Properties

Label 1350.3.g.f
Level $1350$
Weight $3$
Character orbit 1350.g
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(757,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.757"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,0,0,0,12,8,0,0,-12,0,-24,0,0,-16,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} - 2 \beta_{2} q^{4} + (2 \beta_{3} - 3 \beta_{2} + 3) q^{7} + (2 \beta_{2} + 2) q^{8} - 3 q^{11} + ( - 6 \beta_{2} - 3 \beta_1 - 6) q^{13} + ( - 2 \beta_{3} + 6 \beta_{2} - 2 \beta_1) q^{14}+ \cdots + ( - 19 \beta_{2} - 24 \beta_1 - 19) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 12 q^{7} + 8 q^{8} - 12 q^{11} - 24 q^{13} - 16 q^{16} + 12 q^{17} + 12 q^{22} - 24 q^{23} + 48 q^{26} - 24 q^{28} - 56 q^{31} + 16 q^{32} - 24 q^{37} + 32 q^{38} + 120 q^{41} - 144 q^{43}+ \cdots - 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
757.1
1.22474 1.22474i
−1.22474 + 1.22474i
1.22474 + 1.22474i
−1.22474 1.22474i
−1.00000 1.00000i 0 2.00000i 0 0 0.550510 + 0.550510i 2.00000 2.00000i 0 0
757.2 −1.00000 1.00000i 0 2.00000i 0 0 5.44949 + 5.44949i 2.00000 2.00000i 0 0
1243.1 −1.00000 + 1.00000i 0 2.00000i 0 0 0.550510 0.550510i 2.00000 + 2.00000i 0 0
1243.2 −1.00000 + 1.00000i 0 2.00000i 0 0 5.44949 5.44949i 2.00000 + 2.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.3.g.f yes 4
3.b odd 2 1 1350.3.g.l yes 4
5.b even 2 1 1350.3.g.g yes 4
5.c odd 4 1 inner 1350.3.g.f yes 4
5.c odd 4 1 1350.3.g.g yes 4
15.d odd 2 1 1350.3.g.a 4
15.e even 4 1 1350.3.g.a 4
15.e even 4 1 1350.3.g.l yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1350.3.g.a 4 15.d odd 2 1
1350.3.g.a 4 15.e even 4 1
1350.3.g.f yes 4 1.a even 1 1 trivial
1350.3.g.f yes 4 5.c odd 4 1 inner
1350.3.g.g yes 4 5.b even 2 1
1350.3.g.g yes 4 5.c odd 4 1
1350.3.g.l yes 4 3.b odd 2 1
1350.3.g.l yes 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1350, [\chi])\):

\( T_{7}^{4} - 12T_{7}^{3} + 72T_{7}^{2} - 72T_{7} + 36 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{17}^{4} - 12T_{17}^{3} + 72T_{17}^{2} + 1080T_{17} + 8100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 12 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( (T + 3)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 24 T^{3} + \cdots + 2025 \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + \cdots + 8100 \) Copy content Toggle raw display
$19$ \( T^{4} + 560 T^{2} + 23104 \) Copy content Toggle raw display
$23$ \( T^{4} + 24 T^{3} + \cdots + 29241 \) Copy content Toggle raw display
$29$ \( T^{4} + 1584 T^{2} + 129600 \) Copy content Toggle raw display
$31$ \( (T^{2} + 28 T - 290)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 24 T^{3} + \cdots + 4761 \) Copy content Toggle raw display
$41$ \( (T^{2} - 60 T + 414)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 144 T^{3} + \cdots + 5760000 \) Copy content Toggle raw display
$47$ \( T^{4} + 72 T^{3} + \cdots + 2368521 \) Copy content Toggle raw display
$53$ \( T^{4} + 48 T^{3} + \cdots + 20736 \) Copy content Toggle raw display
$59$ \( T^{4} + 4770 T^{2} + 431649 \) Copy content Toggle raw display
$61$ \( (T^{2} - 94 T + 1993)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 204 T^{3} + \cdots + 6260004 \) Copy content Toggle raw display
$71$ \( (T^{2} + 30 T - 5175)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 240 T^{3} + \cdots + 51667344 \) Copy content Toggle raw display
$79$ \( T^{4} + 13076 T^{2} + 42640900 \) Copy content Toggle raw display
$83$ \( T^{4} - 192 T^{3} + \cdots + 8294400 \) Copy content Toggle raw display
$89$ \( T^{4} + 26100 T^{2} + 60186564 \) Copy content Toggle raw display
$97$ \( T^{4} + 336 T^{3} + \cdots + 126090441 \) Copy content Toggle raw display
show more
show less