Properties

Label 1350.2.bc
Level $1350$
Weight $2$
Character orbit 1350.bc
Rep. character $\chi_{1350}(31,\cdot)$
Character field $\Q(\zeta_{45})$
Dimension $2160$
Sturm bound $540$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.bc (of order \(45\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 675 \)
Character field: \(\Q(\zeta_{45})\)
Sturm bound: \(540\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1350, [\chi])\).

Total New Old
Modular forms 6576 2160 4416
Cusp forms 6384 2160 4224
Eisenstein series 192 0 192

Trace form

\( 2160 q - 24 q^{5} - 42 q^{15} - 12 q^{20} - 72 q^{21} + 24 q^{23} - 72 q^{25} + 288 q^{26} + 12 q^{27} - 36 q^{30} + 36 q^{31} + 12 q^{33} - 18 q^{35} - 24 q^{36} + 36 q^{38} + 60 q^{39} + 48 q^{42} + 12 q^{44}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1350, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1350, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1350, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)