
0.890916 0.454168i \(-0.150063\pi\)
\(12\) 0 0
\(13\) 137.868 0.815789 0.407894 0.913029i \(-0.366263\pi\)
0.407894 + 0.913029i \(0.366263\pi\)
\(14\) − 56.5685i − 0.288615i
\(15\) 0 0
\(16\) 64.0000 0.250000
\(17\) − 310.354i − 1.07389i −0.843617 0.536945i \(-0.819578\pi\)
0.843617 0.536945i \(-0.180422\pi\)
\(18\) 0 0
\(19\) 245.737 0.680711 0.340355 0.940297i \(-0.389453\pi\)
0.340355 + 0.940297i \(0.389453\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 310.868 0.642290
\(23\) − 301.069i − 0.569128i −0.958657 0.284564i \(-0.908151\pi\)
0.958657 0.284564i \(-0.0918489\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 389.951i 0.576850i
\(27\) 0 0
\(28\) 160.000 0.204082
\(29\) 1350.84i 1.60623i 0.595821 + 0.803117i \(0.296827\pi\)
−0.595821 + 0.803117i \(0.703173\pi\)
\(30\) 0 0
\(31\) 1509.08 1.57032 0.785160 0.619292i \(-0.212580\pi\)
0.785160 + 0.619292i \(0.212580\pi\)
\(32\) 181.019i 0.176777i
\(33\) 0 0
\(34\) 877.815 0.759356
\(35\) 0 0
\(36\) 0 0
\(37\) −1947.37 −1.42247 −0.711237 0.702952i \(-0.751865\pi\)
−0.711237 + 0.702952i \(0.751865\pi\)
\(38\) 695.048i 0.481335i
\(39\) 0 0
\(40\) 0 0
\(41\) − 813.787i − 0.484109i −0.970263 0.242054i \(-0.922179\pi\)
0.970263 0.242054i \(-0.0778212\pi\)
\(42\) 0 0
\(43\) −2183.58 −1.18095 −0.590475 0.807056i \(-0.701060\pi\)
−0.590475 + 0.807056i \(0.701060\pi\)
\(44\) 879.268i 0.454168i
\(45\) 0 0
\(46\) 851.552 0.402435
\(47\) 766.476i 0.346979i 0.984836 + 0.173489i \(0.0555042\pi\)
−0.984836 + 0.173489i \(0.944496\pi\)
\(48\) 0 0
\(49\) −2001.00 −0.833403
\(50\) 0 0
\(51\) 0 0
\(52\) −1102.95 −0.407894
\(53\) − 2556.32i − 0.910046i −0.890480 0.455023i \(-0.849631\pi\)
0.890480 0.455023i \(-0.150369\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 452.548i 0.144308i
\(57\) 0 0
\(58\) −3820.76 −1.13578
\(59\) 278.731i 0.0800721i 0.999198 + 0.0400360i \(0.0127473\pi\)
−0.999198 + 0.0400360i \(0.987253\pi\)
\(60\) 0 0
\(61\) 3023.52 0.812557 0.406278 0.913749i \(-0.366826\pi\)
0.406278 + 0.913749i \(0.366826\pi\)
\(62\) 4268.32i 1.11038i
\(63\) 0 0
\(64\) −512.000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −302.000 −0.0672756 −0.0336378 0.999434i \(-0.510709\pi\)
−0.0336378 + 0.999434i \(0.510709\pi\)
\(68\) 2482.84i 0.536945i
\(69\) 0 0
\(70\) 0 0
\(71\) 2629.17i 0.521557i 0.965399 + 0.260779i \(0.0839792\pi\)
−0.965399 + 0.260779i \(0.916021\pi\)
\(72\) 0 0
\(73\) −2993.74 −0.561782 −0.280891 0.959740i \(-0.590630\pi\)
−0.280891 + 0.959740i \(0.590630\pi\)
\(74\) − 5507.98i − 1.00584i
\(75\) 0 0
\(76\) −1965.89 −0.340355
\(77\) 2198.17i 0.370749i
\(78\) 0 0
\(79\) 6697.07 1.07308 0.536538 0.843876i \(-0.319732\pi\)
0.536538 + 0.843876i \(0.319732\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2301.74 0.342317
\(83\) 367.449i 0.0533385i 0.999644 + 0.0266693i \(0.00849010\pi\)
−0.999644 + 0.0266693i \(0.991510\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 6176.09i − 0.835058i
\(87\) 0 0
\(88\) −2486.95 −0.321145
\(89\) 6448.51i 0.814103i 0.913405 + 0.407052i \(0.133443\pi\)
−0.913405 + 0.407052i \(0.866557\pi\)
\(90\) 0 0
\(91\) −2757.37 −0.332975
\(92\) 2408.55i 0.284564i
\(93\) 0 0
\(94\) −2167.92 −0.245351
\(95\) 0 0
\(96\) 0 0
\(97\) −9962.26 −1.05880 −0.529400 0.848372i \(-0.677583\pi\)
−0.529400 + 0.848372i \(0.677583\pi\)
\(98\) − 5659.68i − 0.589305i
\(99\) 0 0
\(100\) 0 0
\(101\) − 8045.41i − 0.788689i −0.918963 0.394344i \(-0.870972\pi\)
0.918963 0.394344i \(-0.129028\pi\)
\(102\) 0 0
\(103\) −4628.11 −0.436243 −0.218122 0.975922i \(-0.569993\pi\)
−0.218122 + 0.975922i \(0.569993\pi\)
\(104\) − 3119.60i − 0.288425i
\(105\) 0 0
\(106\) 7230.36 0.643500
\(107\) − 3810.10i − 0.332789i −0.986059 0.166395i \(-0.946787\pi\)
0.986059 0.166395i \(-0.0532125\pi\)
\(108\) 0 0
\(109\) −8829.10 −0.743128 −0.371564 0.928407i \(-0.621178\pi\)
−0.371564 + 0.928407i \(0.621178\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1280.00 −0.102041
\(113\) − 20397.3i − 1.59741i −0.601724 0.798704i \(-0.705519\pi\)
0.601724 0.798704i \(-0.294481\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 10806.7i − 0.803117i
\(117\) 0 0
\(118\) −788.370 −0.0566195
\(119\) 6207.09i 0.438323i
\(120\) 0 0
\(121\) 2561.11 0.174927
\(122\) 8551.82i 0.574564i
\(123\) 0 0
\(124\) −12072.6 −0.785160
\(125\) 0 0
\(126\) 0 0
\(127\) 7374.67 0.457230 0.228615 0.973517i \(-0.426580\pi\)
0.228615 + 0.973517i \(0.426580\pi\)
\(128\) − 1448.15i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 13516.1i 0.787604i 0.919195 + 0.393802i \(0.128841\pi\)
−0.919195 + 0.393802i \(0.871159\pi\)
\(132\) 0 0
\(133\) −4914.73 −0.277841
\(134\) − 854.185i − 0.0475710i
\(135\) 0 0
\(136\) −7022.52 −0.379678
\(137\) 2252.45i 0.120009i 0.998198 + 0.0600045i \(0.0191115\pi\)
−0.998198 + 0.0600045i \(0.980888\pi\)
\(138\) 0 0
\(139\) −34776.7 −1.79994 −0.899972 0.435948i \(-0.856413\pi\)
−0.899972 + 0.435948i \(0.856413\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7436.41 −0.368797
\(143\) − 15152.9i − 0.741010i
\(144\) 0 0
\(145\) 0 0
\(146\) − 8467.57i − 0.397240i
\(147\) 0 0
\(148\) 15578.9 0.711237
\(149\) − 18040.9i − 0.812616i −0.913736 0.406308i \(-0.866816\pi\)
0.913736 0.406308i \(-0.133184\pi\)
\(150\) 0 0
\(151\) 15746.0 0.690582 0.345291 0.938496i \(-0.387780\pi\)
0.345291 + 0.938496i \(0.387780\pi\)
\(152\) − 5560.39i − 0.240668i
\(153\) 0 0
\(154\) −6217.37 −0.262159
\(155\) 0 0
\(156\) 0 0
\(157\) 37616.4 1.52608 0.763040 0.646351i \(-0.223706\pi\)
0.763040 + 0.646351i \(0.223706\pi\)
\(158\) 18942.2i 0.758780i
\(159\) 0 0
\(160\) 0 0
\(161\) 6021.38i 0.232297i
\(162\) 0 0
\(163\) 1513.09 0.0569493 0.0284746 0.999595i \(-0.490935\pi\)
0.0284746 + 0.999595i \(0.490935\pi\)
\(164\) 6510.29i 0.242054i
\(165\) 0 0
\(166\) −1039.30 −0.0377160
\(167\) − 20610.9i − 0.739032i −0.929224 0.369516i \(-0.879524\pi\)
0.929224 0.369516i \(-0.120476\pi\)
\(168\) 0 0
\(169\) −9553.32 −0.334488
\(170\) 0 0
\(171\) 0 0
\(172\) 17468.6 0.590475
\(173\) − 55591.2i − 1.85743i −0.370789 0.928717i \(-0.620913\pi\)
0.370789 0.928717i \(-0.379087\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 7034.15i − 0.227084i
\(177\) 0 0
\(178\) −18239.1 −0.575658
\(179\) 7524.19i 0.234830i 0.993083 + 0.117415i \(0.0374608\pi\)
−0.993083 + 0.117415i \(0.962539\pi\)
\(180\) 0 0
\(181\) −31763.8 −0.969562 −0.484781 0.874636i \(-0.661101\pi\)
−0.484781 + 0.874636i \(0.661101\pi\)
\(182\) − 7799.01i − 0.235449i
\(183\) 0 0
\(184\) −6812.41 −0.201217
\(185\) 0 0
\(186\) 0 0
\(187\) −34110.6 −0.975453
\(188\) − 6131.81i − 0.173489i
\(189\) 0 0
\(190\) 0 0
\(191\) − 62705.0i − 1.71884i −0.511271 0.859419i \(-0.670825\pi\)
0.511271 0.859419i \(-0.329175\pi\)
\(192\) 0 0
\(193\) 22650.9 0.608094 0.304047 0.952657i \(-0.401662\pi\)
0.304047 + 0.952657i \(0.401662\pi\)
\(194\) − 28177.5i − 0.748685i
\(195\) 0 0
\(196\) 16008.0 0.416701
\(197\) 60169.5i 1.55040i 0.631716 + 0.775200i \(0.282351\pi\)
−0.631716 + 0.775200i \(0.717649\pi\)
\(198\) 0 0
\(199\) −65875.7 −1.66349 −0.831743 0.555160i \(-0.812657\pi\)
−0.831743 + 0.555160i \(0.812657\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 22755.9 0.557687
\(203\) − 27016.9i − 0.655606i
\(204\) 0 0
\(205\) 0 0
\(206\) − 13090.3i − 0.308471i
\(207\) 0 0
\(208\) 8823.57 0.203947
\(209\) − 27008.6i − 0.618314i
\(210\) 0 0
\(211\) −66484.5 −1.49333 −0.746664 0.665201i \(-0.768346\pi\)
−0.746664 + 0.665201i \(0.768346\pi\)
\(212\) 20450.6i 0.455023i
\(213\) 0 0
\(214\) 10776.6 0.235317
\(215\) 0 0
\(216\) 0 0
\(217\) −30181.6 −0.640947
\(218\) − 24972.5i − 0.525471i
\(219\) 0 0
\(220\) 0 0
\(221\) − 42788.1i − 0.876068i
\(222\) 0 0
\(223\) −84740.9 −1.70405 −0.852027 0.523497i \(-0.824627\pi\)
−0.852027 + 0.523497i \(0.824627\pi\)
\(224\) − 3620.39i − 0.0721538i
\(225\) 0 0
\(226\) 57692.3 1.12954
\(227\) − 15941.8i − 0.309375i −0.987963 0.154687i \(-0.950563\pi\)
0.987963 0.154687i \(-0.0494370\pi\)
\(228\) 0 0
\(229\) 73930.4 1.40978 0.704891 0.709315i \(-0.250996\pi\)
0.704891 + 0.709315i \(0.250996\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 30566.1 0.567890
\(233\) 65527.1i 1.20700i 0.797361 + 0.603502i \(0.206229\pi\)
−0.797361 + 0.603502i \(0.793771\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 2229.85i − 0.0400360i
\(237\) 0 0
\(238\) −17556.3 −0.309941
\(239\) 51958.0i 0.909613i 0.890590 + 0.454806i \(0.150291\pi\)
−0.890590 + 0.454806i \(0.849709\pi\)
\(240\) 0 0
\(241\) 32900.8 0.566464 0.283232 0.959051i \(-0.408593\pi\)
0.283232 + 0.959051i \(0.408593\pi\)
\(242\) 7243.91i 0.123692i
\(243\) 0 0
\(244\) −24188.2 −0.406278
\(245\) 0 0
\(246\) 0 0
\(247\) 33879.3 0.555316
\(248\) − 34146.5i − 0.555192i
\(249\) 0 0
\(250\) 0 0
\(251\) − 123616.i − 1.96212i −0.193693 0.981062i \(-0.562046\pi\)
0.193693 0.981062i \(-0.437954\pi\)
\(252\) 0 0
\(253\) −33090.1 −0.516959
\(254\) 20858.7i 0.323311i
\(255\) 0 0
\(256\) 4096.00 0.0625000
\(257\) 21822.4i 0.330397i 0.986260 + 0.165199i \(0.0528265\pi\)
−0.986260 + 0.165199i \(0.947174\pi\)
\(258\) 0 0
\(259\) 38947.3 0.580602
\(260\) 0 0
\(261\) 0 0
\(262\) −38229.2 −0.556920
\(263\) − 93885.8i − 1.35734i −0.734444 0.678670i \(-0.762557\pi\)
0.734444 0.678670i \(-0.237443\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 13901.0i − 0.196463i
\(267\) 0 0
\(268\) 2416.00 0.0336378
\(269\) − 104848.i − 1.44895i −0.689298 0.724477i \(-0.742081\pi\)
0.689298 0.724477i \(-0.257919\pi\)
\(270\) 0 0
\(271\) 33957.6 0.462380 0.231190 0.972909i \(-0.425738\pi\)
0.231190 + 0.972909i \(0.425738\pi\)
\(272\) − 19862.7i − 0.268473i
\(273\) 0 0
\(274\) −6370.89 −0.0848592
\(275\) 0 0
\(276\) 0 0
\(277\) −97542.3 −1.27126 −0.635628 0.771995i \(-0.719259\pi\)
−0.635628 + 0.771995i \(0.719259\pi\)
\(278\) − 98363.4i − 1.27275i
\(279\) 0 0
\(280\) 0 0
\(281\) − 88207.1i − 1.11710i −0.829472 0.558549i \(-0.811358\pi\)
0.829472 0.558549i \(-0.188642\pi\)
\(282\) 0 0
\(283\) −3373.87 −0.0421265 −0.0210633 0.999778i \(-0.506705\pi\)
−0.0210633 + 0.999778i \(0.506705\pi\)
\(284\) − 21033.4i − 0.260779i
\(285\) 0 0
\(286\) 42858.9 0.523973
\(287\) 16275.7i 0.197595i
\(288\) 0 0
\(289\) −12798.9 −0.153242
\(290\) 0 0
\(291\) 0 0
\(292\) 23949.9 0.280891
\(293\) − 147945.i − 1.72331i −0.507490 0.861657i \(-0.669427\pi\)
0.507490 0.861657i \(-0.330573\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 44063.9i 0.502920i
\(297\) 0 0
\(298\) 51027.3 0.574606
\(299\) − 41507.9i − 0.464289i
\(300\) 0 0
\(301\) 43671.5 0.482020
\(302\) 44536.3i 0.488315i
\(303\) 0 0
\(304\) 15727.1 0.170178
\(305\) 0 0
\(306\) 0 0
\(307\) −147577. −1.56583 −0.782913 0.622131i \(-0.786267\pi\)
−0.782913 + 0.622131i \(0.786267\pi\)
\(308\) − 17585.4i − 0.185375i
\(309\) 0 0
\(310\) 0 0
\(311\) 54500.0i 0.563477i 0.959491 + 0.281738i \(0.0909110\pi\)
−0.959491 + 0.281738i \(0.909089\pi\)
\(312\) 0 0
\(313\) 98960.3 1.01012 0.505059 0.863085i \(-0.331471\pi\)
0.505059 + 0.863085i \(0.331471\pi\)
\(314\) 106395.i 1.07910i
\(315\) 0 0
\(316\) −53576.6 −0.536538
\(317\) 20926.8i 0.208250i 0.994564 + 0.104125i \(0.0332042\pi\)
−0.994564 + 0.104125i \(0.966796\pi\)
\(318\) 0 0
\(319\) 148469. 1.45900
\(320\) 0 0
\(321\) 0 0
\(322\) −17031.0 −0.164259
\(323\) − 76265.5i − 0.731009i
\(324\) 0 0
\(325\) 0 0
\(326\) 4279.65i 0.0402692i
\(327\) 0 0
\(328\) −18413.9 −0.171158
\(329\) − 15329.5i − 0.141624i
\(330\) 0 0
\(331\) −139684. −1.27494 −0.637470 0.770475i \(-0.720019\pi\)
−0.637470 + 0.770475i \(0.720019\pi\)
\(332\) − 2939.59i − 0.0266693i
\(333\) 0 0
\(334\) 58296.3 0.522574
\(335\) 0 0
\(336\) 0 0
\(337\) 16542.7 0.145662 0.0728311 0.997344i \(-0.476797\pi\)
0.0728311 + 0.997344i \(0.476797\pi\)
\(338\) − 27020.9i − 0.236519i
\(339\) 0 0
\(340\) 0 0
\(341\) − 165861.i − 1.42638i
\(342\) 0 0
\(343\) 88040.0 0.748328
\(344\) 49408.7i 0.417529i
\(345\) 0 0
\(346\) 157236. 1.31340
\(347\) 153854.i 1.27776i 0.769305 + 0.638882i \(0.220603\pi\)
−0.769305 + 0.638882i \(0.779397\pi\)
\(348\) 0 0
\(349\) 96083.9 0.788860 0.394430 0.918926i \(-0.370942\pi\)
0.394430 + 0.918926i \(0.370942\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19895.6 0.160572
\(353\) − 4899.48i − 0.0393189i −0.999807 0.0196594i \(-0.993742\pi\)
0.999807 0.0196594i \(-0.00625820\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 51588.1i − 0.407052i
\(357\) 0 0
\(358\) −21281.6 −0.166050
\(359\) 141577.i 1.09851i 0.835654 + 0.549256i \(0.185089\pi\)
−0.835654 + 0.549256i \(0.814911\pi\)
\(360\) 0 0
\(361\) −69934.5 −0.536633
\(362\) − 89841.6i − 0.685584i
\(363\) 0 0
\(364\) 22058.9 0.166488
\(365\) 0 0
\(366\) 0 0
\(367\) 27267.4 0.202447 0.101224 0.994864i \(-0.467724\pi\)
0.101224 + 0.994864i \(0.467724\pi\)
\(368\) − 19268.4i − 0.142282i
\(369\) 0 0
\(370\) 0 0
\(371\) 51126.4i 0.371447i
\(372\) 0 0
\(373\) −231918. −1.66692 −0.833462 0.552577i \(-0.813645\pi\)
−0.833462 + 0.552577i \(0.813645\pi\)
\(374\) − 96479.4i − 0.689749i
\(375\) 0 0
\(376\) 17343.4 0.122676
\(377\) 186238.i 1.31035i
\(378\) 0 0
\(379\) 163207. 1.13622 0.568108 0.822954i \(-0.307676\pi\)
0.568108 + 0.822954i \(0.307676\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 177356. 1.21540
\(383\) − 255232.i − 1.73996i −0.493091 0.869978i \(-0.664133\pi\)
0.493091 0.869978i \(-0.335867\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 64066.4i 0.429988i
\(387\) 0 0
\(388\) 79698.1 0.529400
\(389\) − 209273.i − 1.38297i −0.722389 0.691487i \(-0.756956\pi\)
0.722389 0.691487i \(-0.243044\pi\)
\(390\) 0 0
\(391\) −93438.1 −0.611182
\(392\) 45277.5i 0.294652i
\(393\) 0 0
\(394\) −170185. −1.09630
\(395\) 0 0
\(396\) 0 0
\(397\) 93872.0 0.595600 0.297800 0.954628i \(-0.403747\pi\)
0.297800 + 0.954628i \(0.403747\pi\)
\(398\) − 186325.i − 1.17626i
\(399\) 0 0
\(400\) 0 0
\(401\) − 180410.i − 1.12195i −0.827833 0.560974i \(-0.810427\pi\)
0.827833 0.560974i \(-0.189573\pi\)
\(402\) 0 0
\(403\) 208054. 1.28105
\(404\) 64363.3i 0.394344i
\(405\) 0 0
\(406\) 76415.2 0.463583
\(407\) 214032.i 1.29208i
\(408\) 0 0
\(409\) 39669.6 0.237143 0.118572 0.992945i \(-0.462168\pi\)
0.118572 + 0.992945i \(0.462168\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 37024.9 0.218122
\(413\) − 5574.62i − 0.0326825i
\(414\) 0 0
\(415\) 0 0
\(416\) 24956.8i 0.144212i
\(417\) 0 0
\(418\) 76391.7 0.437214
\(419\) 56877.2i 0.323974i 0.986793 + 0.161987i \(0.0517903\pi\)
−0.986793 + 0.161987i \(0.948210\pi\)
\(420\) 0 0
\(421\) −223978. −1.26369 −0.631845 0.775095i \(-0.717702\pi\)
−0.631845 + 0.775095i \(0.717702\pi\)
\(422\) − 188047.i − 1.05594i
\(423\) 0 0
\(424\) −57842.9 −0.321750
\(425\) 0 0
\(426\) 0 0
\(427\) −60470.5 −0.331656
\(428\) 30480.8i 0.166395i
\(429\) 0 0
\(430\) 0 0
\(431\) − 158431.i − 0.852875i −0.904517 0.426438i \(-0.859768\pi\)
0.904517 0.426438i \(-0.140232\pi\)
\(432\) 0 0
\(433\) 94181.0 0.502328 0.251164 0.967945i \(-0.419187\pi\)
0.251164 + 0.967945i \(0.419187\pi\)
\(434\) − 85366.4i − 0.453218i
\(435\) 0 0
\(436\) 70632.8 0.371564
\(437\) − 73983.7i − 0.387412i
\(438\) 0 0
\(439\) −293847. −1.52473 −0.762365 0.647148i \(-0.775962\pi\)
−0.762365 + 0.647148i \(0.775962\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 121023. 0.619474
\(443\) − 57235.5i − 0.291647i −0.989311 0.145824i \(-0.953417\pi\)
0.989311 0.145824i \(-0.0465832\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 239684.i − 1.20495i
\(447\) 0 0
\(448\) 10240.0 0.0510204
\(449\) 201872.i 1.00134i 0.865637 + 0.500672i \(0.166914\pi\)
−0.865637 + 0.500672i \(0.833086\pi\)
\(450\) 0 0
\(451\) −89442.1 −0.439733
\(452\) 163178.i 0.798704i
\(453\) 0 0
\(454\) 45090.1 0.218761
\(455\) 0 0
\(456\) 0 0
\(457\) 124221. 0.594789 0.297395 0.954755i \(-0.403882\pi\)
0.297395 + 0.954755i \(0.403882\pi\)
\(458\) 209107.i 0.996867i
\(459\) 0 0
\(460\) 0 0
\(461\) − 190748.i − 0.897548i −0.893645 0.448774i \(-0.851861\pi\)
0.893645 0.448774i \(-0.148139\pi\)
\(462\) 0 0
\(463\) 109479. 0.510704 0.255352 0.966848i \(-0.417809\pi\)
0.255352 + 0.966848i \(0.417809\pi\)
\(464\) 86454.0i 0.401559i
\(465\) 0 0
\(466\) −185339. −0.853481
\(467\) − 173847.i − 0.797140i −0.917138 0.398570i \(-0.869507\pi\)
0.917138 0.398570i \(-0.130493\pi\)
\(468\) 0 0
\(469\) 6040.00 0.0274594
\(470\) 0 0
\(471\) 0 0
\(472\) 6306.96 0.0283098
\(473\) 239994.i 1.07270i
\(474\) 0 0
\(475\) 0 0
\(476\) − 49656.7i − 0.219161i
\(477\) 0 0
\(478\) −146959. −0.643193
\(479\) − 92549.8i − 0.403371i −0.979450 0.201685i \(-0.935358\pi\)
0.979450 0.201685i \(-0.0646418\pi\)
\(480\) 0 0
\(481\) −268480. −1.16044
\(482\) 93057.5i 0.400550i
\(483\) 0 0
\(484\) −20488.9 −0.0874636
\(485\) 0 0
\(486\) 0 0
\(487\) −356922. −1.50493 −0.752463 0.658635i \(-0.771134\pi\)
−0.752463 + 0.658635i \(0.771134\pi\)
\(488\) − 68414.5i − 0.287282i
\(489\) 0 0
\(490\) 0 0
\(491\) 415365.i 1.72293i 0.507821 + 0.861463i \(0.330451\pi\)
−0.507821 + 0.861463i \(0.669549\pi\)
\(492\) 0 0
\(493\) 419240. 1.72492
\(494\) 95825.1i 0.392668i
\(495\) 0 0
\(496\) 96581.0 0.392580
\(497\) − 52583.4i − 0.212880i
\(498\) 0 0
\(499\) 353939. 1.42144 0.710719 0.703476i \(-0.248370\pi\)
0.710719 + 0.703476i \(0.248370\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 349638. 1.38743
\(503\) 116774.i 0.461539i 0.973008 + 0.230770i \(0.0741244\pi\)
−0.973008 + 0.230770i \(0.925876\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 93592.8i − 0.365545i
\(507\) 0 0
\(508\) −58997.4 −0.228615
\(509\) − 296669.i − 1.14508i −0.819876 0.572541i \(-0.805958\pi\)
0.819876 0.572541i \(-0.194042\pi\)
\(510\) 0 0
\(511\) 59874.7 0.229299
\(512\) 11585.2i 0.0441942i
\(513\) 0 0
\(514\) −61723.1 −0.233626
\(515\) 0 0
\(516\) 0 0
\(517\) 84242.3 0.315173
\(518\) 110160.i 0.410547i
\(519\) 0 0
\(520\) 0 0
\(521\) 19300.7i 0.0711045i 0.999368 + 0.0355523i \(0.0113190\pi\)
−0.999368 + 0.0355523i \(0.988681\pi\)
\(522\) 0 0
\(523\) 59751.6 0.218447 0.109223 0.994017i \(-0.465164\pi\)
0.109223 + 0.994017i \(0.465164\pi\)
\(524\) − 108129.i − 0.393802i
\(525\) 0 0
\(526\) 265549. 0.959784
\(527\) − 468349.i − 1.68635i
\(528\) 0 0
\(529\) 189198. 0.676093
\(530\) 0 0
\(531\) 0 0
\(532\) 39317.9 0.138921
\(533\) − 112195.i − 0.394931i
\(534\) 0 0
\(535\) 0 0
\(536\) 6833.48i 0.0237855i
\(537\) 0 0
\(538\) 296554. 1.02457
\(539\) 219927.i 0.757009i
\(540\) 0 0
\(541\) −286545. −0.979034 −0.489517 0.871994i \(-0.662827\pi\)
−0.489517 + 0.871994i \(0.662827\pi\)
\(542\) 96046.7i 0.326952i
\(543\) 0 0
\(544\) 56180.2 0.189839
\(545\) 0 0
\(546\) 0 0
\(547\) −238579. −0.797366 −0.398683 0.917089i \(-0.630533\pi\)
−0.398683 + 0.917089i \(0.630533\pi\)
\(548\) − 18019.6i − 0.0600045i
\(549\) 0 0
\(550\) 0 0
\(551\) 331952.i 1.09338i
\(552\) 0 0
\(553\) −133941. −0.437990
\(554\) − 275891.i − 0.898914i
\(555\) 0 0
\(556\) 278214. 0.899972
\(557\) 425747.i 1.37227i 0.727472 + 0.686137i \(0.240695\pi\)
−0.727472 + 0.686137i \(0.759305\pi\)
\(558\) 0 0
\(559\) −301046. −0.963406
\(560\) 0 0
\(561\) 0 0
\(562\) 249487. 0.789907
\(563\) − 530975.i − 1.67516i −0.546312 0.837582i \(-0.683969\pi\)
0.546312 0.837582i \(-0.316031\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 9542.75i − 0.0297880i
\(567\) 0 0
\(568\) 59491.3 0.184398
\(569\) 54492.4i 0.168311i 0.996453 + 0.0841553i \(0.0268192\pi\)
−0.996453 + 0.0841553i \(0.973181\pi\)
\(570\) 0 0
\(571\) 95526.6 0.292989 0.146495 0.989211i \(-0.453201\pi\)
0.146495 + 0.989211i \(0.453201\pi\)
\(572\) 121223.i 0.370505i
\(573\) 0 0
\(574\) −46034.7 −0.139721
\(575\) 0 0
\(576\) 0 0
\(577\) −643813. −1.93378 −0.966892 0.255187i \(-0.917863\pi\)
−0.966892 + 0.255187i \(0.917863\pi\)
\(578\) − 36200.7i − 0.108358i
\(579\) 0 0
\(580\) 0 0
\(581\) − 7348.98i − 0.0217708i
\(582\) 0 0
\(583\) −280961. −0.826627
\(584\) 67740.5i 0.198620i
\(585\) 0 0
\(586\) 418451. 1.21857
\(587\) − 414403.i − 1.20267i −0.798996 0.601336i \(-0.794635\pi\)
0.798996 0.601336i \(-0.205365\pi\)
\(588\) 0 0
\(589\) 370836. 1.06893
\(590\) 0 0
\(591\) 0 0
\(592\) −124631. −0.355618
\(593\) 507625.i 1.44355i 0.692125 + 0.721777i \(0.256675\pi\)
−0.692125 + 0.721777i \(0.743325\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 144327.i 0.406308i
\(597\) 0 0
\(598\) 117402. 0.328302
\(599\) 256614.i 0.715199i 0.933875 + 0.357600i \(0.116405\pi\)
−0.933875 + 0.357600i \(0.883595\pi\)
\(600\) 0 0
\(601\) −429439. −1.18892 −0.594460 0.804126i \(-0.702634\pi\)
−0.594460 + 0.804126i \(0.702634\pi\)
\(602\) 123522.i 0.340840i
\(603\) 0 0
\(604\) −125968. −0.345291
\(605\) 0 0
\(606\) 0 0
\(607\) 121093. 0.328657 0.164329 0.986406i \(-0.447454\pi\)
0.164329 + 0.986406i \(0.447454\pi\)
\(608\) 44483.1i 0.120334i
\(609\) 0 0
\(610\) 0 0
\(611\) 105673.i 0.283061i
\(612\) 0 0
\(613\) −478350. −1.27299 −0.636495 0.771281i \(-0.719616\pi\)
−0.636495 + 0.771281i \(0.719616\pi\)
\(614\) − 417412.i − 1.10721i
\(615\) 0 0
\(616\) 49738.9 0.131080
\(617\) − 373275.i − 0.980524i −0.871575 0.490262i \(-0.836901\pi\)
0.871575 0.490262i \(-0.163099\pi\)
\(618\) 0 0
\(619\) −459667. −1.19967 −0.599835 0.800123i \(-0.704767\pi\)
−0.599835 + 0.800123i \(0.704767\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −154149. −0.398438
\(623\) − 128970.i − 0.332287i
\(624\) 0 0
\(625\) 0 0
\(626\) 279902.i 0.714262i
\(627\) 0 0
\(628\) −300931. −0.763040
\(629\) 604374.i 1.52758i
\(630\) 0 0
\(631\) −299678. −0.752655 −0.376328 0.926487i \(-0.622813\pi\)
−0.376328 + 0.926487i \(0.622813\pi\)
\(632\) − 151537.i − 0.379390i
\(633\) 0 0
\(634\) −59189.9 −0.147255
\(635\) 0 0
\(636\) 0 0
\(637\) −275875. −0.679881
\(638\) 419934.i 1.03167i
\(639\) 0 0
\(640\) 0 0
\(641\) 688194.i 1.67492i 0.546496 + 0.837462i \(0.315961\pi\)
−0.546496 + 0.837462i \(0.684039\pi\)
\(642\) 0 0
\(643\) −664047. −1.60612 −0.803058 0.595901i \(-0.796795\pi\)
−0.803058 + 0.595901i \(0.796795\pi\)
\(644\) − 48171.0i − 0.116149i
\(645\) 0 0
\(646\) 215711. 0.516902
\(647\) − 771328.i − 1.84260i −0.388856 0.921299i \(-0.627130\pi\)
0.388856 0.921299i \(-0.372870\pi\)
\(648\) 0 0
\(649\) 30634.9 0.0727323
\(650\) 0 0
\(651\) 0 0
\(652\) −12104.7 −0.0284746
\(653\) 404203.i 0.947923i 0.880545 + 0.473962i \(0.157177\pi\)
−0.880545 + 0.473962i \(0.842823\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 52082.4i − 0.121027i
\(657\) 0 0
\(658\) 43358.4 0.100143
\(659\) − 708853.i − 1.63225i −0.577878 0.816123i \(-0.696119\pi\)
0.577878 0.816123i \(-0.303881\pi\)
\(660\) 0 0
\(661\) 427048. 0.977404 0.488702 0.872451i \(-0.337471\pi\)
0.488702 + 0.872451i \(0.337471\pi\)
\(662\) − 395085.i − 0.901519i
\(663\) 0 0
\(664\) 8314.42 0.0188580
\(665\) 0 0
\(666\) 0 0
\(667\) 406697. 0.914154
\(668\) 164887.i 0.369516i
\(669\) 0 0
\(670\) 0 0
\(671\) − 332311.i − 0.738074i
\(672\) 0 0
\(673\) −380564. −0.840228 −0.420114 0.907471i \(-0.638010\pi\)
−0.420114 + 0.907471i \(0.638010\pi\)
\(674\) 46789.8i 0.102999i
\(675\) 0 0
\(676\) 76426.6 0.167244
\(677\) 390917.i 0.852919i 0.904507 + 0.426459i \(0.140239\pi\)
−0.904507 + 0.426459i \(0.859761\pi\)
\(678\) 0 0
\(679\) 199245. 0.432164
\(680\) 0 0
\(681\) 0 0
\(682\) 469125. 1.00860
\(683\) 767834.i 1.64598i 0.568052 + 0.822992i \(0.307697\pi\)
−0.568052 + 0.822992i \(0.692303\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 249015.i 0.529148i
\(687\) 0 0
\(688\) −139749. −0.295238
\(689\) − 352435.i − 0.742406i
\(690\) 0 0
\(691\) 376742. 0.789019 0.394510 0.918892i \(-0.370915\pi\)
0.394510 + 0.918892i \(0.370915\pi\)
\(692\) 444729.i 0.928717i
\(693\) 0 0
\(694\) −435166. −0.903516
\(695\) 0 0
\(696\) 0 0
\(697\) −252562. −0.519880
\(698\) 271766.i 0.557808i
\(699\) 0 0
\(700\) 0 0
\(701\) − 499780.i − 1.01705i −0.861047 0.508526i \(-0.830191\pi\)
0.861047 0.508526i \(-0.169809\pi\)
\(702\) 0 0
\(703\) −478539. −0.968294
\(704\) 56273.2i 0.113542i
\(705\) 0 0
\(706\) 13857.8 0.0278026
\(707\) 160908.i 0.321914i
\(708\) 0 0
\(709\) 307648. 0.612013 0.306007 0.952029i \(-0.401007\pi\)
0.306007 + 0.952029i \(0.401007\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 145913. 0.287829
\(713\) − 454337.i − 0.893714i
\(714\) 0 0
\(715\) 0 0
\(716\) − 60193.6i − 0.117415i
\(717\) 0 0
\(718\) −400441. −0.776765
\(719\) 376870.i 0.729010i 0.931201 + 0.364505i \(0.118762\pi\)
−0.931201 + 0.364505i \(0.881238\pi\)
\(720\) 0 0
\(721\) 92562.1 0.178059
\(722\) − 197805.i − 0.379457i
\(723\) 0 0
\(724\) 254111. 0.484781
\(725\) 0 0
\(726\) 0 0
\(727\) −647353. −1.22482 −0.612410 0.790541i \(-0.709800\pi\)
−0.612410 + 0.790541i \(0.709800\pi\)
\(728\) 62392.1i 0.117724i
\(729\) 0 0
\(730\) 0 0
\(731\) 677683.i 1.26821i
\(732\) 0 0
\(733\) 329866. 0.613944 0.306972 0.951718i \(-0.400684\pi\)
0.306972 + 0.951718i \(0.400684\pi\)
\(734\) 77124.0i 0.143152i
\(735\) 0 0
\(736\) 54499.3 0.100609
\(737\) 33192.4i 0.0611088i
\(738\) 0 0
\(739\) 257939. 0.472311 0.236155 0.971715i \(-0.424113\pi\)
0.236155 + 0.971715i \(0.424113\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −144607. −0.262653
\(743\) 77366.1i 0.140144i 0.997542 + 0.0700718i \(0.0223228\pi\)
−0.997542 + 0.0700718i \(0.977677\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 655962.i − 1.17869i
\(747\) 0 0
\(748\) 272885. 0.487726
\(749\) 76202.1i 0.135832i
\(750\) 0 0
\(751\) −648770. −1.15030 −0.575150 0.818048i \(-0.695056\pi\)
−0.575150 + 0.818048i \(0.695056\pi\)
\(752\) 49054.5i 0.0867447i
\(753\) 0 0
\(754\) −526762. −0.926556
\(755\) 0 0
\(756\) 0 0
\(757\) −130710. −0.228095 −0.114048 0.993475i \(-0.536382\pi\)
−0.114048 + 0.993475i \(0.536382\pi\)
\(758\) 461620.i 0.803426i
\(759\) 0 0
\(760\) 0 0
\(761\) 667900.i 1.15330i 0.816991 + 0.576650i \(0.195640\pi\)
−0.816991 + 0.576650i \(0.804360\pi\)
\(762\) 0 0
\(763\) 176582. 0.303318
\(764\) 501640.i 0.859419i
\(765\) 0 0
\(766\) 721906. 1.23033
\(767\) 38428.2i 0.0653219i
\(768\) 0 0
\(769\) −920955. −1.55735 −0.778674 0.627428i \(-0.784108\pi\)
−0.778674 + 0.627428i \(0.784108\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −181207. −0.304047
\(773\) 1.15971e6i 1.94084i 0.241426 + 0.970419i \(0.422385\pi\)
−0.241426 + 0.970419i \(0.577615\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 225420.i 0.374343i
\(777\) 0 0
\(778\) 591913. 0.977910
\(779\) − 199977.i − 0.329538i
\(780\) 0 0
\(781\) 288968. 0.473749
\(782\) − 264283.i − 0.432171i
\(783\) 0 0
\(784\) −128064. −0.208351
\(785\) 0 0
\(786\) 0 0
\(787\) 268849. 0.434070 0.217035 0.976164i \(-0.430361\pi\)
0.217035 + 0.976164i \(0.430361\pi\)
\(788\) − 481356.i − 0.775200i
\(789\) 0 0
\(790\) 0 0
\(791\) 407946.i 0.652003i
\(792\) 0 0
\(793\) 416848. 0.662875
\(794\) 265510.i 0.421153i
\(795\) 0 0
\(796\) 527006. 0.831743
\(797\) 333311.i 0.524726i 0.964969 + 0.262363i \(0.0845018\pi\)
−0.964969 + 0.262363i \(0.915498\pi\)
\(798\) 0 0
\(799\) 237879. 0.372617
\(800\) 0 0
\(801\) 0 0
\(802\) 510278. 0.793338
\(803\) 329037.i 0.510286i
\(804\) 0 0
\(805\) 0 0
\(806\) 588466.i 0.905839i
\(807\) 0 0
\(808\) −182047. −0.278844
\(809\) 874807.i 1.33664i 0.743873 + 0.668321i \(0.232987\pi\)
−0.743873 + 0.668321i \(0.767013\pi\)
\(810\) 0 0
\(811\) −73147.8 −0.111214 −0.0556070 0.998453i \(-0.517709\pi\)
−0.0556070 + 0.998453i \(0.517709\pi\)
\(812\) 216135.i 0.327803i
\(813\) 0 0
\(814\) −605375. −0.913641
\(815\) 0 0
\(816\) 0 0
\(817\) −536585. −0.803886
\(818\) 112203.i 0.167686i
\(819\) 0 0
\(820\) 0 0
\(821\) 670202.i 0.994305i 0.867663 + 0.497152i \(0.165621\pi\)
−0.867663 + 0.497152i \(0.834379\pi\)
\(822\) 0 0
\(823\) −380481. −0.561737 −0.280868 0.959746i \(-0.590622\pi\)
−0.280868 + 0.959746i \(0.590622\pi\)
\(824\) 104722.i 0.154235i
\(825\) 0 0
\(826\) 15767.4 0.0231100
\(827\) 605946.i 0.885979i 0.896527 + 0.442989i \(0.146082\pi\)
−0.896527 + 0.442989i \(0.853918\pi\)
\(828\) 0 0
\(829\) −27092.3 −0.0394218 −0.0197109 0.999806i \(-0.506275\pi\)
−0.0197109 + 0.999806i \(0.506275\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −70588.6 −0.101974
\(833\) 621019.i 0.894984i
\(834\) 0 0
\(835\) 0 0
\(836\) 216068.i 0.309157i
\(837\) 0 0
\(838\) −160873. −0.229084
\(839\) − 634418.i − 0.901262i −0.892710 0.450631i \(-0.851199\pi\)
0.892710 0.450631i \(-0.148801\pi\)
\(840\) 0 0
\(841\) −1.11750e6 −1.57999
\(842\) − 633505.i − 0.893564i
\(843\) 0 0
\(844\) 531876. 0.746664
\(845\) 0 0
\(846\) 0 0
\(847\) −51222.2 −0.0713989
\(848\) − 163604.i − 0.227512i
\(849\) 0 0
\(850\) 0 0
\(851\) 586292.i 0.809570i
\(852\) 0 0
\(853\) 122650. 0.168566 0.0842830 0.996442i \(-0.473140\pi\)
0.0842830 + 0.996442i \(0.473140\pi\)
\(854\) − 171036.i − 0.234516i
\(855\) 0 0
\(856\) −86212.8 −0.117659
\(857\) − 863050.i − 1.17510i −0.809188 0.587550i \(-0.800093\pi\)
0.809188 0.587550i \(-0.199907\pi\)
\(858\) 0 0
\(859\) −1.12393e6 −1.52318 −0.761590 0.648059i \(-0.775581\pi\)
−0.761590 + 0.648059i \(0.775581\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 448110. 0.603074
\(863\) 1.34495e6i 1.80586i 0.429787 + 0.902930i \(0.358589\pi\)
−0.429787 + 0.902930i \(0.641411\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 266384.i 0.355200i
\(867\) 0 0
\(868\) 241453. 0.320474
\(869\) − 736065.i − 0.974713i
\(870\) 0 0
\(871\) −41636.2 −0.0548827
\(872\) 199780.i 0.262735i
\(873\) 0 0
\(874\) 209257. 0.273942
\(875\) 0 0
\(876\) 0 0
\(877\) 604935. 0.786520 0.393260 0.919427i \(-0.371347\pi\)
0.393260 + 0.919427i \(0.371347\pi\)
\(878\) − 831126.i − 1.07815i
\(879\) 0 0
\(880\) 0 0
\(881\) 462965.i 0.596480i 0.954491 + 0.298240i \(0.0963997\pi\)
−0.954491 + 0.298240i \(0.903600\pi\)
\(882\) 0 0
\(883\) 724515. 0.929236 0.464618 0.885511i \(-0.346192\pi\)
0.464618 + 0.885511i \(0.346192\pi\)
\(884\) 342304.i 0.438034i
\(885\) 0 0
\(886\) 161886. 0.206226
\(887\) 523890.i 0.665876i 0.942949 + 0.332938i \(0.108040\pi\)
−0.942949 + 0.332938i \(0.891960\pi\)
\(888\) 0 0
\(889\) −147493. −0.186625
\(890\) 0 0
\(891\) 0 0
\(892\) 677928. 0.852027
\(893\) 188351.i 0.236192i
\(894\) 0 0
\(895\) 0 0
\(896\) 28963.1i 0.0360769i
\(897\) 0 0
\(898\) −570980. −0.708057
\(899\) 2.03853e6i 2.52230i
\(900\) 0 0
\(901\) −793365. −0.977290
\(902\) − 252981.i − 0.310938i
\(903\) 0 0
\(904\) −461538. −0.564769
\(905\) 0 0
\(906\) 0 0
\(907\) −93625.2 −0.113809 −0.0569047 0.998380i \(-0.518123\pi\)
−0.0569047 + 0.998380i \(0.518123\pi\)
\(908\) 127534.i 0.154687i
\(909\) 0 0
\(910\) 0 0
\(911\) − 714859.i − 0.861358i −0.902505 0.430679i \(-0.858274\pi\)
0.902505 0.430679i \(-0.141726\pi\)
\(912\) 0 0
\(913\) 40385.8 0.0484492
\(914\) 351350.i 0.420580i
\(915\) 0 0
\(916\) −591443. −0.704891
\(917\) − 270322.i − 0.321471i
\(918\) 0 0
\(919\) −392960. −0.465283 −0.232642 0.972563i \(-0.574737\pi\)
−0.232642 + 0.972563i \(0.574737\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 539516. 0.634663
\(923\) 362479.i 0.425480i
\(924\) 0 0
\(925\) 0 0
\(926\) 309654.i 0.361122i
\(927\) 0 0
\(928\) −244529. −0.283945
\(929\) − 452464.i − 0.524267i −0.965032 0.262134i \(-0.915574\pi\)
0.965032 0.262134i \(-0.0844261\pi\)
\(930\) 0 0
\(931\) −491719. −0.567306
\(932\) − 524217.i − 0.603502i
\(933\) 0 0
\(934\) 491715. 0.563663
\(935\) 0 0
\(936\) 0 0
\(937\) 256644. 0.292316 0.146158 0.989261i \(-0.453309\pi\)
0.146158 + 0.989261i \(0.453309\pi\)
\(938\) 17083.7i 0.0194167i
\(939\) 0 0
\(940\) 0 0
\(941\) − 636601.i − 0.718932i −0.933158 0.359466i \(-0.882959\pi\)
0.933158 0.359466i \(-0.117041\pi\)
\(942\) 0 0
\(943\) −245006. −0.275520
\(944\) 17838.8i 0.0200180i
\(945\) 0 0
\(946\) −678805. −0.758512
\(947\) 40671.6i 0.0453515i 0.999743 + 0.0226757i \(0.00721853\pi\)
−0.999743 + 0.0226757i \(0.992781\pi\)
\(948\) 0 0
\(949\) −412741. −0.458296
\(950\) 0 0
\(951\) 0 0
\(952\) 140450. 0.154971
\(953\) 311912.i 0.343436i 0.985146 + 0.171718i \(0.0549318\pi\)
−0.985146 + 0.171718i \(0.945068\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 415664.i − 0.454806i
\(957\) 0 0
\(958\) 261770. 0.285226
\(959\) − 45049.0i − 0.0489833i
\(960\) 0 0
\(961\) 1.35380e6 1.46591
\(962\) − 759377.i − 0.820554i
\(963\) 0 0
\(964\) −263206. −0.283232
\(965\) 0 0
\(966\) 0 0
\(967\) −767779. −0.821076 −0.410538 0.911843i \(-0.634659\pi\)
−0.410538 + 0.911843i \(0.634659\pi\)
\(968\) − 57951.3i − 0.0618461i
\(969\) 0 0
\(970\) 0 0
\(971\) 888897.i 0.942786i 0.881923 + 0.471393i \(0.156249\pi\)
−0.881923 + 0.471393i \(0.843751\pi\)
\(972\) 0 0
\(973\) 695534. 0.734671
\(974\) − 1.00953e6i − 1.06414i
\(975\) 0 0
\(976\) 193505. 0.203139
\(977\) − 94327.8i − 0.0988214i −0.998779 0.0494107i \(-0.984266\pi\)
0.998779 0.0494107i \(-0.0157343\pi\)
\(978\) 0 0
\(979\) 708747. 0.739479
\(980\) 0 0
\(981\) 0 0
\(982\) −1.17483e6 −1.21829
\(983\) − 271176.i − 0.280637i −0.990106 0.140318i \(-0.955187\pi\)
0.990106 0.140318i \(-0.0448126\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.18579e6i 1.21970i
\(987\) 0 0
\(988\) −271034. −0.277658
\(989\) 657407.i 0.672112i
\(990\) 0 0
\(991\) −417334. −0.424949 −0.212474 0.977167i \(-0.568152\pi\)
−0.212474 + 0.977167i \(0.568152\pi\)
\(992\) 273172.i 0.277596i
\(993\) 0 0
\(994\) 148728. 0.150529
\(995\) 0 0
\(996\) 0 0
\(997\) −152052. −0.152969 −0.0764843 0.997071i \(-0.524369\pi\)
−0.0764843 + 0.997071i \(0.524369\pi\)
\(998\) 1.00109e6i 1.00511i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.5.d.b.701.3 4
3.2 odd 2 inner 1350.5.d.b.701.2 4
5.2 odd 4 1350.5.b.e.1349.1 8
5.3 odd 4 1350.5.b.e.1349.7 8
5.4 even 2 270.5.d.a.161.2 4
15.2 even 4 1350.5.b.e.1349.6 8
15.8 even 4 1350.5.b.e.1349.4 8
15.14 odd 2 270.5.d.a.161.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.5.d.a.161.2 4 5.4 even 2
270.5.d.a.161.3 yes 4 15.14 odd 2
1350.5.b.e.1349.1 8 5.2 odd 4
1350.5.b.e.1349.4 8 15.8 even 4
1350.5.b.e.1349.6 8 15.2 even 4
1350.5.b.e.1349.7 8 5.3 odd 4
1350.5.d.b.701.2 4 3.2 odd 2 inner
1350.5.d.b.701.3 4 1.1 even 1 trivial