Properties

Label 1350.3.g.d.757.1
Level $1350$
Weight $3$
Character 1350.757
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(757,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.757"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,0,0,0,0,8,0,0,0,0,0,0,0,-16,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 757.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1350.757
Dual form 1350.3.g.d.1243.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(-1.22474 - 1.22474i) q^{7} +(2.00000 - 2.00000i) q^{8} +7.34847 q^{11} +(-7.34847 + 7.34847i) q^{13} +2.44949i q^{14} -4.00000 q^{16} +(3.00000 + 3.00000i) q^{17} -19.0000i q^{19} +(-7.34847 - 7.34847i) q^{22} +(-24.0000 + 24.0000i) q^{23} +14.6969 q^{26} +(2.44949 - 2.44949i) q^{28} +7.34847i q^{29} +13.0000 q^{31} +(4.00000 + 4.00000i) q^{32} -6.00000i q^{34} +(-13.4722 - 13.4722i) q^{37} +(-19.0000 + 19.0000i) q^{38} -7.34847 q^{41} +(15.9217 - 15.9217i) q^{43} +14.6969i q^{44} +48.0000 q^{46} +(-27.0000 - 27.0000i) q^{47} -46.0000i q^{49} +(-14.6969 - 14.6969i) q^{52} +(-21.0000 + 21.0000i) q^{53} -4.89898 q^{56} +(7.34847 - 7.34847i) q^{58} +88.1816i q^{59} -25.0000 q^{61} +(-13.0000 - 13.0000i) q^{62} -8.00000i q^{64} +(-22.0454 - 22.0454i) q^{67} +(-6.00000 + 6.00000i) q^{68} +73.4847 q^{71} +(-64.9115 + 64.9115i) q^{73} +26.9444i q^{74} +38.0000 q^{76} +(-9.00000 - 9.00000i) q^{77} -47.0000i q^{79} +(7.34847 + 7.34847i) q^{82} +(-69.0000 + 69.0000i) q^{83} -31.8434 q^{86} +(14.6969 - 14.6969i) q^{88} +146.969i q^{89} +18.0000 q^{91} +(-48.0000 - 48.0000i) q^{92} +54.0000i q^{94} +(-94.3054 - 94.3054i) q^{97} +(-46.0000 + 46.0000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 8 q^{8} - 16 q^{16} + 12 q^{17} - 96 q^{23} + 52 q^{31} + 16 q^{32} - 76 q^{38} + 192 q^{46} - 108 q^{47} - 84 q^{53} - 100 q^{61} - 52 q^{62} - 24 q^{68} + 152 q^{76} - 36 q^{77} - 276 q^{83}+ \cdots - 184 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −1.22474 1.22474i −0.174964 0.174964i 0.614193 0.789156i \(-0.289482\pi\)
−0.789156 + 0.614193i \(0.789482\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 7.34847 0.668043 0.334021 0.942566i \(-0.391594\pi\)
0.334021 + 0.942566i \(0.391594\pi\)
\(12\) 0 0
\(13\) −7.34847 + 7.34847i −0.565267 + 0.565267i −0.930799 0.365532i \(-0.880887\pi\)
0.365532 + 0.930799i \(0.380887\pi\)
\(14\) 2.44949i 0.174964i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 3.00000 + 3.00000i 0.176471 + 0.176471i 0.789815 0.613345i \(-0.210176\pi\)
−0.613345 + 0.789815i \(0.710176\pi\)
\(18\) 0 0
\(19\) 19.0000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −7.34847 7.34847i −0.334021 0.334021i
\(23\) −24.0000 + 24.0000i −1.04348 + 1.04348i −0.0444674 + 0.999011i \(0.514159\pi\)
−0.999011 + 0.0444674i \(0.985841\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 14.6969 0.565267
\(27\) 0 0
\(28\) 2.44949 2.44949i 0.0874818 0.0874818i
\(29\) 7.34847i 0.253395i 0.991941 + 0.126698i \(0.0404378\pi\)
−0.991941 + 0.126698i \(0.959562\pi\)
\(30\) 0 0
\(31\) 13.0000 0.419355 0.209677 0.977771i \(-0.432759\pi\)
0.209677 + 0.977771i \(0.432759\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 6.00000i 0.176471i
\(35\) 0 0
\(36\) 0 0
\(37\) −13.4722 13.4722i −0.364113 0.364113i 0.501211 0.865325i \(-0.332888\pi\)
−0.865325 + 0.501211i \(0.832888\pi\)
\(38\) −19.0000 + 19.0000i −0.500000 + 0.500000i
\(39\) 0 0
\(40\) 0 0
\(41\) −7.34847 −0.179231 −0.0896155 0.995976i \(-0.528564\pi\)
−0.0896155 + 0.995976i \(0.528564\pi\)
\(42\) 0 0
\(43\) 15.9217 15.9217i 0.370272 0.370272i −0.497304 0.867576i \(-0.665677\pi\)
0.867576 + 0.497304i \(0.165677\pi\)
\(44\) 14.6969i 0.334021i
\(45\) 0 0
\(46\) 48.0000 1.04348
\(47\) −27.0000 27.0000i −0.574468 0.574468i 0.358906 0.933374i \(-0.383150\pi\)
−0.933374 + 0.358906i \(0.883150\pi\)
\(48\) 0 0
\(49\) 46.0000i 0.938776i
\(50\) 0 0
\(51\) 0 0
\(52\) −14.6969 14.6969i −0.282633 0.282633i
\(53\) −21.0000 + 21.0000i −0.396226 + 0.396226i −0.876900 0.480673i \(-0.840392\pi\)
0.480673 + 0.876900i \(0.340392\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.89898 −0.0874818
\(57\) 0 0
\(58\) 7.34847 7.34847i 0.126698 0.126698i
\(59\) 88.1816i 1.49460i 0.664485 + 0.747302i \(0.268651\pi\)
−0.664485 + 0.747302i \(0.731349\pi\)
\(60\) 0 0
\(61\) −25.0000 −0.409836 −0.204918 0.978779i \(-0.565693\pi\)
−0.204918 + 0.978779i \(0.565693\pi\)
\(62\) −13.0000 13.0000i −0.209677 0.209677i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) −22.0454 22.0454i −0.329036 0.329036i 0.523184 0.852220i \(-0.324744\pi\)
−0.852220 + 0.523184i \(0.824744\pi\)
\(68\) −6.00000 + 6.00000i −0.0882353 + 0.0882353i
\(69\) 0 0
\(70\) 0 0
\(71\) 73.4847 1.03500 0.517498 0.855685i \(-0.326864\pi\)
0.517498 + 0.855685i \(0.326864\pi\)
\(72\) 0 0
\(73\) −64.9115 + 64.9115i −0.889198 + 0.889198i −0.994446 0.105248i \(-0.966436\pi\)
0.105248 + 0.994446i \(0.466436\pi\)
\(74\) 26.9444i 0.364113i
\(75\) 0 0
\(76\) 38.0000 0.500000
\(77\) −9.00000 9.00000i −0.116883 0.116883i
\(78\) 0 0
\(79\) 47.0000i 0.594937i −0.954732 0.297468i \(-0.903858\pi\)
0.954732 0.297468i \(-0.0961423\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.34847 + 7.34847i 0.0896155 + 0.0896155i
\(83\) −69.0000 + 69.0000i −0.831325 + 0.831325i −0.987698 0.156373i \(-0.950020\pi\)
0.156373 + 0.987698i \(0.450020\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −31.8434 −0.370272
\(87\) 0 0
\(88\) 14.6969 14.6969i 0.167011 0.167011i
\(89\) 146.969i 1.65134i 0.564152 + 0.825671i \(0.309203\pi\)
−0.564152 + 0.825671i \(0.690797\pi\)
\(90\) 0 0
\(91\) 18.0000 0.197802
\(92\) −48.0000 48.0000i −0.521739 0.521739i
\(93\) 0 0
\(94\) 54.0000i 0.574468i
\(95\) 0 0
\(96\) 0 0
\(97\) −94.3054 94.3054i −0.972220 0.972220i 0.0274043 0.999624i \(-0.491276\pi\)
−0.999624 + 0.0274043i \(0.991276\pi\)
\(98\) −46.0000 + 46.0000i −0.469388 + 0.469388i
\(99\) 0 0
\(100\) 0 0
\(101\) 7.34847 0.0727571 0.0363786 0.999338i \(-0.488418\pi\)
0.0363786 + 0.999338i \(0.488418\pi\)
\(102\) 0 0
\(103\) −37.9671 + 37.9671i −0.368613 + 0.368613i −0.866971 0.498359i \(-0.833936\pi\)
0.498359 + 0.866971i \(0.333936\pi\)
\(104\) 29.3939i 0.282633i
\(105\) 0 0
\(106\) 42.0000 0.396226
\(107\) −126.000 126.000i −1.17757 1.17757i −0.980362 0.197209i \(-0.936812\pi\)
−0.197209 0.980362i \(-0.563188\pi\)
\(108\) 0 0
\(109\) 53.0000i 0.486239i −0.969996 0.243119i \(-0.921829\pi\)
0.969996 0.243119i \(-0.0781706\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.89898 + 4.89898i 0.0437409 + 0.0437409i
\(113\) −90.0000 + 90.0000i −0.796460 + 0.796460i −0.982535 0.186075i \(-0.940423\pi\)
0.186075 + 0.982535i \(0.440423\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −14.6969 −0.126698
\(117\) 0 0
\(118\) 88.1816 88.1816i 0.747302 0.747302i
\(119\) 7.34847i 0.0617518i
\(120\) 0 0
\(121\) −67.0000 −0.553719
\(122\) 25.0000 + 25.0000i 0.204918 + 0.204918i
\(123\) 0 0
\(124\) 26.0000i 0.209677i
\(125\) 0 0
\(126\) 0 0
\(127\) 139.621 + 139.621i 1.09938 + 1.09938i 0.994483 + 0.104894i \(0.0334503\pi\)
0.104894 + 0.994483i \(0.466550\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) −154.318 −1.17800 −0.588999 0.808133i \(-0.700478\pi\)
−0.588999 + 0.808133i \(0.700478\pi\)
\(132\) 0 0
\(133\) −23.2702 + 23.2702i −0.174964 + 0.174964i
\(134\) 44.0908i 0.329036i
\(135\) 0 0
\(136\) 12.0000 0.0882353
\(137\) −159.000 159.000i −1.16058 1.16058i −0.984348 0.176236i \(-0.943608\pi\)
−0.176236 0.984348i \(-0.556392\pi\)
\(138\) 0 0
\(139\) 67.0000i 0.482014i −0.970523 0.241007i \(-0.922522\pi\)
0.970523 0.241007i \(-0.0774777\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −73.4847 73.4847i −0.517498 0.517498i
\(143\) −54.0000 + 54.0000i −0.377622 + 0.377622i
\(144\) 0 0
\(145\) 0 0
\(146\) 129.823 0.889198
\(147\) 0 0
\(148\) 26.9444 26.9444i 0.182057 0.182057i
\(149\) 257.196i 1.72615i 0.505075 + 0.863075i \(0.331465\pi\)
−0.505075 + 0.863075i \(0.668535\pi\)
\(150\) 0 0
\(151\) −281.000 −1.86093 −0.930464 0.366384i \(-0.880596\pi\)
−0.930464 + 0.366384i \(0.880596\pi\)
\(152\) −38.0000 38.0000i −0.250000 0.250000i
\(153\) 0 0
\(154\) 18.0000i 0.116883i
\(155\) 0 0
\(156\) 0 0
\(157\) 109.002 + 109.002i 0.694282 + 0.694282i 0.963171 0.268889i \(-0.0866565\pi\)
−0.268889 + 0.963171i \(0.586656\pi\)
\(158\) −47.0000 + 47.0000i −0.297468 + 0.297468i
\(159\) 0 0
\(160\) 0 0
\(161\) 58.7878 0.365141
\(162\) 0 0
\(163\) −139.621 + 139.621i −0.856570 + 0.856570i −0.990932 0.134362i \(-0.957101\pi\)
0.134362 + 0.990932i \(0.457101\pi\)
\(164\) 14.6969i 0.0896155i
\(165\) 0 0
\(166\) 138.000 0.831325
\(167\) 123.000 + 123.000i 0.736527 + 0.736527i 0.971904 0.235377i \(-0.0756325\pi\)
−0.235377 + 0.971904i \(0.575633\pi\)
\(168\) 0 0
\(169\) 61.0000i 0.360947i
\(170\) 0 0
\(171\) 0 0
\(172\) 31.8434 + 31.8434i 0.185136 + 0.185136i
\(173\) −138.000 + 138.000i −0.797688 + 0.797688i −0.982730 0.185043i \(-0.940758\pi\)
0.185043 + 0.982730i \(0.440758\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −29.3939 −0.167011
\(177\) 0 0
\(178\) 146.969 146.969i 0.825671 0.825671i
\(179\) 14.6969i 0.0821058i −0.999157 0.0410529i \(-0.986929\pi\)
0.999157 0.0410529i \(-0.0130712\pi\)
\(180\) 0 0
\(181\) 88.0000 0.486188 0.243094 0.970003i \(-0.421838\pi\)
0.243094 + 0.970003i \(0.421838\pi\)
\(182\) −18.0000 18.0000i −0.0989011 0.0989011i
\(183\) 0 0
\(184\) 96.0000i 0.521739i
\(185\) 0 0
\(186\) 0 0
\(187\) 22.0454 + 22.0454i 0.117890 + 0.117890i
\(188\) 54.0000 54.0000i 0.287234 0.287234i
\(189\) 0 0
\(190\) 0 0
\(191\) 286.590 1.50047 0.750236 0.661170i \(-0.229940\pi\)
0.750236 + 0.661170i \(0.229940\pi\)
\(192\) 0 0
\(193\) 60.0125 60.0125i 0.310946 0.310946i −0.534330 0.845276i \(-0.679436\pi\)
0.845276 + 0.534330i \(0.179436\pi\)
\(194\) 188.611i 0.972220i
\(195\) 0 0
\(196\) 92.0000 0.469388
\(197\) 33.0000 + 33.0000i 0.167513 + 0.167513i 0.785885 0.618372i \(-0.212208\pi\)
−0.618372 + 0.785885i \(0.712208\pi\)
\(198\) 0 0
\(199\) 250.000i 1.25628i 0.778100 + 0.628141i \(0.216184\pi\)
−0.778100 + 0.628141i \(0.783816\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.34847 7.34847i −0.0363786 0.0363786i
\(203\) 9.00000 9.00000i 0.0443350 0.0443350i
\(204\) 0 0
\(205\) 0 0
\(206\) 75.9342 0.368613
\(207\) 0 0
\(208\) 29.3939 29.3939i 0.141317 0.141317i
\(209\) 139.621i 0.668043i
\(210\) 0 0
\(211\) −190.000 −0.900474 −0.450237 0.892909i \(-0.648660\pi\)
−0.450237 + 0.892909i \(0.648660\pi\)
\(212\) −42.0000 42.0000i −0.198113 0.198113i
\(213\) 0 0
\(214\) 252.000i 1.17757i
\(215\) 0 0
\(216\) 0 0
\(217\) −15.9217 15.9217i −0.0733718 0.0733718i
\(218\) −53.0000 + 53.0000i −0.243119 + 0.243119i
\(219\) 0 0
\(220\) 0 0
\(221\) −44.0908 −0.199506
\(222\) 0 0
\(223\) −23.2702 + 23.2702i −0.104350 + 0.104350i −0.757354 0.653004i \(-0.773508\pi\)
0.653004 + 0.757354i \(0.273508\pi\)
\(224\) 9.79796i 0.0437409i
\(225\) 0 0
\(226\) 180.000 0.796460
\(227\) −102.000 102.000i −0.449339 0.449339i 0.445796 0.895135i \(-0.352921\pi\)
−0.895135 + 0.445796i \(0.852921\pi\)
\(228\) 0 0
\(229\) 157.000i 0.685590i −0.939410 0.342795i \(-0.888626\pi\)
0.939410 0.342795i \(-0.111374\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 14.6969 + 14.6969i 0.0633489 + 0.0633489i
\(233\) −81.0000 + 81.0000i −0.347639 + 0.347639i −0.859230 0.511590i \(-0.829057\pi\)
0.511590 + 0.859230i \(0.329057\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −176.363 −0.747302
\(237\) 0 0
\(238\) −7.34847 + 7.34847i −0.0308759 + 0.0308759i
\(239\) 389.469i 1.62958i 0.579758 + 0.814788i \(0.303147\pi\)
−0.579758 + 0.814788i \(0.696853\pi\)
\(240\) 0 0
\(241\) −400.000 −1.65975 −0.829876 0.557949i \(-0.811589\pi\)
−0.829876 + 0.557949i \(0.811589\pi\)
\(242\) 67.0000 + 67.0000i 0.276860 + 0.276860i
\(243\) 0 0
\(244\) 50.0000i 0.204918i
\(245\) 0 0
\(246\) 0 0
\(247\) 139.621 + 139.621i 0.565267 + 0.565267i
\(248\) 26.0000 26.0000i 0.104839 0.104839i
\(249\) 0 0
\(250\) 0 0
\(251\) −183.712 −0.731919 −0.365960 0.930631i \(-0.619259\pi\)
−0.365960 + 0.930631i \(0.619259\pi\)
\(252\) 0 0
\(253\) −176.363 + 176.363i −0.697088 + 0.697088i
\(254\) 279.242i 1.09938i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 255.000 + 255.000i 0.992218 + 0.992218i 0.999970 0.00775205i \(-0.00246758\pi\)
−0.00775205 + 0.999970i \(0.502468\pi\)
\(258\) 0 0
\(259\) 33.0000i 0.127413i
\(260\) 0 0
\(261\) 0 0
\(262\) 154.318 + 154.318i 0.588999 + 0.588999i
\(263\) −9.00000 + 9.00000i −0.0342205 + 0.0342205i −0.724010 0.689789i \(-0.757703\pi\)
0.689789 + 0.724010i \(0.257703\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 46.5403 0.174964
\(267\) 0 0
\(268\) 44.0908 44.0908i 0.164518 0.164518i
\(269\) 323.333i 1.20198i −0.799257 0.600990i \(-0.794773\pi\)
0.799257 0.600990i \(-0.205227\pi\)
\(270\) 0 0
\(271\) −181.000 −0.667897 −0.333948 0.942591i \(-0.608381\pi\)
−0.333948 + 0.942591i \(0.608381\pi\)
\(272\) −12.0000 12.0000i −0.0441176 0.0441176i
\(273\) 0 0
\(274\) 318.000i 1.16058i
\(275\) 0 0
\(276\) 0 0
\(277\) 1.22474 + 1.22474i 0.00442146 + 0.00442146i 0.709314 0.704893i \(-0.249005\pi\)
−0.704893 + 0.709314i \(0.749005\pi\)
\(278\) −67.0000 + 67.0000i −0.241007 + 0.241007i
\(279\) 0 0
\(280\) 0 0
\(281\) 169.015 0.601476 0.300738 0.953707i \(-0.402767\pi\)
0.300738 + 0.953707i \(0.402767\pi\)
\(282\) 0 0
\(283\) −74.7094 + 74.7094i −0.263991 + 0.263991i −0.826673 0.562682i \(-0.809769\pi\)
0.562682 + 0.826673i \(0.309769\pi\)
\(284\) 146.969i 0.517498i
\(285\) 0 0
\(286\) 108.000 0.377622
\(287\) 9.00000 + 9.00000i 0.0313589 + 0.0313589i
\(288\) 0 0
\(289\) 271.000i 0.937716i
\(290\) 0 0
\(291\) 0 0
\(292\) −129.823 129.823i −0.444599 0.444599i
\(293\) 330.000 330.000i 1.12628 1.12628i 0.135503 0.990777i \(-0.456735\pi\)
0.990777 0.135503i \(-0.0432650\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −53.8888 −0.182057
\(297\) 0 0
\(298\) 257.196 257.196i 0.863075 0.863075i
\(299\) 352.727i 1.17969i
\(300\) 0 0
\(301\) −39.0000 −0.129568
\(302\) 281.000 + 281.000i 0.930464 + 0.930464i
\(303\) 0 0
\(304\) 76.0000i 0.250000i
\(305\) 0 0
\(306\) 0 0
\(307\) 64.9115 + 64.9115i 0.211438 + 0.211438i 0.804878 0.593440i \(-0.202231\pi\)
−0.593440 + 0.804878i \(0.702231\pi\)
\(308\) 18.0000 18.0000i 0.0584416 0.0584416i
\(309\) 0 0
\(310\) 0 0
\(311\) −139.621 −0.448942 −0.224471 0.974481i \(-0.572065\pi\)
−0.224471 + 0.974481i \(0.572065\pi\)
\(312\) 0 0
\(313\) 80.8332 80.8332i 0.258253 0.258253i −0.566090 0.824343i \(-0.691545\pi\)
0.824343 + 0.566090i \(0.191545\pi\)
\(314\) 218.005i 0.694282i
\(315\) 0 0
\(316\) 94.0000 0.297468
\(317\) −219.000 219.000i −0.690852 0.690852i 0.271568 0.962419i \(-0.412458\pi\)
−0.962419 + 0.271568i \(0.912458\pi\)
\(318\) 0 0
\(319\) 54.0000i 0.169279i
\(320\) 0 0
\(321\) 0 0
\(322\) −58.7878 58.7878i −0.182571 0.182571i
\(323\) 57.0000 57.0000i 0.176471 0.176471i
\(324\) 0 0
\(325\) 0 0
\(326\) 279.242 0.856570
\(327\) 0 0
\(328\) −14.6969 + 14.6969i −0.0448077 + 0.0448077i
\(329\) 66.1362i 0.201022i
\(330\) 0 0
\(331\) −25.0000 −0.0755287 −0.0377644 0.999287i \(-0.512024\pi\)
−0.0377644 + 0.999287i \(0.512024\pi\)
\(332\) −138.000 138.000i −0.415663 0.415663i
\(333\) 0 0
\(334\) 246.000i 0.736527i
\(335\) 0 0
\(336\) 0 0
\(337\) 58.7878 + 58.7878i 0.174444 + 0.174444i 0.788929 0.614485i \(-0.210636\pi\)
−0.614485 + 0.788929i \(0.710636\pi\)
\(338\) 61.0000 61.0000i 0.180473 0.180473i
\(339\) 0 0
\(340\) 0 0
\(341\) 95.5301 0.280147
\(342\) 0 0
\(343\) −116.351 + 116.351i −0.339215 + 0.339215i
\(344\) 63.6867i 0.185136i
\(345\) 0 0
\(346\) 276.000 0.797688
\(347\) 342.000 + 342.000i 0.985591 + 0.985591i 0.999898 0.0143069i \(-0.00455417\pi\)
−0.0143069 + 0.999898i \(0.504554\pi\)
\(348\) 0 0
\(349\) 403.000i 1.15473i −0.816487 0.577364i \(-0.804081\pi\)
0.816487 0.577364i \(-0.195919\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 29.3939 + 29.3939i 0.0835053 + 0.0835053i
\(353\) 306.000 306.000i 0.866856 0.866856i −0.125267 0.992123i \(-0.539979\pi\)
0.992123 + 0.125267i \(0.0399789\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −293.939 −0.825671
\(357\) 0 0
\(358\) −14.6969 + 14.6969i −0.0410529 + 0.0410529i
\(359\) 66.1362i 0.184223i −0.995749 0.0921117i \(-0.970638\pi\)
0.995749 0.0921117i \(-0.0293617\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −88.0000 88.0000i −0.243094 0.243094i
\(363\) 0 0
\(364\) 36.0000i 0.0989011i
\(365\) 0 0
\(366\) 0 0
\(367\) 110.227 + 110.227i 0.300346 + 0.300346i 0.841149 0.540803i \(-0.181880\pi\)
−0.540803 + 0.841149i \(0.681880\pi\)
\(368\) 96.0000 96.0000i 0.260870 0.260870i
\(369\) 0 0
\(370\) 0 0
\(371\) 51.4393 0.138650
\(372\) 0 0
\(373\) −111.452 + 111.452i −0.298798 + 0.298798i −0.840543 0.541745i \(-0.817764\pi\)
0.541745 + 0.840543i \(0.317764\pi\)
\(374\) 44.0908i 0.117890i
\(375\) 0 0
\(376\) −108.000 −0.287234
\(377\) −54.0000 54.0000i −0.143236 0.143236i
\(378\) 0 0
\(379\) 416.000i 1.09763i 0.835945 + 0.548813i \(0.184920\pi\)
−0.835945 + 0.548813i \(0.815080\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −286.590 286.590i −0.750236 0.750236i
\(383\) 321.000 321.000i 0.838120 0.838120i −0.150491 0.988611i \(-0.548086\pi\)
0.988611 + 0.150491i \(0.0480855\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −120.025 −0.310946
\(387\) 0 0
\(388\) 188.611 188.611i 0.486110 0.486110i
\(389\) 756.892i 1.94574i −0.231355 0.972869i \(-0.574316\pi\)
0.231355 0.972869i \(-0.425684\pi\)
\(390\) 0 0
\(391\) −144.000 −0.368286
\(392\) −92.0000 92.0000i −0.234694 0.234694i
\(393\) 0 0
\(394\) 66.0000i 0.167513i
\(395\) 0 0
\(396\) 0 0
\(397\) −336.805 336.805i −0.848375 0.848375i 0.141555 0.989930i \(-0.454790\pi\)
−0.989930 + 0.141555i \(0.954790\pi\)
\(398\) 250.000 250.000i 0.628141 0.628141i
\(399\) 0 0
\(400\) 0 0
\(401\) −558.484 −1.39273 −0.696364 0.717689i \(-0.745200\pi\)
−0.696364 + 0.717689i \(0.745200\pi\)
\(402\) 0 0
\(403\) −95.5301 + 95.5301i −0.237047 + 0.237047i
\(404\) 14.6969i 0.0363786i
\(405\) 0 0
\(406\) −18.0000 −0.0443350
\(407\) −99.0000 99.0000i −0.243243 0.243243i
\(408\) 0 0
\(409\) 550.000i 1.34474i −0.740214 0.672372i \(-0.765276\pi\)
0.740214 0.672372i \(-0.234724\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −75.9342 75.9342i −0.184306 0.184306i
\(413\) 108.000 108.000i 0.261501 0.261501i
\(414\) 0 0
\(415\) 0 0
\(416\) −58.7878 −0.141317
\(417\) 0 0
\(418\) −139.621 + 139.621i −0.334021 + 0.334021i
\(419\) 58.7878i 0.140305i 0.997536 + 0.0701525i \(0.0223486\pi\)
−0.997536 + 0.0701525i \(0.977651\pi\)
\(420\) 0 0
\(421\) 583.000 1.38480 0.692399 0.721515i \(-0.256554\pi\)
0.692399 + 0.721515i \(0.256554\pi\)
\(422\) 190.000 + 190.000i 0.450237 + 0.450237i
\(423\) 0 0
\(424\) 84.0000i 0.198113i
\(425\) 0 0
\(426\) 0 0
\(427\) 30.6186 + 30.6186i 0.0717064 + 0.0717064i
\(428\) 252.000 252.000i 0.588785 0.588785i
\(429\) 0 0
\(430\) 0 0
\(431\) −183.712 −0.426245 −0.213123 0.977025i \(-0.568363\pi\)
−0.213123 + 0.977025i \(0.568363\pi\)
\(432\) 0 0
\(433\) −515.618 + 515.618i −1.19080 + 1.19080i −0.213960 + 0.976842i \(0.568636\pi\)
−0.976842 + 0.213960i \(0.931364\pi\)
\(434\) 31.8434i 0.0733718i
\(435\) 0 0
\(436\) 106.000 0.243119
\(437\) 456.000 + 456.000i 1.04348 + 1.04348i
\(438\) 0 0
\(439\) 29.0000i 0.0660592i −0.999454 0.0330296i \(-0.989484\pi\)
0.999454 0.0330296i \(-0.0105156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 44.0908 + 44.0908i 0.0997530 + 0.0997530i
\(443\) 60.0000 60.0000i 0.135440 0.135440i −0.636136 0.771577i \(-0.719468\pi\)
0.771577 + 0.636136i \(0.219468\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 46.5403 0.104350
\(447\) 0 0
\(448\) −9.79796 + 9.79796i −0.0218704 + 0.0218704i
\(449\) 521.741i 1.16201i −0.813901 0.581004i \(-0.802660\pi\)
0.813901 0.581004i \(-0.197340\pi\)
\(450\) 0 0
\(451\) −54.0000 −0.119734
\(452\) −180.000 180.000i −0.398230 0.398230i
\(453\) 0 0
\(454\) 204.000i 0.449339i
\(455\) 0 0
\(456\) 0 0
\(457\) −448.257 448.257i −0.980868 0.980868i 0.0189525 0.999820i \(-0.493967\pi\)
−0.999820 + 0.0189525i \(0.993967\pi\)
\(458\) −157.000 + 157.000i −0.342795 + 0.342795i
\(459\) 0 0
\(460\) 0 0
\(461\) −146.969 −0.318806 −0.159403 0.987214i \(-0.550957\pi\)
−0.159403 + 0.987214i \(0.550957\pi\)
\(462\) 0 0
\(463\) 603.799 603.799i 1.30410 1.30410i 0.378501 0.925601i \(-0.376440\pi\)
0.925601 0.378501i \(-0.123560\pi\)
\(464\) 29.3939i 0.0633489i
\(465\) 0 0
\(466\) 162.000 0.347639
\(467\) 330.000 + 330.000i 0.706638 + 0.706638i 0.965827 0.259189i \(-0.0834551\pi\)
−0.259189 + 0.965827i \(0.583455\pi\)
\(468\) 0 0
\(469\) 54.0000i 0.115139i
\(470\) 0 0
\(471\) 0 0
\(472\) 176.363 + 176.363i 0.373651 + 0.373651i
\(473\) 117.000 117.000i 0.247357 0.247357i
\(474\) 0 0
\(475\) 0 0
\(476\) 14.6969 0.0308759
\(477\) 0 0
\(478\) 389.469 389.469i 0.814788 0.814788i
\(479\) 881.816i 1.84095i −0.390798 0.920476i \(-0.627801\pi\)
0.390798 0.920476i \(-0.372199\pi\)
\(480\) 0 0
\(481\) 198.000 0.411642
\(482\) 400.000 + 400.000i 0.829876 + 0.829876i
\(483\) 0 0
\(484\) 134.000i 0.276860i
\(485\) 0 0
\(486\) 0 0
\(487\) −205.757 205.757i −0.422499 0.422499i 0.463564 0.886063i \(-0.346570\pi\)
−0.886063 + 0.463564i \(0.846570\pi\)
\(488\) −50.0000 + 50.0000i −0.102459 + 0.102459i
\(489\) 0 0
\(490\) 0 0
\(491\) −169.015 −0.344226 −0.172113 0.985077i \(-0.555059\pi\)
−0.172113 + 0.985077i \(0.555059\pi\)
\(492\) 0 0
\(493\) −22.0454 + 22.0454i −0.0447169 + 0.0447169i
\(494\) 279.242i 0.565267i
\(495\) 0 0
\(496\) −52.0000 −0.104839
\(497\) −90.0000 90.0000i −0.181087 0.181087i
\(498\) 0 0
\(499\) 293.000i 0.587174i −0.955932 0.293587i \(-0.905151\pi\)
0.955932 0.293587i \(-0.0948491\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 183.712 + 183.712i 0.365960 + 0.365960i
\(503\) 453.000 453.000i 0.900596 0.900596i −0.0948912 0.995488i \(-0.530250\pi\)
0.995488 + 0.0948912i \(0.0302503\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 352.727 0.697088
\(507\) 0 0
\(508\) −279.242 + 279.242i −0.549689 + 0.549689i
\(509\) 764.241i 1.50146i 0.660612 + 0.750728i \(0.270297\pi\)
−0.660612 + 0.750728i \(0.729703\pi\)
\(510\) 0 0
\(511\) 159.000 0.311155
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 510.000i 0.992218i
\(515\) 0 0
\(516\) 0 0
\(517\) −198.409 198.409i −0.383769 0.383769i
\(518\) 33.0000 33.0000i 0.0637066 0.0637066i
\(519\) 0 0
\(520\) 0 0
\(521\) 73.4847 0.141045 0.0705227 0.997510i \(-0.477533\pi\)
0.0705227 + 0.997510i \(0.477533\pi\)
\(522\) 0 0
\(523\) 42.8661 42.8661i 0.0819619 0.0819619i −0.664937 0.746899i \(-0.731542\pi\)
0.746899 + 0.664937i \(0.231542\pi\)
\(524\) 308.636i 0.588999i
\(525\) 0 0
\(526\) 18.0000 0.0342205
\(527\) 39.0000 + 39.0000i 0.0740038 + 0.0740038i
\(528\) 0 0
\(529\) 623.000i 1.17769i
\(530\) 0 0
\(531\) 0 0
\(532\) −46.5403 46.5403i −0.0874818 0.0874818i
\(533\) 54.0000 54.0000i 0.101313 0.101313i
\(534\) 0 0
\(535\) 0 0
\(536\) −88.1816 −0.164518
\(537\) 0 0
\(538\) −323.333 + 323.333i −0.600990 + 0.600990i
\(539\) 338.030i 0.627142i
\(540\) 0 0
\(541\) 143.000 0.264325 0.132163 0.991228i \(-0.457808\pi\)
0.132163 + 0.991228i \(0.457808\pi\)
\(542\) 181.000 + 181.000i 0.333948 + 0.333948i
\(543\) 0 0
\(544\) 24.0000i 0.0441176i
\(545\) 0 0
\(546\) 0 0
\(547\) 498.471 + 498.471i 0.911282 + 0.911282i 0.996373 0.0850913i \(-0.0271182\pi\)
−0.0850913 + 0.996373i \(0.527118\pi\)
\(548\) 318.000 318.000i 0.580292 0.580292i
\(549\) 0 0
\(550\) 0 0
\(551\) 139.621 0.253395
\(552\) 0 0
\(553\) −57.5630 + 57.5630i −0.104092 + 0.104092i
\(554\) 2.44949i 0.00442146i
\(555\) 0 0
\(556\) 134.000 0.241007
\(557\) −45.0000 45.0000i −0.0807899 0.0807899i 0.665557 0.746347i \(-0.268194\pi\)
−0.746347 + 0.665557i \(0.768194\pi\)
\(558\) 0 0
\(559\) 234.000i 0.418605i
\(560\) 0 0
\(561\) 0 0
\(562\) −169.015 169.015i −0.300738 0.300738i
\(563\) 36.0000 36.0000i 0.0639432 0.0639432i −0.674412 0.738355i \(-0.735603\pi\)
0.738355 + 0.674412i \(0.235603\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 149.419 0.263991
\(567\) 0 0
\(568\) 146.969 146.969i 0.258749 0.258749i
\(569\) 176.363i 0.309953i 0.987918 + 0.154977i \(0.0495302\pi\)
−0.987918 + 0.154977i \(0.950470\pi\)
\(570\) 0 0
\(571\) −769.000 −1.34676 −0.673380 0.739297i \(-0.735158\pi\)
−0.673380 + 0.739297i \(0.735158\pi\)
\(572\) −108.000 108.000i −0.188811 0.188811i
\(573\) 0 0
\(574\) 18.0000i 0.0313589i
\(575\) 0 0
\(576\) 0 0
\(577\) −461.729 461.729i −0.800223 0.800223i 0.182907 0.983130i \(-0.441449\pi\)
−0.983130 + 0.182907i \(0.941449\pi\)
\(578\) −271.000 + 271.000i −0.468858 + 0.468858i
\(579\) 0 0
\(580\) 0 0
\(581\) 169.015 0.290903
\(582\) 0 0
\(583\) −154.318 + 154.318i −0.264696 + 0.264696i
\(584\) 259.646i 0.444599i
\(585\) 0 0
\(586\) −660.000 −1.12628
\(587\) 111.000 + 111.000i 0.189097 + 0.189097i 0.795306 0.606209i \(-0.207310\pi\)
−0.606209 + 0.795306i \(0.707310\pi\)
\(588\) 0 0
\(589\) 247.000i 0.419355i
\(590\) 0 0
\(591\) 0 0
\(592\) 53.8888 + 53.8888i 0.0910283 + 0.0910283i
\(593\) 102.000 102.000i 0.172007 0.172007i −0.615854 0.787860i \(-0.711189\pi\)
0.787860 + 0.615854i \(0.211189\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −514.393 −0.863075
\(597\) 0 0
\(598\) −352.727 + 352.727i −0.589844 + 0.589844i
\(599\) 176.363i 0.294429i −0.989105 0.147215i \(-0.952969\pi\)
0.989105 0.147215i \(-0.0470308\pi\)
\(600\) 0 0
\(601\) 439.000 0.730449 0.365225 0.930919i \(-0.380992\pi\)
0.365225 + 0.930919i \(0.380992\pi\)
\(602\) 39.0000 + 39.0000i 0.0647841 + 0.0647841i
\(603\) 0 0
\(604\) 562.000i 0.930464i
\(605\) 0 0
\(606\) 0 0
\(607\) 221.679 + 221.679i 0.365204 + 0.365204i 0.865725 0.500521i \(-0.166858\pi\)
−0.500521 + 0.865725i \(0.666858\pi\)
\(608\) 76.0000 76.0000i 0.125000 0.125000i
\(609\) 0 0
\(610\) 0 0
\(611\) 396.817 0.649456
\(612\) 0 0
\(613\) 263.320 263.320i 0.429560 0.429560i −0.458919 0.888478i \(-0.651763\pi\)
0.888478 + 0.458919i \(0.151763\pi\)
\(614\) 129.823i 0.211438i
\(615\) 0 0
\(616\) −36.0000 −0.0584416
\(617\) 336.000 + 336.000i 0.544571 + 0.544571i 0.924865 0.380295i \(-0.124177\pi\)
−0.380295 + 0.924865i \(0.624177\pi\)
\(618\) 0 0
\(619\) 835.000i 1.34895i 0.738298 + 0.674475i \(0.235630\pi\)
−0.738298 + 0.674475i \(0.764370\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 139.621 + 139.621i 0.224471 + 0.224471i
\(623\) 180.000 180.000i 0.288925 0.288925i
\(624\) 0 0
\(625\) 0 0
\(626\) −161.666 −0.258253
\(627\) 0 0
\(628\) −218.005 + 218.005i −0.347141 + 0.347141i
\(629\) 80.8332i 0.128511i
\(630\) 0 0
\(631\) −52.0000 −0.0824089 −0.0412044 0.999151i \(-0.513119\pi\)
−0.0412044 + 0.999151i \(0.513119\pi\)
\(632\) −94.0000 94.0000i −0.148734 0.148734i
\(633\) 0 0
\(634\) 438.000i 0.690852i
\(635\) 0 0
\(636\) 0 0
\(637\) 338.030 + 338.030i 0.530659 + 0.530659i
\(638\) 54.0000 54.0000i 0.0846395 0.0846395i
\(639\) 0 0
\(640\) 0 0
\(641\) 764.241 1.19226 0.596132 0.802887i \(-0.296704\pi\)
0.596132 + 0.802887i \(0.296704\pi\)
\(642\) 0 0
\(643\) 595.226 595.226i 0.925701 0.925701i −0.0717232 0.997425i \(-0.522850\pi\)
0.997425 + 0.0717232i \(0.0228498\pi\)
\(644\) 117.576i 0.182571i
\(645\) 0 0
\(646\) −114.000 −0.176471
\(647\) −138.000 138.000i −0.213292 0.213292i 0.592372 0.805664i \(-0.298191\pi\)
−0.805664 + 0.592372i \(0.798191\pi\)
\(648\) 0 0
\(649\) 648.000i 0.998459i
\(650\) 0 0
\(651\) 0 0
\(652\) −279.242 279.242i −0.428285 0.428285i
\(653\) −444.000 + 444.000i −0.679939 + 0.679939i −0.959986 0.280047i \(-0.909650\pi\)
0.280047 + 0.959986i \(0.409650\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 29.3939 0.0448077
\(657\) 0 0
\(658\) 66.1362 66.1362i 0.100511 0.100511i
\(659\) 36.7423i 0.0557547i −0.999611 0.0278773i \(-0.991125\pi\)
0.999611 0.0278773i \(-0.00887479\pi\)
\(660\) 0 0
\(661\) 1039.00 1.57186 0.785930 0.618315i \(-0.212184\pi\)
0.785930 + 0.618315i \(0.212184\pi\)
\(662\) 25.0000 + 25.0000i 0.0377644 + 0.0377644i
\(663\) 0 0
\(664\) 276.000i 0.415663i
\(665\) 0 0
\(666\) 0 0
\(667\) −176.363 176.363i −0.264413 0.264413i
\(668\) −246.000 + 246.000i −0.368263 + 0.368263i
\(669\) 0 0
\(670\) 0 0
\(671\) −183.712 −0.273788
\(672\) 0 0
\(673\) 111.452 111.452i 0.165604 0.165604i −0.619440 0.785044i \(-0.712640\pi\)
0.785044 + 0.619440i \(0.212640\pi\)
\(674\) 117.576i 0.174444i
\(675\) 0 0
\(676\) −122.000 −0.180473
\(677\) 171.000 + 171.000i 0.252585 + 0.252585i 0.822030 0.569445i \(-0.192842\pi\)
−0.569445 + 0.822030i \(0.692842\pi\)
\(678\) 0 0
\(679\) 231.000i 0.340206i
\(680\) 0 0
\(681\) 0 0
\(682\) −95.5301 95.5301i −0.140073 0.140073i
\(683\) −417.000 + 417.000i −0.610542 + 0.610542i −0.943087 0.332545i \(-0.892093\pi\)
0.332545 + 0.943087i \(0.392093\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 232.702 0.339215
\(687\) 0 0
\(688\) −63.6867 + 63.6867i −0.0925679 + 0.0925679i
\(689\) 308.636i 0.447947i
\(690\) 0 0
\(691\) 40.0000 0.0578871 0.0289436 0.999581i \(-0.490786\pi\)
0.0289436 + 0.999581i \(0.490786\pi\)
\(692\) −276.000 276.000i −0.398844 0.398844i
\(693\) 0 0
\(694\) 684.000i 0.985591i
\(695\) 0 0
\(696\) 0 0
\(697\) −22.0454 22.0454i −0.0316290 0.0316290i
\(698\) −403.000 + 403.000i −0.577364 + 0.577364i
\(699\) 0 0
\(700\) 0 0
\(701\) −102.879 −0.146760 −0.0733799 0.997304i \(-0.523379\pi\)
−0.0733799 + 0.997304i \(0.523379\pi\)
\(702\) 0 0
\(703\) −255.972 + 255.972i −0.364113 + 0.364113i
\(704\) 58.7878i 0.0835053i
\(705\) 0 0
\(706\) −612.000 −0.866856
\(707\) −9.00000 9.00000i −0.0127298 0.0127298i
\(708\) 0 0
\(709\) 227.000i 0.320169i 0.987103 + 0.160085i \(0.0511767\pi\)
−0.987103 + 0.160085i \(0.948823\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 293.939 + 293.939i 0.412835 + 0.412835i
\(713\) −312.000 + 312.000i −0.437588 + 0.437588i
\(714\) 0 0
\(715\) 0 0
\(716\) 29.3939 0.0410529
\(717\) 0 0
\(718\) −66.1362 + 66.1362i −0.0921117 + 0.0921117i
\(719\) 609.923i 0.848293i 0.905593 + 0.424147i \(0.139426\pi\)
−0.905593 + 0.424147i \(0.860574\pi\)
\(720\) 0 0
\(721\) 93.0000 0.128988
\(722\) 0 0
\(723\) 0 0
\(724\) 176.000i 0.243094i
\(725\) 0 0
\(726\) 0 0
\(727\) 983.470 + 983.470i 1.35278 + 1.35278i 0.882538 + 0.470240i \(0.155833\pi\)
0.470240 + 0.882538i \(0.344167\pi\)
\(728\) 36.0000 36.0000i 0.0494505 0.0494505i
\(729\) 0 0
\(730\) 0 0
\(731\) 95.5301 0.130684
\(732\) 0 0
\(733\) 360.075 360.075i 0.491235 0.491235i −0.417460 0.908695i \(-0.637080\pi\)
0.908695 + 0.417460i \(0.137080\pi\)
\(734\) 220.454i 0.300346i
\(735\) 0 0
\(736\) −192.000 −0.260870
\(737\) −162.000 162.000i −0.219810 0.219810i
\(738\) 0 0
\(739\) 1298.00i 1.75643i 0.478268 + 0.878214i \(0.341265\pi\)
−0.478268 + 0.878214i \(0.658735\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −51.4393 51.4393i −0.0693252 0.0693252i
\(743\) −234.000 + 234.000i −0.314939 + 0.314939i −0.846820 0.531880i \(-0.821486\pi\)
0.531880 + 0.846820i \(0.321486\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 222.904 0.298798
\(747\) 0 0
\(748\) −44.0908 + 44.0908i −0.0589449 + 0.0589449i
\(749\) 308.636i 0.412064i
\(750\) 0 0
\(751\) −383.000 −0.509987 −0.254993 0.966943i \(-0.582073\pi\)
−0.254993 + 0.966943i \(0.582073\pi\)
\(752\) 108.000 + 108.000i 0.143617 + 0.143617i
\(753\) 0 0
\(754\) 108.000i 0.143236i
\(755\) 0 0
\(756\) 0 0
\(757\) −905.086 905.086i −1.19562 1.19562i −0.975464 0.220159i \(-0.929342\pi\)
−0.220159 0.975464i \(-0.570658\pi\)
\(758\) 416.000 416.000i 0.548813 0.548813i
\(759\) 0 0
\(760\) 0 0
\(761\) −1036.13 −1.36154 −0.680771 0.732496i \(-0.738355\pi\)
−0.680771 + 0.732496i \(0.738355\pi\)
\(762\) 0 0
\(763\) −64.9115 + 64.9115i −0.0850740 + 0.0850740i
\(764\) 573.181i 0.750236i
\(765\) 0 0
\(766\) −642.000 −0.838120
\(767\) −648.000 648.000i −0.844850 0.844850i
\(768\) 0 0
\(769\) 872.000i 1.13394i −0.823738 0.566970i \(-0.808115\pi\)
0.823738 0.566970i \(-0.191885\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 120.025 + 120.025i 0.155473 + 0.155473i
\(773\) 237.000 237.000i 0.306598 0.306598i −0.536991 0.843588i \(-0.680439\pi\)
0.843588 + 0.536991i \(0.180439\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −377.221 −0.486110
\(777\) 0 0
\(778\) −756.892 + 756.892i −0.972869 + 0.972869i
\(779\) 139.621i 0.179231i
\(780\) 0 0
\(781\) 540.000 0.691421
\(782\) 144.000 + 144.000i 0.184143 + 0.184143i
\(783\) 0 0
\(784\) 184.000i 0.234694i
\(785\) 0 0
\(786\) 0 0
\(787\) 909.985 + 909.985i 1.15627 + 1.15627i 0.985271 + 0.171000i \(0.0546999\pi\)
0.171000 + 0.985271i \(0.445300\pi\)
\(788\) −66.0000 + 66.0000i −0.0837563 + 0.0837563i
\(789\) 0 0
\(790\) 0 0
\(791\) 220.454 0.278703
\(792\) 0 0
\(793\) 183.712 183.712i 0.231667 0.231667i
\(794\) 673.610i 0.848375i
\(795\) 0 0
\(796\) −500.000 −0.628141
\(797\) −750.000 750.000i −0.941029 0.941029i 0.0573266 0.998355i \(-0.481742\pi\)
−0.998355 + 0.0573266i \(0.981742\pi\)
\(798\) 0 0
\(799\) 162.000i 0.202753i
\(800\) 0 0
\(801\) 0 0
\(802\) 558.484 + 558.484i 0.696364 + 0.696364i
\(803\) −477.000 + 477.000i −0.594022 + 0.594022i
\(804\) 0 0
\(805\) 0 0
\(806\) 191.060 0.237047
\(807\) 0 0
\(808\) 14.6969 14.6969i 0.0181893 0.0181893i
\(809\) 1543.18i 1.90751i 0.300579 + 0.953757i \(0.402820\pi\)
−0.300579 + 0.953757i \(0.597180\pi\)
\(810\) 0 0
\(811\) −35.0000 −0.0431566 −0.0215783 0.999767i \(-0.506869\pi\)
−0.0215783 + 0.999767i \(0.506869\pi\)
\(812\) 18.0000 + 18.0000i 0.0221675 + 0.0221675i
\(813\) 0 0
\(814\) 198.000i 0.243243i
\(815\) 0 0
\(816\) 0 0
\(817\) −302.512 302.512i −0.370272 0.370272i
\(818\) −550.000 + 550.000i −0.672372 + 0.672372i
\(819\) 0 0
\(820\) 0 0
\(821\) −698.105 −0.850310 −0.425155 0.905121i \(-0.639780\pi\)
−0.425155 + 0.905121i \(0.639780\pi\)
\(822\) 0 0
\(823\) 1021.44 1021.44i 1.24111 1.24111i 0.281575 0.959539i \(-0.409143\pi\)
0.959539 0.281575i \(-0.0908569\pi\)
\(824\) 151.868i 0.184306i
\(825\) 0 0
\(826\) −216.000 −0.261501
\(827\) −663.000 663.000i −0.801693 0.801693i 0.181667 0.983360i \(-0.441851\pi\)
−0.983360 + 0.181667i \(0.941851\pi\)
\(828\) 0 0
\(829\) 395.000i 0.476478i 0.971207 + 0.238239i \(0.0765701\pi\)
−0.971207 + 0.238239i \(0.923430\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 58.7878 + 58.7878i 0.0706584 + 0.0706584i
\(833\) 138.000 138.000i 0.165666 0.165666i
\(834\) 0 0
\(835\) 0 0
\(836\) 279.242 0.334021
\(837\) 0 0
\(838\) 58.7878 58.7878i 0.0701525 0.0701525i
\(839\) 1499.09i 1.78676i 0.449307 + 0.893378i \(0.351671\pi\)
−0.449307 + 0.893378i \(0.648329\pi\)
\(840\) 0 0
\(841\) 787.000 0.935791
\(842\) −583.000 583.000i −0.692399 0.692399i
\(843\) 0 0
\(844\) 380.000i 0.450237i
\(845\) 0 0
\(846\) 0 0
\(847\) 82.0579 + 82.0579i 0.0968806 + 0.0968806i
\(848\) 84.0000 84.0000i 0.0990566 0.0990566i
\(849\) 0 0
\(850\) 0 0
\(851\) 646.665 0.759889
\(852\) 0 0
\(853\) 617.271 617.271i 0.723648 0.723648i −0.245699 0.969346i \(-0.579017\pi\)
0.969346 + 0.245699i \(0.0790174\pi\)
\(854\) 61.2372i 0.0717064i
\(855\) 0 0
\(856\) −504.000 −0.588785
\(857\) 300.000 + 300.000i 0.350058 + 0.350058i 0.860131 0.510073i \(-0.170382\pi\)
−0.510073 + 0.860131i \(0.670382\pi\)
\(858\) 0 0
\(859\) 1615.00i 1.88009i 0.341046 + 0.940047i \(0.389219\pi\)
−0.341046 + 0.940047i \(0.610781\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 183.712 + 183.712i 0.213123 + 0.213123i
\(863\) −579.000 + 579.000i −0.670915 + 0.670915i −0.957927 0.287012i \(-0.907338\pi\)
0.287012 + 0.957927i \(0.407338\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1031.24 1.19080
\(867\) 0 0
\(868\) 31.8434 31.8434i 0.0366859 0.0366859i
\(869\) 345.378i 0.397443i
\(870\) 0 0
\(871\) 324.000 0.371986
\(872\) −106.000 106.000i −0.121560 0.121560i
\(873\) 0 0
\(874\) 912.000i 1.04348i
\(875\) 0 0
\(876\) 0 0
\(877\) −96.7548 96.7548i −0.110325 0.110325i 0.649789 0.760114i \(-0.274857\pi\)
−0.760114 + 0.649789i \(0.774857\pi\)
\(878\) −29.0000 + 29.0000i −0.0330296 + 0.0330296i
\(879\) 0 0
\(880\) 0 0
\(881\) 286.590 0.325301 0.162651 0.986684i \(-0.447996\pi\)
0.162651 + 0.986684i \(0.447996\pi\)
\(882\) 0 0
\(883\) 278.017 278.017i 0.314855 0.314855i −0.531932 0.846787i \(-0.678534\pi\)
0.846787 + 0.531932i \(0.178534\pi\)
\(884\) 88.1816i 0.0997530i
\(885\) 0 0
\(886\) −120.000 −0.135440
\(887\) −285.000 285.000i −0.321308 0.321308i 0.527961 0.849269i \(-0.322957\pi\)
−0.849269 + 0.527961i \(0.822957\pi\)
\(888\) 0 0
\(889\) 342.000i 0.384702i
\(890\) 0 0
\(891\) 0 0
\(892\) −46.5403 46.5403i −0.0521752 0.0521752i
\(893\) −513.000 + 513.000i −0.574468 + 0.574468i
\(894\) 0 0
\(895\) 0 0
\(896\) 19.5959 0.0218704
\(897\) 0 0
\(898\) −521.741 + 521.741i −0.581004 + 0.581004i
\(899\) 95.5301i 0.106263i
\(900\) 0 0
\(901\) −126.000 −0.139845
\(902\) 54.0000 + 54.0000i 0.0598670 + 0.0598670i
\(903\) 0 0
\(904\) 360.000i 0.398230i
\(905\) 0 0
\(906\) 0 0
\(907\) 331.906 + 331.906i 0.365938 + 0.365938i 0.865993 0.500055i \(-0.166687\pi\)
−0.500055 + 0.865993i \(0.666687\pi\)
\(908\) 204.000 204.000i 0.224670 0.224670i
\(909\) 0 0
\(910\) 0 0
\(911\) −1080.22 −1.18576 −0.592879 0.805292i \(-0.702009\pi\)
−0.592879 + 0.805292i \(0.702009\pi\)
\(912\) 0 0
\(913\) −507.044 + 507.044i −0.555361 + 0.555361i
\(914\) 896.513i 0.980868i
\(915\) 0 0
\(916\) 314.000 0.342795
\(917\) 189.000 + 189.000i 0.206107 + 0.206107i
\(918\) 0 0
\(919\) 1457.00i 1.58542i 0.609600 + 0.792709i \(0.291330\pi\)
−0.609600 + 0.792709i \(0.708670\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 146.969 + 146.969i 0.159403 + 0.159403i
\(923\) −540.000 + 540.000i −0.585049 + 0.585049i
\(924\) 0 0
\(925\) 0 0
\(926\) −1207.60 −1.30410
\(927\) 0 0
\(928\) −29.3939 + 29.3939i −0.0316744 + 0.0316744i
\(929\) 73.4847i 0.0791009i −0.999218 0.0395504i \(-0.987407\pi\)
0.999218 0.0395504i \(-0.0125926\pi\)
\(930\) 0 0
\(931\) −874.000 −0.938776
\(932\) −162.000 162.000i −0.173820 0.173820i
\(933\) 0 0
\(934\) 660.000i 0.706638i
\(935\) 0 0
\(936\) 0 0
\(937\) 491.123 + 491.123i 0.524144 + 0.524144i 0.918820 0.394676i \(-0.129143\pi\)
−0.394676 + 0.918820i \(0.629143\pi\)
\(938\) 54.0000 54.0000i 0.0575693 0.0575693i
\(939\) 0 0
\(940\) 0 0
\(941\) 1756.28 1.86640 0.933201 0.359355i \(-0.117003\pi\)
0.933201 + 0.359355i \(0.117003\pi\)
\(942\) 0 0
\(943\) 176.363 176.363i 0.187024 0.187024i
\(944\) 352.727i 0.373651i
\(945\) 0 0
\(946\) −234.000 −0.247357
\(947\) −87.0000 87.0000i −0.0918691 0.0918691i 0.659679 0.751548i \(-0.270692\pi\)
−0.751548 + 0.659679i \(0.770692\pi\)
\(948\) 0 0
\(949\) 954.000i 1.00527i
\(950\) 0 0
\(951\) 0 0
\(952\) −14.6969 14.6969i −0.0154380 0.0154380i
\(953\) −639.000 + 639.000i −0.670514 + 0.670514i −0.957835 0.287320i \(-0.907236\pi\)
0.287320 + 0.957835i \(0.407236\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −778.938 −0.814788
\(957\) 0 0
\(958\) −881.816 + 881.816i −0.920476 + 0.920476i
\(959\) 389.469i 0.406120i
\(960\) 0 0
\(961\) −792.000 −0.824142
\(962\) −198.000 198.000i −0.205821 0.205821i
\(963\) 0 0
\(964\) 800.000i 0.829876i
\(965\) 0 0
\(966\) 0 0
\(967\) −821.804 821.804i −0.849849 0.849849i 0.140265 0.990114i \(-0.455205\pi\)
−0.990114 + 0.140265i \(0.955205\pi\)
\(968\) −134.000 + 134.000i −0.138430 + 0.138430i
\(969\) 0 0
\(970\) 0 0
\(971\) 176.363 0.181631 0.0908153 0.995868i \(-0.471053\pi\)
0.0908153 + 0.995868i \(0.471053\pi\)
\(972\) 0 0
\(973\) −82.0579 + 82.0579i −0.0843350 + 0.0843350i
\(974\) 411.514i 0.422499i
\(975\) 0 0
\(976\) 100.000 0.102459
\(977\) −828.000 828.000i −0.847492 0.847492i 0.142327 0.989820i \(-0.454541\pi\)
−0.989820 + 0.142327i \(0.954541\pi\)
\(978\) 0 0
\(979\) 1080.00i 1.10317i
\(980\) 0 0
\(981\) 0 0
\(982\) 169.015 + 169.015i 0.172113 + 0.172113i
\(983\) −555.000 + 555.000i −0.564598 + 0.564598i −0.930610 0.366012i \(-0.880723\pi\)
0.366012 + 0.930610i \(0.380723\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 44.0908 0.0447169
\(987\) 0 0
\(988\) −279.242 + 279.242i −0.282633 + 0.282633i
\(989\) 764.241i 0.772741i
\(990\) 0 0
\(991\) 503.000 0.507568 0.253784 0.967261i \(-0.418325\pi\)
0.253784 + 0.967261i \(0.418325\pi\)
\(992\) 52.0000 + 52.0000i 0.0524194 + 0.0524194i
\(993\) 0 0
\(994\) 180.000i 0.181087i
\(995\) 0 0
\(996\) 0 0
\(997\) −1256.59 1256.59i −1.26037 1.26037i −0.950914 0.309455i \(-0.899853\pi\)
−0.309455 0.950914i \(-0.600147\pi\)
\(998\) −293.000 + 293.000i −0.293587 + 0.293587i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.g.d.757.1 4
3.2 odd 2 1350.3.g.i.757.1 yes 4
5.2 odd 4 1350.3.g.i.1243.2 yes 4
5.3 odd 4 inner 1350.3.g.d.1243.1 yes 4
5.4 even 2 1350.3.g.i.757.2 yes 4
15.2 even 4 inner 1350.3.g.d.1243.2 yes 4
15.8 even 4 1350.3.g.i.1243.1 yes 4
15.14 odd 2 inner 1350.3.g.d.757.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1350.3.g.d.757.1 4 1.1 even 1 trivial
1350.3.g.d.757.2 yes 4 15.14 odd 2 inner
1350.3.g.d.1243.1 yes 4 5.3 odd 4 inner
1350.3.g.d.1243.2 yes 4 15.2 even 4 inner
1350.3.g.i.757.1 yes 4 3.2 odd 2
1350.3.g.i.757.2 yes 4 5.4 even 2
1350.3.g.i.1243.1 yes 4 15.8 even 4
1350.3.g.i.1243.2 yes 4 5.2 odd 4