Properties

Label 135.3.l.a.127.8
Level $135$
Weight $3$
Character 135.127
Analytic conductor $3.678$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(37,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 127.8
Character \(\chi\) \(=\) 135.127
Dual form 135.3.l.a.118.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.38711 - 0.639624i) q^{2} +(1.82507 - 1.05371i) q^{4} +(1.83989 + 4.64917i) q^{5} +(10.3622 - 2.77655i) q^{7} +(-3.30727 + 3.30727i) q^{8} +(7.36573 + 9.92126i) q^{10} +(5.66397 - 9.81028i) q^{11} +(-9.44533 - 2.53087i) q^{13} +(22.9598 - 13.2559i) q^{14} +(-9.99423 + 17.3105i) q^{16} +(-8.05728 - 8.05728i) q^{17} +3.73565i q^{19} +(8.25680 + 6.54639i) q^{20} +(7.24562 - 27.0410i) q^{22} +(-13.4504 - 3.60402i) q^{23} +(-18.2296 + 17.1079i) q^{25} -24.1658 q^{26} +(15.9862 - 15.9862i) q^{28} +(-28.7625 - 16.6061i) q^{29} +(7.67855 + 13.2996i) q^{31} +(-7.94293 + 29.6434i) q^{32} +(-24.3873 - 14.0800i) q^{34} +(31.9740 + 43.0673i) q^{35} +(13.7991 + 13.7991i) q^{37} +(2.38941 + 8.91741i) q^{38} +(-21.4611 - 9.29107i) q^{40} +(-4.87477 - 8.44335i) q^{41} +(-10.2845 - 38.3822i) q^{43} -23.8727i q^{44} -34.4127 q^{46} +(-1.68543 + 0.451608i) q^{47} +(57.2314 - 33.0426i) q^{49} +(-32.5735 + 52.4986i) q^{50} +(-19.9052 + 5.33359i) q^{52} +(45.3574 - 45.3574i) q^{53} +(56.0308 + 8.28298i) q^{55} +(-25.0879 + 43.4535i) q^{56} +(-79.2810 - 21.2433i) q^{58} +(10.2473 - 5.91626i) q^{59} +(-28.0510 + 48.5858i) q^{61} +(26.8363 + 26.8363i) q^{62} -4.11124i q^{64} +(-5.61188 - 48.5695i) q^{65} +(-12.7011 + 47.4011i) q^{67} +(-23.1952 - 6.21513i) q^{68} +(103.872 + 82.3550i) q^{70} -22.2795 q^{71} +(37.2225 - 37.2225i) q^{73} +(41.7661 + 24.1137i) q^{74} +(3.93628 + 6.81784i) q^{76} +(31.4526 - 117.383i) q^{77} +(-105.323 - 60.8084i) q^{79} +(-98.8678 - 14.6155i) q^{80} +(-17.0372 - 17.0372i) q^{82} +(28.1424 + 105.029i) q^{83} +(22.6352 - 52.2842i) q^{85} +(-49.1003 - 85.0443i) q^{86} +(13.7130 + 51.1775i) q^{88} +16.0767i q^{89} -104.902 q^{91} +(-28.3455 + 7.59516i) q^{92} +(-3.73444 + 2.15608i) q^{94} +(-17.3677 + 6.87317i) q^{95} +(172.402 - 46.1951i) q^{97} +(115.483 - 115.483i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 2 q^{5} - 2 q^{7} + 24 q^{8} - 8 q^{10} - 8 q^{11} - 2 q^{13} + 28 q^{16} - 28 q^{17} + 114 q^{20} + 14 q^{22} - 82 q^{23} - 8 q^{25} + 112 q^{26} - 88 q^{28} - 4 q^{31} + 14 q^{32} - 352 q^{35}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38711 0.639624i 1.19356 0.319812i 0.393265 0.919425i \(-0.371345\pi\)
0.800290 + 0.599613i \(0.204679\pi\)
\(3\) 0 0
\(4\) 1.82507 1.05371i 0.456269 0.263427i
\(5\) 1.83989 + 4.64917i 0.367977 + 0.929835i
\(6\) 0 0
\(7\) 10.3622 2.77655i 1.48032 0.396650i 0.573863 0.818951i \(-0.305444\pi\)
0.906456 + 0.422301i \(0.138777\pi\)
\(8\) −3.30727 + 3.30727i −0.413408 + 0.413408i
\(9\) 0 0
\(10\) 7.36573 + 9.92126i 0.736573 + 0.992126i
\(11\) 5.66397 9.81028i 0.514906 0.891844i −0.484944 0.874545i \(-0.661160\pi\)
0.999850 0.0172985i \(-0.00550657\pi\)
\(12\) 0 0
\(13\) −9.44533 2.53087i −0.726564 0.194682i −0.123465 0.992349i \(-0.539401\pi\)
−0.603098 + 0.797667i \(0.706067\pi\)
\(14\) 22.9598 13.2559i 1.63999 0.946848i
\(15\) 0 0
\(16\) −9.99423 + 17.3105i −0.624639 + 1.08191i
\(17\) −8.05728 8.05728i −0.473958 0.473958i 0.429235 0.903193i \(-0.358783\pi\)
−0.903193 + 0.429235i \(0.858783\pi\)
\(18\) 0 0
\(19\) 3.73565i 0.196613i 0.995156 + 0.0983066i \(0.0313426\pi\)
−0.995156 + 0.0983066i \(0.968657\pi\)
\(20\) 8.25680 + 6.54639i 0.412840 + 0.327319i
\(21\) 0 0
\(22\) 7.24562 27.0410i 0.329346 1.22914i
\(23\) −13.4504 3.60402i −0.584799 0.156696i −0.0457238 0.998954i \(-0.514559\pi\)
−0.539075 + 0.842258i \(0.681226\pi\)
\(24\) 0 0
\(25\) −18.2296 + 17.1079i −0.729186 + 0.684316i
\(26\) −24.1658 −0.929456
\(27\) 0 0
\(28\) 15.9862 15.9862i 0.570935 0.570935i
\(29\) −28.7625 16.6061i −0.991812 0.572623i −0.0859964 0.996295i \(-0.527407\pi\)
−0.905815 + 0.423673i \(0.860741\pi\)
\(30\) 0 0
\(31\) 7.67855 + 13.2996i 0.247695 + 0.429021i 0.962886 0.269909i \(-0.0869935\pi\)
−0.715191 + 0.698929i \(0.753660\pi\)
\(32\) −7.94293 + 29.6434i −0.248217 + 0.926357i
\(33\) 0 0
\(34\) −24.3873 14.0800i −0.717272 0.414117i
\(35\) 31.9740 + 43.0673i 0.913543 + 1.23049i
\(36\) 0 0
\(37\) 13.7991 + 13.7991i 0.372947 + 0.372947i 0.868550 0.495602i \(-0.165053\pi\)
−0.495602 + 0.868550i \(0.665053\pi\)
\(38\) 2.38941 + 8.91741i 0.0628793 + 0.234669i
\(39\) 0 0
\(40\) −21.4611 9.29107i −0.536526 0.232277i
\(41\) −4.87477 8.44335i −0.118897 0.205935i 0.800434 0.599421i \(-0.204602\pi\)
−0.919331 + 0.393486i \(0.871269\pi\)
\(42\) 0 0
\(43\) −10.2845 38.3822i −0.239174 0.892609i −0.976223 0.216769i \(-0.930448\pi\)
0.737049 0.675839i \(-0.236219\pi\)
\(44\) 23.8727i 0.542560i
\(45\) 0 0
\(46\) −34.4127 −0.748103
\(47\) −1.68543 + 0.451608i −0.0358601 + 0.00960869i −0.276705 0.960955i \(-0.589242\pi\)
0.240844 + 0.970564i \(0.422576\pi\)
\(48\) 0 0
\(49\) 57.2314 33.0426i 1.16799 0.674338i
\(50\) −32.5735 + 52.4986i −0.651471 + 1.04997i
\(51\) 0 0
\(52\) −19.9052 + 5.33359i −0.382793 + 0.102569i
\(53\) 45.3574 45.3574i 0.855801 0.855801i −0.135040 0.990840i \(-0.543116\pi\)
0.990840 + 0.135040i \(0.0431161\pi\)
\(54\) 0 0
\(55\) 56.0308 + 8.28298i 1.01874 + 0.150600i
\(56\) −25.0879 + 43.4535i −0.447998 + 0.775955i
\(57\) 0 0
\(58\) −79.2810 21.2433i −1.36691 0.366263i
\(59\) 10.2473 5.91626i 0.173683 0.100276i −0.410639 0.911798i \(-0.634694\pi\)
0.584321 + 0.811523i \(0.301361\pi\)
\(60\) 0 0
\(61\) −28.0510 + 48.5858i −0.459852 + 0.796488i −0.998953 0.0457538i \(-0.985431\pi\)
0.539100 + 0.842242i \(0.318764\pi\)
\(62\) 26.8363 + 26.8363i 0.432844 + 0.432844i
\(63\) 0 0
\(64\) 4.11124i 0.0642381i
\(65\) −5.61188 48.5695i −0.0863366 0.747223i
\(66\) 0 0
\(67\) −12.7011 + 47.4011i −0.189569 + 0.707480i 0.804038 + 0.594578i \(0.202681\pi\)
−0.993606 + 0.112901i \(0.963986\pi\)
\(68\) −23.1952 6.21513i −0.341105 0.0913989i
\(69\) 0 0
\(70\) 103.872 + 82.3550i 1.48389 + 1.17650i
\(71\) −22.2795 −0.313795 −0.156898 0.987615i \(-0.550149\pi\)
−0.156898 + 0.987615i \(0.550149\pi\)
\(72\) 0 0
\(73\) 37.2225 37.2225i 0.509898 0.509898i −0.404597 0.914495i \(-0.632588\pi\)
0.914495 + 0.404597i \(0.132588\pi\)
\(74\) 41.7661 + 24.1137i 0.564407 + 0.325860i
\(75\) 0 0
\(76\) 3.93628 + 6.81784i 0.0517932 + 0.0897084i
\(77\) 31.4526 117.383i 0.408475 1.52445i
\(78\) 0 0
\(79\) −105.323 60.8084i −1.33321 0.769726i −0.347416 0.937711i \(-0.612941\pi\)
−0.985790 + 0.167985i \(0.946274\pi\)
\(80\) −98.8678 14.6155i −1.23585 0.182694i
\(81\) 0 0
\(82\) −17.0372 17.0372i −0.207771 0.207771i
\(83\) 28.1424 + 105.029i 0.339065 + 1.26541i 0.899394 + 0.437139i \(0.144008\pi\)
−0.560329 + 0.828270i \(0.689325\pi\)
\(84\) 0 0
\(85\) 22.6352 52.2842i 0.266297 0.615108i
\(86\) −49.1003 85.0443i −0.570934 0.988887i
\(87\) 0 0
\(88\) 13.7130 + 51.1775i 0.155829 + 0.581562i
\(89\) 16.0767i 0.180637i 0.995913 + 0.0903186i \(0.0287885\pi\)
−0.995913 + 0.0903186i \(0.971211\pi\)
\(90\) 0 0
\(91\) −104.902 −1.15277
\(92\) −28.3455 + 7.59516i −0.308103 + 0.0825560i
\(93\) 0 0
\(94\) −3.73444 + 2.15608i −0.0397281 + 0.0229370i
\(95\) −17.3677 + 6.87317i −0.182818 + 0.0723492i
\(96\) 0 0
\(97\) 172.402 46.1951i 1.77734 0.476238i 0.787248 0.616636i \(-0.211505\pi\)
0.990095 + 0.140398i \(0.0448383\pi\)
\(98\) 115.483 115.483i 1.17840 1.17840i
\(99\) 0 0
\(100\) −15.2437 + 50.4319i −0.152437 + 0.504319i
\(101\) 13.8448 23.9798i 0.137077 0.237424i −0.789312 0.613992i \(-0.789563\pi\)
0.926389 + 0.376568i \(0.122896\pi\)
\(102\) 0 0
\(103\) 147.434 + 39.5049i 1.43140 + 0.383543i 0.889514 0.456908i \(-0.151043\pi\)
0.541888 + 0.840451i \(0.317710\pi\)
\(104\) 39.6085 22.8680i 0.380851 0.219884i
\(105\) 0 0
\(106\) 79.2615 137.285i 0.747750 1.29514i
\(107\) 108.283 + 108.283i 1.01199 + 1.01199i 0.999927 + 0.0120628i \(0.00383979\pi\)
0.0120628 + 0.999927i \(0.496160\pi\)
\(108\) 0 0
\(109\) 184.036i 1.68841i 0.536024 + 0.844203i \(0.319926\pi\)
−0.536024 + 0.844203i \(0.680074\pi\)
\(110\) 139.050 16.0662i 1.26409 0.146057i
\(111\) 0 0
\(112\) −55.4990 + 207.125i −0.495527 + 1.84933i
\(113\) 162.637 + 43.5785i 1.43927 + 0.385650i 0.892277 0.451489i \(-0.149107\pi\)
0.546990 + 0.837139i \(0.315774\pi\)
\(114\) 0 0
\(115\) −7.99145 69.1641i −0.0694909 0.601427i
\(116\) −69.9917 −0.603377
\(117\) 0 0
\(118\) 20.6772 20.6772i 0.175230 0.175230i
\(119\) −105.863 61.1200i −0.889604 0.513613i
\(120\) 0 0
\(121\) −3.66106 6.34114i −0.0302567 0.0524061i
\(122\) −35.8842 + 133.922i −0.294133 + 1.09772i
\(123\) 0 0
\(124\) 28.0279 + 16.1819i 0.226031 + 0.130499i
\(125\) −113.078 53.2762i −0.904624 0.426210i
\(126\) 0 0
\(127\) −94.7770 94.7770i −0.746275 0.746275i 0.227502 0.973778i \(-0.426944\pi\)
−0.973778 + 0.227502i \(0.926944\pi\)
\(128\) −34.4014 128.388i −0.268761 1.00303i
\(129\) 0 0
\(130\) −44.4624 112.351i −0.342018 0.864240i
\(131\) 56.6078 + 98.0476i 0.432121 + 0.748455i 0.997056 0.0766803i \(-0.0244321\pi\)
−0.564935 + 0.825135i \(0.691099\pi\)
\(132\) 0 0
\(133\) 10.3722 + 38.7097i 0.0779867 + 0.291050i
\(134\) 121.276i 0.905042i
\(135\) 0 0
\(136\) 53.2952 0.391876
\(137\) −23.3586 + 6.25891i −0.170501 + 0.0456855i −0.343059 0.939314i \(-0.611463\pi\)
0.172559 + 0.984999i \(0.444797\pi\)
\(138\) 0 0
\(139\) −98.1741 + 56.6809i −0.706289 + 0.407776i −0.809685 0.586864i \(-0.800362\pi\)
0.103397 + 0.994640i \(0.467029\pi\)
\(140\) 103.735 + 44.9098i 0.740966 + 0.320784i
\(141\) 0 0
\(142\) −53.1835 + 14.2505i −0.374532 + 0.100355i
\(143\) −78.3266 + 78.3266i −0.547738 + 0.547738i
\(144\) 0 0
\(145\) 24.2847 164.275i 0.167481 1.13293i
\(146\) 65.0459 112.663i 0.445520 0.771663i
\(147\) 0 0
\(148\) 39.7245 + 10.6441i 0.268409 + 0.0719199i
\(149\) −136.216 + 78.6442i −0.914199 + 0.527813i −0.881780 0.471661i \(-0.843655\pi\)
−0.0324193 + 0.999474i \(0.510321\pi\)
\(150\) 0 0
\(151\) 9.10366 15.7680i 0.0602891 0.104424i −0.834306 0.551302i \(-0.814131\pi\)
0.894595 + 0.446879i \(0.147464\pi\)
\(152\) −12.3548 12.3548i −0.0812815 0.0812815i
\(153\) 0 0
\(154\) 300.323i 1.95015i
\(155\) −47.7047 + 60.1688i −0.307772 + 0.388186i
\(156\) 0 0
\(157\) 43.8009 163.467i 0.278987 1.04119i −0.674136 0.738607i \(-0.735484\pi\)
0.953122 0.302585i \(-0.0978496\pi\)
\(158\) −290.313 77.7890i −1.83742 0.492336i
\(159\) 0 0
\(160\) −152.432 + 17.6124i −0.952697 + 0.110078i
\(161\) −149.383 −0.927842
\(162\) 0 0
\(163\) −152.193 + 152.193i −0.933698 + 0.933698i −0.997935 0.0642365i \(-0.979539\pi\)
0.0642365 + 0.997935i \(0.479539\pi\)
\(164\) −17.7936 10.2732i −0.108498 0.0626412i
\(165\) 0 0
\(166\) 134.358 + 232.715i 0.809387 + 1.40190i
\(167\) 29.2359 109.110i 0.175065 0.653353i −0.821475 0.570245i \(-0.806848\pi\)
0.996540 0.0831087i \(-0.0264849\pi\)
\(168\) 0 0
\(169\) −63.5494 36.6902i −0.376032 0.217102i
\(170\) 20.5906 139.286i 0.121121 0.819331i
\(171\) 0 0
\(172\) −59.2135 59.2135i −0.344264 0.344264i
\(173\) 18.4527 + 68.8666i 0.106663 + 0.398073i 0.998529 0.0542285i \(-0.0172699\pi\)
−0.891865 + 0.452301i \(0.850603\pi\)
\(174\) 0 0
\(175\) −141.399 + 227.892i −0.807993 + 1.30224i
\(176\) 113.214 + 196.092i 0.643261 + 1.11416i
\(177\) 0 0
\(178\) 10.2831 + 38.3769i 0.0577700 + 0.215600i
\(179\) 46.2183i 0.258203i 0.991631 + 0.129101i \(0.0412092\pi\)
−0.991631 + 0.129101i \(0.958791\pi\)
\(180\) 0 0
\(181\) −166.274 −0.918640 −0.459320 0.888271i \(-0.651907\pi\)
−0.459320 + 0.888271i \(0.651907\pi\)
\(182\) −250.412 + 67.0977i −1.37589 + 0.368669i
\(183\) 0 0
\(184\) 56.4034 32.5645i 0.306540 0.176981i
\(185\) −38.7655 + 89.5429i −0.209543 + 0.484016i
\(186\) 0 0
\(187\) −124.680 + 33.4080i −0.666740 + 0.178652i
\(188\) −2.60016 + 2.60016i −0.0138307 + 0.0138307i
\(189\) 0 0
\(190\) −37.0623 + 27.5158i −0.195065 + 0.144820i
\(191\) 58.2778 100.940i 0.305119 0.528482i −0.672169 0.740398i \(-0.734637\pi\)
0.977288 + 0.211916i \(0.0679704\pi\)
\(192\) 0 0
\(193\) −120.711 32.3443i −0.625443 0.167587i −0.0678422 0.997696i \(-0.521611\pi\)
−0.557601 + 0.830109i \(0.688278\pi\)
\(194\) 381.996 220.545i 1.96905 1.13683i
\(195\) 0 0
\(196\) 69.6344 120.610i 0.355277 0.615358i
\(197\) −83.4305 83.4305i −0.423505 0.423505i 0.462903 0.886409i \(-0.346808\pi\)
−0.886409 + 0.462903i \(0.846808\pi\)
\(198\) 0 0
\(199\) 271.461i 1.36412i 0.731294 + 0.682062i \(0.238917\pi\)
−0.731294 + 0.682062i \(0.761083\pi\)
\(200\) 3.70990 116.871i 0.0185495 0.584353i
\(201\) 0 0
\(202\) 17.7109 66.0980i 0.0876777 0.327218i
\(203\) −344.152 92.2152i −1.69533 0.454262i
\(204\) 0 0
\(205\) 30.2856 38.1985i 0.147735 0.186334i
\(206\) 377.210 1.83112
\(207\) 0 0
\(208\) 138.209 138.209i 0.664468 0.664468i
\(209\) 36.6478 + 21.1586i 0.175348 + 0.101237i
\(210\) 0 0
\(211\) −65.7689 113.915i −0.311701 0.539882i 0.667030 0.745031i \(-0.267565\pi\)
−0.978731 + 0.205149i \(0.934232\pi\)
\(212\) 34.9872 130.574i 0.165034 0.615916i
\(213\) 0 0
\(214\) 327.744 + 189.223i 1.53151 + 0.884219i
\(215\) 159.523 118.433i 0.741968 0.550852i
\(216\) 0 0
\(217\) 116.494 + 116.494i 0.536839 + 0.536839i
\(218\) 117.714 + 439.315i 0.539972 + 2.01520i
\(219\) 0 0
\(220\) 110.988 43.9230i 0.504492 0.199650i
\(221\) 55.7118 + 96.4956i 0.252089 + 0.436632i
\(222\) 0 0
\(223\) −8.00949 29.8918i −0.0359170 0.134044i 0.945639 0.325217i \(-0.105437\pi\)
−0.981556 + 0.191173i \(0.938771\pi\)
\(224\) 329.226i 1.46976i
\(225\) 0 0
\(226\) 416.107 1.84118
\(227\) 63.1736 16.9273i 0.278298 0.0745697i −0.116970 0.993135i \(-0.537318\pi\)
0.395268 + 0.918566i \(0.370652\pi\)
\(228\) 0 0
\(229\) 240.813 139.033i 1.05158 0.607132i 0.128491 0.991711i \(-0.458987\pi\)
0.923092 + 0.384579i \(0.125653\pi\)
\(230\) −63.3155 159.991i −0.275285 0.695612i
\(231\) 0 0
\(232\) 150.046 40.2047i 0.646750 0.173296i
\(233\) 106.791 106.791i 0.458329 0.458329i −0.439778 0.898107i \(-0.644943\pi\)
0.898107 + 0.439778i \(0.144943\pi\)
\(234\) 0 0
\(235\) −5.20060 7.00493i −0.0221302 0.0298082i
\(236\) 12.4680 21.5952i 0.0528306 0.0915053i
\(237\) 0 0
\(238\) −291.800 78.1876i −1.22605 0.328520i
\(239\) −136.295 + 78.6901i −0.570273 + 0.329247i −0.757258 0.653115i \(-0.773462\pi\)
0.186985 + 0.982363i \(0.440128\pi\)
\(240\) 0 0
\(241\) −10.1579 + 17.5940i −0.0421489 + 0.0730040i −0.886330 0.463054i \(-0.846754\pi\)
0.844181 + 0.536058i \(0.180087\pi\)
\(242\) −12.7953 12.7953i −0.0528731 0.0528731i
\(243\) 0 0
\(244\) 118.230i 0.484550i
\(245\) 258.920 + 205.284i 1.05682 + 0.837894i
\(246\) 0 0
\(247\) 9.45444 35.2844i 0.0382771 0.142852i
\(248\) −69.3805 18.5905i −0.279760 0.0749615i
\(249\) 0 0
\(250\) −304.007 54.8487i −1.21603 0.219395i
\(251\) 92.7758 0.369625 0.184812 0.982774i \(-0.440832\pi\)
0.184812 + 0.982774i \(0.440832\pi\)
\(252\) 0 0
\(253\) −111.539 + 111.539i −0.440865 + 0.440865i
\(254\) −286.865 165.621i −1.12939 0.652053i
\(255\) 0 0
\(256\) −156.017 270.230i −0.609442 1.05559i
\(257\) 110.663 413.001i 0.430596 1.60701i −0.320794 0.947149i \(-0.603950\pi\)
0.751390 0.659858i \(-0.229383\pi\)
\(258\) 0 0
\(259\) 181.303 + 104.675i 0.700011 + 0.404152i
\(260\) −61.4201 82.7297i −0.236231 0.318191i
\(261\) 0 0
\(262\) 197.843 + 197.843i 0.755125 + 0.755125i
\(263\) 46.0569 + 171.887i 0.175121 + 0.653562i 0.996531 + 0.0832230i \(0.0265214\pi\)
−0.821410 + 0.570339i \(0.806812\pi\)
\(264\) 0 0
\(265\) 294.327 + 127.422i 1.11067 + 0.480838i
\(266\) 49.5193 + 85.7699i 0.186163 + 0.322443i
\(267\) 0 0
\(268\) 26.7665 + 99.8939i 0.0998749 + 0.372738i
\(269\) 175.152i 0.651123i −0.945521 0.325562i \(-0.894447\pi\)
0.945521 0.325562i \(-0.105553\pi\)
\(270\) 0 0
\(271\) 463.337 1.70973 0.854865 0.518850i \(-0.173640\pi\)
0.854865 + 0.518850i \(0.173640\pi\)
\(272\) 220.002 58.9494i 0.808831 0.216726i
\(273\) 0 0
\(274\) −51.7562 + 29.8814i −0.188891 + 0.109056i
\(275\) 64.5812 + 275.736i 0.234841 + 1.00268i
\(276\) 0 0
\(277\) −372.528 + 99.8186i −1.34487 + 0.360356i −0.858238 0.513252i \(-0.828441\pi\)
−0.486630 + 0.873608i \(0.661774\pi\)
\(278\) −198.098 + 198.098i −0.712583 + 0.712583i
\(279\) 0 0
\(280\) −248.182 36.6885i −0.886363 0.131030i
\(281\) −39.8147 + 68.9610i −0.141689 + 0.245413i −0.928133 0.372249i \(-0.878587\pi\)
0.786444 + 0.617662i \(0.211920\pi\)
\(282\) 0 0
\(283\) 231.373 + 61.9962i 0.817573 + 0.219068i 0.643285 0.765627i \(-0.277571\pi\)
0.174288 + 0.984695i \(0.444238\pi\)
\(284\) −40.6617 + 23.4760i −0.143175 + 0.0826621i
\(285\) 0 0
\(286\) −136.875 + 237.074i −0.478582 + 0.828929i
\(287\) −73.9569 73.9569i −0.257690 0.257690i
\(288\) 0 0
\(289\) 159.160i 0.550728i
\(290\) −47.1043 407.676i −0.162429 1.40578i
\(291\) 0 0
\(292\) 28.7122 107.156i 0.0983296 0.366971i
\(293\) 83.9027 + 22.4817i 0.286357 + 0.0767292i 0.399139 0.916891i \(-0.369309\pi\)
−0.112781 + 0.993620i \(0.535976\pi\)
\(294\) 0 0
\(295\) 46.3596 + 36.7561i 0.157151 + 0.124597i
\(296\) −91.2743 −0.308359
\(297\) 0 0
\(298\) −274.859 + 274.859i −0.922346 + 0.922346i
\(299\) 117.922 + 68.0822i 0.394388 + 0.227700i
\(300\) 0 0
\(301\) −213.140 369.170i −0.708107 1.22648i
\(302\) 11.6458 43.4629i 0.0385624 0.143917i
\(303\) 0 0
\(304\) −64.6660 37.3350i −0.212717 0.122812i
\(305\) −277.494 41.0217i −0.909817 0.134497i
\(306\) 0 0
\(307\) −220.805 220.805i −0.719234 0.719234i 0.249215 0.968448i \(-0.419828\pi\)
−0.968448 + 0.249215i \(0.919828\pi\)
\(308\) −66.2837 247.374i −0.215207 0.803162i
\(309\) 0 0
\(310\) −75.3910 + 174.143i −0.243197 + 0.561750i
\(311\) −50.9290 88.2115i −0.163759 0.283638i 0.772455 0.635069i \(-0.219029\pi\)
−0.936214 + 0.351431i \(0.885695\pi\)
\(312\) 0 0
\(313\) −69.7840 260.438i −0.222952 0.832069i −0.983215 0.182453i \(-0.941596\pi\)
0.760262 0.649616i \(-0.225070\pi\)
\(314\) 418.230i 1.33194i
\(315\) 0 0
\(316\) −256.297 −0.811066
\(317\) −73.6824 + 19.7431i −0.232437 + 0.0622812i −0.373157 0.927768i \(-0.621725\pi\)
0.140721 + 0.990049i \(0.455058\pi\)
\(318\) 0 0
\(319\) −325.820 + 188.112i −1.02138 + 0.589694i
\(320\) 19.1139 7.56421i 0.0597308 0.0236382i
\(321\) 0 0
\(322\) −356.593 + 95.5488i −1.10743 + 0.296735i
\(323\) 30.0992 30.0992i 0.0931864 0.0931864i
\(324\) 0 0
\(325\) 215.483 115.453i 0.663024 0.355240i
\(326\) −265.955 + 460.647i −0.815812 + 1.41303i
\(327\) 0 0
\(328\) 44.0466 + 11.8022i 0.134288 + 0.0359825i
\(329\) −16.2109 + 9.35934i −0.0492731 + 0.0284479i
\(330\) 0 0
\(331\) −39.1180 + 67.7543i −0.118181 + 0.204696i −0.919047 0.394148i \(-0.871040\pi\)
0.800866 + 0.598844i \(0.204373\pi\)
\(332\) 162.032 + 162.032i 0.488048 + 0.488048i
\(333\) 0 0
\(334\) 279.158i 0.835801i
\(335\) −243.745 + 28.1631i −0.727596 + 0.0840689i
\(336\) 0 0
\(337\) 44.4872 166.029i 0.132010 0.492667i −0.867983 0.496595i \(-0.834584\pi\)
0.999992 + 0.00392788i \(0.00125029\pi\)
\(338\) −175.167 46.9359i −0.518246 0.138864i
\(339\) 0 0
\(340\) −13.7813 119.273i −0.0405331 0.350804i
\(341\) 173.964 0.510159
\(342\) 0 0
\(343\) 129.602 129.602i 0.377849 0.377849i
\(344\) 160.954 + 92.9266i 0.467888 + 0.270135i
\(345\) 0 0
\(346\) 88.0974 + 152.589i 0.254617 + 0.441009i
\(347\) −167.536 + 625.254i −0.482813 + 1.80188i 0.106899 + 0.994270i \(0.465908\pi\)
−0.589712 + 0.807614i \(0.700759\pi\)
\(348\) 0 0
\(349\) −74.5409 43.0362i −0.213584 0.123313i 0.389392 0.921072i \(-0.372685\pi\)
−0.602976 + 0.797759i \(0.706019\pi\)
\(350\) −191.770 + 634.444i −0.547913 + 1.81270i
\(351\) 0 0
\(352\) 245.822 + 245.822i 0.698357 + 0.698357i
\(353\) −164.703 614.682i −0.466582 1.74131i −0.651590 0.758571i \(-0.725898\pi\)
0.185008 0.982737i \(-0.440769\pi\)
\(354\) 0 0
\(355\) −40.9917 103.581i −0.115469 0.291778i
\(356\) 16.9401 + 29.3412i 0.0475847 + 0.0824191i
\(357\) 0 0
\(358\) 29.5623 + 110.328i 0.0825763 + 0.308179i
\(359\) 651.608i 1.81506i 0.419983 + 0.907532i \(0.362036\pi\)
−0.419983 + 0.907532i \(0.637964\pi\)
\(360\) 0 0
\(361\) 347.045 0.961343
\(362\) −396.914 + 106.353i −1.09645 + 0.293792i
\(363\) 0 0
\(364\) −191.454 + 110.536i −0.525971 + 0.303670i
\(365\) 241.539 + 104.569i 0.661751 + 0.286490i
\(366\) 0 0
\(367\) 93.6571 25.0954i 0.255197 0.0683797i −0.128953 0.991651i \(-0.541162\pi\)
0.384149 + 0.923271i \(0.374495\pi\)
\(368\) 196.814 196.814i 0.534819 0.534819i
\(369\) 0 0
\(370\) −35.2638 + 238.544i −0.0953075 + 0.644714i
\(371\) 344.067 595.942i 0.927404 1.60631i
\(372\) 0 0
\(373\) 459.385 + 123.092i 1.23160 + 0.330005i 0.815200 0.579179i \(-0.196627\pi\)
0.416395 + 0.909184i \(0.363293\pi\)
\(374\) −276.257 + 159.497i −0.738656 + 0.426463i
\(375\) 0 0
\(376\) 4.08056 7.06774i 0.0108526 0.0187972i
\(377\) 229.644 + 229.644i 0.609135 + 0.609135i
\(378\) 0 0
\(379\) 556.768i 1.46905i −0.678584 0.734523i \(-0.737406\pi\)
0.678584 0.734523i \(-0.262594\pi\)
\(380\) −24.4550 + 30.8445i −0.0643553 + 0.0811698i
\(381\) 0 0
\(382\) 74.5517 278.231i 0.195162 0.728353i
\(383\) 707.233 + 189.503i 1.84656 + 0.494785i 0.999336 0.0364479i \(-0.0116043\pi\)
0.847226 + 0.531233i \(0.178271\pi\)
\(384\) 0 0
\(385\) 603.602 69.7422i 1.56780 0.181148i
\(386\) −308.838 −0.800097
\(387\) 0 0
\(388\) 265.971 265.971i 0.685492 0.685492i
\(389\) −180.704 104.330i −0.464535 0.268200i 0.249414 0.968397i \(-0.419762\pi\)
−0.713949 + 0.700197i \(0.753095\pi\)
\(390\) 0 0
\(391\) 79.3349 + 137.412i 0.202903 + 0.351437i
\(392\) −79.9989 + 298.560i −0.204079 + 0.761633i
\(393\) 0 0
\(394\) −252.522 145.794i −0.640919 0.370035i
\(395\) 88.9261 601.546i 0.225129 1.52290i
\(396\) 0 0
\(397\) 109.933 + 109.933i 0.276910 + 0.276910i 0.831874 0.554964i \(-0.187268\pi\)
−0.554964 + 0.831874i \(0.687268\pi\)
\(398\) 173.633 + 648.007i 0.436264 + 1.62816i
\(399\) 0 0
\(400\) −113.955 486.545i −0.284888 1.21636i
\(401\) −311.573 539.660i −0.776989 1.34578i −0.933670 0.358135i \(-0.883413\pi\)
0.156680 0.987649i \(-0.449921\pi\)
\(402\) 0 0
\(403\) −38.8668 145.053i −0.0964437 0.359933i
\(404\) 58.3533i 0.144439i
\(405\) 0 0
\(406\) −880.511 −2.16875
\(407\) 213.530 57.2152i 0.524644 0.140578i
\(408\) 0 0
\(409\) −446.525 + 257.801i −1.09175 + 0.630321i −0.934041 0.357165i \(-0.883743\pi\)
−0.157707 + 0.987486i \(0.550410\pi\)
\(410\) 47.8624 110.555i 0.116738 0.269647i
\(411\) 0 0
\(412\) 310.705 83.2532i 0.754139 0.202071i
\(413\) 89.7578 89.7578i 0.217331 0.217331i
\(414\) 0 0
\(415\) −436.519 + 324.080i −1.05185 + 0.780917i
\(416\) 150.047 259.889i 0.360690 0.624734i
\(417\) 0 0
\(418\) 101.016 + 27.0671i 0.241665 + 0.0647539i
\(419\) 127.314 73.5049i 0.303852 0.175429i −0.340320 0.940310i \(-0.610535\pi\)
0.644172 + 0.764880i \(0.277202\pi\)
\(420\) 0 0
\(421\) −317.026 + 549.106i −0.753032 + 1.30429i 0.193315 + 0.981137i \(0.438076\pi\)
−0.946347 + 0.323152i \(0.895257\pi\)
\(422\) −229.860 229.860i −0.544693 0.544693i
\(423\) 0 0
\(424\) 300.018i 0.707590i
\(425\) 284.725 + 9.03819i 0.669940 + 0.0212663i
\(426\) 0 0
\(427\) −155.770 + 581.342i −0.364801 + 1.36146i
\(428\) 311.723 + 83.5259i 0.728325 + 0.195154i
\(429\) 0 0
\(430\) 305.047 384.748i 0.709411 0.894762i
\(431\) −735.767 −1.70712 −0.853559 0.520997i \(-0.825560\pi\)
−0.853559 + 0.520997i \(0.825560\pi\)
\(432\) 0 0
\(433\) 69.9073 69.9073i 0.161449 0.161449i −0.621760 0.783208i \(-0.713582\pi\)
0.783208 + 0.621760i \(0.213582\pi\)
\(434\) 352.597 + 203.572i 0.812435 + 0.469060i
\(435\) 0 0
\(436\) 193.920 + 335.880i 0.444771 + 0.770366i
\(437\) 13.4633 50.2459i 0.0308086 0.114979i
\(438\) 0 0
\(439\) 290.918 + 167.962i 0.662683 + 0.382600i 0.793299 0.608833i \(-0.208362\pi\)
−0.130615 + 0.991433i \(0.541695\pi\)
\(440\) −212.703 + 157.915i −0.483415 + 0.358897i
\(441\) 0 0
\(442\) 194.711 + 194.711i 0.440523 + 0.440523i
\(443\) −79.9082 298.222i −0.180380 0.673187i −0.995573 0.0939967i \(-0.970036\pi\)
0.815193 0.579190i \(-0.196631\pi\)
\(444\) 0 0
\(445\) −74.7434 + 29.5793i −0.167963 + 0.0664704i
\(446\) −38.2391 66.2320i −0.0857379 0.148502i
\(447\) 0 0
\(448\) −11.4151 42.6016i −0.0254801 0.0950929i
\(449\) 391.868i 0.872757i −0.899763 0.436378i \(-0.856261\pi\)
0.899763 0.436378i \(-0.143739\pi\)
\(450\) 0 0
\(451\) −110.442 −0.244883
\(452\) 342.744 91.8379i 0.758283 0.203181i
\(453\) 0 0
\(454\) 139.975 80.8148i 0.308316 0.178006i
\(455\) −193.007 487.707i −0.424192 1.07188i
\(456\) 0 0
\(457\) 164.664 44.1215i 0.360314 0.0965459i −0.0741204 0.997249i \(-0.523615\pi\)
0.434434 + 0.900703i \(0.356948\pi\)
\(458\) 485.917 485.917i 1.06095 1.06095i
\(459\) 0 0
\(460\) −87.4637 117.809i −0.190138 0.256107i
\(461\) −378.908 + 656.288i −0.821926 + 1.42362i 0.0823197 + 0.996606i \(0.473767\pi\)
−0.904246 + 0.427012i \(0.859566\pi\)
\(462\) 0 0
\(463\) 168.336 + 45.1054i 0.363576 + 0.0974199i 0.435982 0.899955i \(-0.356401\pi\)
−0.0724060 + 0.997375i \(0.523068\pi\)
\(464\) 574.919 331.930i 1.23905 0.715366i
\(465\) 0 0
\(466\) 186.615 323.227i 0.400462 0.693620i
\(467\) 191.561 + 191.561i 0.410194 + 0.410194i 0.881806 0.471612i \(-0.156328\pi\)
−0.471612 + 0.881806i \(0.656328\pi\)
\(468\) 0 0
\(469\) 526.447i 1.12249i
\(470\) −16.8949 13.3951i −0.0359466 0.0285002i
\(471\) 0 0
\(472\) −14.3238 + 53.4571i −0.0303470 + 0.113257i
\(473\) −434.791 116.502i −0.919219 0.246304i
\(474\) 0 0
\(475\) −63.9091 68.0996i −0.134546 0.143368i
\(476\) −257.610 −0.541198
\(477\) 0 0
\(478\) −275.020 + 275.020i −0.575355 + 0.575355i
\(479\) −135.340 78.1383i −0.282546 0.163128i 0.352029 0.935989i \(-0.385492\pi\)
−0.634575 + 0.772861i \(0.718825\pi\)
\(480\) 0 0
\(481\) −95.4130 165.260i −0.198364 0.343576i
\(482\) −12.9945 + 48.4960i −0.0269595 + 0.100614i
\(483\) 0 0
\(484\) −13.3634 7.71537i −0.0276104 0.0159408i
\(485\) 531.969 + 716.535i 1.09684 + 1.47739i
\(486\) 0 0
\(487\) −451.121 451.121i −0.926326 0.926326i 0.0711400 0.997466i \(-0.477336\pi\)
−0.997466 + 0.0711400i \(0.977336\pi\)
\(488\) −67.9139 253.458i −0.139168 0.519381i
\(489\) 0 0
\(490\) 749.375 + 324.424i 1.52934 + 0.662091i
\(491\) −200.071 346.533i −0.407476 0.705769i 0.587130 0.809493i \(-0.300258\pi\)
−0.994606 + 0.103723i \(0.966924\pi\)
\(492\) 0 0
\(493\) 97.9482 + 365.548i 0.198678 + 0.741476i
\(494\) 90.2752i 0.182743i
\(495\) 0 0
\(496\) −306.965 −0.618881
\(497\) −230.865 + 61.8601i −0.464517 + 0.124467i
\(498\) 0 0
\(499\) 236.699 136.658i 0.474347 0.273864i −0.243711 0.969848i \(-0.578365\pi\)
0.718058 + 0.695984i \(0.245031\pi\)
\(500\) −262.513 + 21.9182i −0.525027 + 0.0438363i
\(501\) 0 0
\(502\) 221.466 59.3417i 0.441168 0.118211i
\(503\) −297.206 + 297.206i −0.590867 + 0.590867i −0.937866 0.346999i \(-0.887201\pi\)
0.346999 + 0.937866i \(0.387201\pi\)
\(504\) 0 0
\(505\) 136.959 + 20.2466i 0.271206 + 0.0400922i
\(506\) −194.913 + 337.599i −0.385203 + 0.667191i
\(507\) 0 0
\(508\) −272.842 73.1079i −0.537091 0.143913i
\(509\) 60.1552 34.7306i 0.118183 0.0682330i −0.439743 0.898124i \(-0.644931\pi\)
0.557926 + 0.829891i \(0.311597\pi\)
\(510\) 0 0
\(511\) 282.358 489.059i 0.552560 0.957062i
\(512\) −169.331 169.331i −0.330724 0.330724i
\(513\) 0 0
\(514\) 1056.66i 2.05576i
\(515\) 87.5972 + 758.133i 0.170092 + 1.47210i
\(516\) 0 0
\(517\) −5.11579 + 19.0924i −0.00989515 + 0.0369292i
\(518\) 499.743 + 133.906i 0.964754 + 0.258505i
\(519\) 0 0
\(520\) 179.192 + 142.072i 0.344600 + 0.273216i
\(521\) 532.558 1.02218 0.511092 0.859526i \(-0.329241\pi\)
0.511092 + 0.859526i \(0.329241\pi\)
\(522\) 0 0
\(523\) 322.137 322.137i 0.615941 0.615941i −0.328547 0.944488i \(-0.606559\pi\)
0.944488 + 0.328547i \(0.106559\pi\)
\(524\) 206.627 + 119.296i 0.394326 + 0.227664i
\(525\) 0 0
\(526\) 219.886 + 380.853i 0.418034 + 0.724056i
\(527\) 45.2907 169.027i 0.0859407 0.320735i
\(528\) 0 0
\(529\) −290.204 167.549i −0.548590 0.316728i
\(530\) 784.094 + 115.912i 1.47942 + 0.218702i
\(531\) 0 0
\(532\) 59.7188 + 59.7188i 0.112253 + 0.112253i
\(533\) 24.6748 + 92.0876i 0.0462942 + 0.172772i
\(534\) 0 0
\(535\) −304.198 + 702.654i −0.568594 + 1.31337i
\(536\) −114.762 198.774i −0.214109 0.370847i
\(537\) 0 0
\(538\) −112.032 418.108i −0.208237 0.777152i
\(539\) 748.608i 1.38888i
\(540\) 0 0
\(541\) 201.002 0.371538 0.185769 0.982593i \(-0.440522\pi\)
0.185769 + 0.982593i \(0.440522\pi\)
\(542\) 1106.04 296.362i 2.04066 0.546792i
\(543\) 0 0
\(544\) 302.844 174.847i 0.556698 0.321410i
\(545\) −855.616 + 338.606i −1.56994 + 0.621295i
\(546\) 0 0
\(547\) 603.281 161.649i 1.10289 0.295519i 0.338950 0.940804i \(-0.389928\pi\)
0.763941 + 0.645286i \(0.223262\pi\)
\(548\) −36.0361 + 36.0361i −0.0657593 + 0.0657593i
\(549\) 0 0
\(550\) 330.530 + 616.906i 0.600964 + 1.12165i
\(551\) 62.0344 107.447i 0.112585 0.195003i
\(552\) 0 0
\(553\) −1260.22 337.675i −2.27888 0.610624i
\(554\) −825.420 + 476.556i −1.48993 + 0.860210i
\(555\) 0 0
\(556\) −119.450 + 206.894i −0.214838 + 0.372111i
\(557\) 227.470 + 227.470i 0.408384 + 0.408384i 0.881175 0.472791i \(-0.156753\pi\)
−0.472791 + 0.881175i \(0.656753\pi\)
\(558\) 0 0
\(559\) 388.561i 0.695100i
\(560\) −1065.07 + 123.062i −1.90192 + 0.219754i
\(561\) 0 0
\(562\) −50.9328 + 190.084i −0.0906278 + 0.338228i
\(563\) −52.8921 14.1724i −0.0939469 0.0251730i 0.211539 0.977369i \(-0.432152\pi\)
−0.305486 + 0.952196i \(0.598819\pi\)
\(564\) 0 0
\(565\) 96.6297 + 836.308i 0.171026 + 1.48019i
\(566\) 591.967 1.04588
\(567\) 0 0
\(568\) 73.6841 73.6841i 0.129726 0.129726i
\(569\) −211.299 121.993i −0.371351 0.214399i 0.302698 0.953087i \(-0.402113\pi\)
−0.674048 + 0.738687i \(0.735446\pi\)
\(570\) 0 0
\(571\) −284.750 493.202i −0.498687 0.863751i 0.501312 0.865267i \(-0.332851\pi\)
−0.999999 + 0.00151580i \(0.999518\pi\)
\(572\) −60.4185 + 225.485i −0.105627 + 0.394205i
\(573\) 0 0
\(574\) −223.848 129.239i −0.389979 0.225155i
\(575\) 306.853 164.408i 0.533657 0.285926i
\(576\) 0 0
\(577\) −258.911 258.911i −0.448719 0.448719i 0.446209 0.894929i \(-0.352774\pi\)
−0.894929 + 0.446209i \(0.852774\pi\)
\(578\) −101.803 379.933i −0.176129 0.657324i
\(579\) 0 0
\(580\) −128.777 325.404i −0.222029 0.561041i
\(581\) 583.237 + 1010.20i 1.00385 + 1.73872i
\(582\) 0 0
\(583\) −188.066 701.872i −0.322583 1.20390i
\(584\) 246.210i 0.421592i
\(585\) 0 0
\(586\) 214.665 0.366322
\(587\) −855.160 + 229.139i −1.45683 + 0.390357i −0.898394 0.439190i \(-0.855266\pi\)
−0.558437 + 0.829547i \(0.688599\pi\)
\(588\) 0 0
\(589\) −49.6828 + 28.6844i −0.0843512 + 0.0487002i
\(590\) 134.175 + 58.0882i 0.227416 + 0.0984545i
\(591\) 0 0
\(592\) −376.780 + 100.958i −0.636452 + 0.170537i
\(593\) −638.841 + 638.841i −1.07730 + 1.07730i −0.0805534 + 0.996750i \(0.525669\pi\)
−0.996750 + 0.0805534i \(0.974331\pi\)
\(594\) 0 0
\(595\) 89.3818 604.629i 0.150221 1.01618i
\(596\) −165.736 + 287.063i −0.278080 + 0.481649i
\(597\) 0 0
\(598\) 325.040 + 87.0941i 0.543544 + 0.145642i
\(599\) 350.554 202.393i 0.585233 0.337884i −0.177977 0.984035i \(-0.556955\pi\)
0.763210 + 0.646150i \(0.223622\pi\)
\(600\) 0 0
\(601\) −419.760 + 727.046i −0.698437 + 1.20973i 0.270572 + 0.962700i \(0.412787\pi\)
−0.969008 + 0.247028i \(0.920546\pi\)
\(602\) −744.919 744.919i −1.23741 1.23741i
\(603\) 0 0
\(604\) 38.3704i 0.0635271i
\(605\) 22.7451 28.6879i 0.0375953 0.0474180i
\(606\) 0 0
\(607\) 83.8870 313.071i 0.138199 0.515767i −0.861765 0.507308i \(-0.830641\pi\)
0.999964 0.00845910i \(-0.00269265\pi\)
\(608\) −110.737 29.6720i −0.182134 0.0488027i
\(609\) 0 0
\(610\) −688.648 + 79.5687i −1.12893 + 0.130440i
\(611\) 17.0624 0.0279253
\(612\) 0 0
\(613\) −164.098 + 164.098i −0.267697 + 0.267697i −0.828171 0.560475i \(-0.810619\pi\)
0.560475 + 0.828171i \(0.310619\pi\)
\(614\) −668.317 385.853i −1.08846 0.628425i
\(615\) 0 0
\(616\) 284.194 + 492.238i 0.461353 + 0.799088i
\(617\) 39.3191 146.741i 0.0637263 0.237830i −0.926715 0.375765i \(-0.877380\pi\)
0.990441 + 0.137935i \(0.0440466\pi\)
\(618\) 0 0
\(619\) 371.036 + 214.218i 0.599412 + 0.346071i 0.768810 0.639477i \(-0.220849\pi\)
−0.169398 + 0.985548i \(0.554182\pi\)
\(620\) −23.6644 + 160.079i −0.0381684 + 0.258192i
\(621\) 0 0
\(622\) −177.995 177.995i −0.286166 0.286166i
\(623\) 44.6378 + 166.591i 0.0716498 + 0.267401i
\(624\) 0 0
\(625\) 39.6396 623.742i 0.0634233 0.997987i
\(626\) −333.164 577.058i −0.532211 0.921817i
\(627\) 0 0
\(628\) −92.3067 344.493i −0.146985 0.548556i
\(629\) 222.366i 0.353523i
\(630\) 0 0
\(631\) −1077.98 −1.70837 −0.854185 0.519969i \(-0.825943\pi\)
−0.854185 + 0.519969i \(0.825943\pi\)
\(632\) 549.441 147.222i 0.869369 0.232947i
\(633\) 0 0
\(634\) −163.260 + 94.2581i −0.257508 + 0.148672i
\(635\) 266.256 615.013i 0.419301 0.968525i
\(636\) 0 0
\(637\) −624.196 + 167.253i −0.979899 + 0.262563i
\(638\) −657.447 + 657.447i −1.03048 + 1.03048i
\(639\) 0 0
\(640\) 533.602 396.157i 0.833753 0.618995i
\(641\) 434.510 752.593i 0.677862 1.17409i −0.297761 0.954640i \(-0.596240\pi\)
0.975623 0.219451i \(-0.0704267\pi\)
\(642\) 0 0
\(643\) 119.275 + 31.9596i 0.185497 + 0.0497039i 0.350372 0.936611i \(-0.386055\pi\)
−0.164874 + 0.986315i \(0.552722\pi\)
\(644\) −272.634 + 157.406i −0.423345 + 0.244419i
\(645\) 0 0
\(646\) 52.5979 91.1023i 0.0814209 0.141025i
\(647\) −303.440 303.440i −0.468996 0.468996i 0.432593 0.901589i \(-0.357599\pi\)
−0.901589 + 0.432593i \(0.857599\pi\)
\(648\) 0 0
\(649\) 134.038i 0.206530i
\(650\) 440.535 413.427i 0.677746 0.636041i
\(651\) 0 0
\(652\) −117.397 + 438.130i −0.180056 + 0.671978i
\(653\) 728.322 + 195.153i 1.11535 + 0.298856i 0.768999 0.639250i \(-0.220755\pi\)
0.346348 + 0.938106i \(0.387422\pi\)
\(654\) 0 0
\(655\) −351.689 + 443.576i −0.536929 + 0.677215i
\(656\) 194.878 0.297071
\(657\) 0 0
\(658\) −32.7106 + 32.7106i −0.0497122 + 0.0497122i
\(659\) 1030.08 + 594.718i 1.56310 + 0.902456i 0.996941 + 0.0781594i \(0.0249043\pi\)
0.566158 + 0.824296i \(0.308429\pi\)
\(660\) 0 0
\(661\) 384.281 + 665.595i 0.581364 + 1.00695i 0.995318 + 0.0966537i \(0.0308139\pi\)
−0.413954 + 0.910298i \(0.635853\pi\)
\(662\) −50.0416 + 186.758i −0.0755916 + 0.282112i
\(663\) 0 0
\(664\) −440.433 254.284i −0.663303 0.382958i
\(665\) −160.884 + 119.444i −0.241931 + 0.179615i
\(666\) 0 0
\(667\) 327.018 + 327.018i 0.490282 + 0.490282i
\(668\) −61.6122 229.940i −0.0922339 0.344222i
\(669\) 0 0
\(670\) −563.832 + 223.133i −0.841540 + 0.333035i
\(671\) 317.760 + 550.376i 0.473562 + 0.820233i
\(672\) 0 0
\(673\) −75.2762 280.935i −0.111852 0.417436i 0.887180 0.461423i \(-0.152661\pi\)
−0.999032 + 0.0439863i \(0.985994\pi\)
\(674\) 424.784i 0.630243i
\(675\) 0 0
\(676\) −154.643 −0.228762
\(677\) −874.273 + 234.261i −1.29139 + 0.346028i −0.838190 0.545379i \(-0.816386\pi\)
−0.453204 + 0.891407i \(0.649719\pi\)
\(678\) 0 0
\(679\) 1658.21 957.368i 2.44214 1.40997i
\(680\) 98.0570 + 247.779i 0.144202 + 0.364380i
\(681\) 0 0
\(682\) 415.272 111.272i 0.608903 0.163155i
\(683\) −579.270 + 579.270i −0.848125 + 0.848125i −0.989899 0.141774i \(-0.954719\pi\)
0.141774 + 0.989899i \(0.454719\pi\)
\(684\) 0 0
\(685\) −72.0759 97.0824i −0.105220 0.141726i
\(686\) 226.478 392.271i 0.330143 0.571824i
\(687\) 0 0
\(688\) 767.200 + 205.571i 1.11512 + 0.298795i
\(689\) −543.210 + 313.622i −0.788403 + 0.455185i
\(690\) 0 0
\(691\) 479.893 831.199i 0.694491 1.20289i −0.275861 0.961197i \(-0.588963\pi\)
0.970352 0.241696i \(-0.0777036\pi\)
\(692\) 106.243 + 106.243i 0.153530 + 0.153530i
\(693\) 0 0
\(694\) 1599.71i 2.30506i
\(695\) −444.148 352.142i −0.639062 0.506680i
\(696\) 0 0
\(697\) −28.7531 + 107.308i −0.0412526 + 0.153957i
\(698\) −205.464 55.0540i −0.294361 0.0788739i
\(699\) 0 0
\(700\) −17.9324 + 564.912i −0.0256176 + 0.807017i
\(701\) −1285.91 −1.83439 −0.917197 0.398434i \(-0.869554\pi\)
−0.917197 + 0.398434i \(0.869554\pi\)
\(702\) 0 0
\(703\) −51.5485 + 51.5485i −0.0733264 + 0.0733264i
\(704\) −40.3324 23.2859i −0.0572903 0.0330766i
\(705\) 0 0
\(706\) −786.331 1361.96i −1.11378 1.92913i
\(707\) 76.8814 286.925i 0.108743 0.405835i
\(708\) 0 0
\(709\) −433.296 250.163i −0.611137 0.352840i 0.162274 0.986746i \(-0.448117\pi\)
−0.773410 + 0.633906i \(0.781451\pi\)
\(710\) −164.105 221.040i −0.231133 0.311324i
\(711\) 0 0
\(712\) −53.1700 53.1700i −0.0746769 0.0746769i
\(713\) −55.3473 206.559i −0.0776259 0.289704i
\(714\) 0 0
\(715\) −508.266 220.042i −0.710861 0.307751i
\(716\) 48.7005 + 84.3518i 0.0680175 + 0.117810i
\(717\) 0 0
\(718\) 416.784 + 1555.46i 0.580479 + 2.16638i
\(719\) 111.332i 0.154843i 0.996998 + 0.0774217i \(0.0246688\pi\)
−0.996998 + 0.0774217i \(0.975331\pi\)
\(720\) 0 0
\(721\) 1637.44 2.27106
\(722\) 828.434 221.978i 1.14742 0.307449i
\(723\) 0 0
\(724\) −303.462 + 175.204i −0.419147 + 0.241994i
\(725\) 808.426 189.344i 1.11507 0.261164i
\(726\) 0 0
\(727\) 594.341 159.253i 0.817526 0.219055i 0.174261 0.984699i \(-0.444246\pi\)
0.643264 + 0.765644i \(0.277580\pi\)
\(728\) 346.938 346.938i 0.476563 0.476563i
\(729\) 0 0
\(730\) 643.466 + 95.1230i 0.881460 + 0.130305i
\(731\) −226.391 + 392.121i −0.309701 + 0.536417i
\(732\) 0 0
\(733\) −1126.11 301.741i −1.53631 0.411652i −0.611237 0.791447i \(-0.709328\pi\)
−0.925071 + 0.379795i \(0.875995\pi\)
\(734\) 207.518 119.811i 0.282723 0.163230i
\(735\) 0 0
\(736\) 213.671 370.089i 0.290314 0.502838i
\(737\) 393.080 + 393.080i 0.533351 + 0.533351i
\(738\) 0 0
\(739\) 318.962i 0.431612i 0.976436 + 0.215806i \(0.0692379\pi\)
−0.976436 + 0.215806i \(0.930762\pi\)
\(740\) 23.6020 + 204.270i 0.0318946 + 0.276041i
\(741\) 0 0
\(742\) 440.147 1642.65i 0.593190 2.21382i
\(743\) 453.316 + 121.466i 0.610116 + 0.163480i 0.550631 0.834749i \(-0.314387\pi\)
0.0594856 + 0.998229i \(0.481054\pi\)
\(744\) 0 0
\(745\) −616.252 488.594i −0.827183 0.655831i
\(746\) 1175.34 1.57552
\(747\) 0 0
\(748\) −192.349 + 192.349i −0.257151 + 0.257151i
\(749\) 1422.71 + 821.400i 1.89947 + 1.09666i
\(750\) 0 0
\(751\) 76.0823 + 131.778i 0.101308 + 0.175471i 0.912224 0.409692i \(-0.134364\pi\)
−0.810916 + 0.585163i \(0.801031\pi\)
\(752\) 9.02696 33.6891i 0.0120039 0.0447993i
\(753\) 0 0
\(754\) 695.071 + 401.299i 0.921845 + 0.532227i
\(755\) 90.0579 + 13.3132i 0.119282 + 0.0176333i
\(756\) 0 0
\(757\) 488.444 + 488.444i 0.645236 + 0.645236i 0.951838 0.306602i \(-0.0991919\pi\)
−0.306602 + 0.951838i \(0.599192\pi\)
\(758\) −356.123 1329.07i −0.469819 1.75339i
\(759\) 0 0
\(760\) 34.7082 80.1710i 0.0456686 0.105488i
\(761\) −88.9996 154.152i −0.116951 0.202565i 0.801607 0.597851i \(-0.203979\pi\)
−0.918558 + 0.395286i \(0.870645\pi\)
\(762\) 0 0
\(763\) 510.986 + 1907.03i 0.669706 + 2.49938i
\(764\) 245.631i 0.321506i
\(765\) 0 0
\(766\) 1809.45 2.36221
\(767\) −111.762 + 29.9466i −0.145713 + 0.0390438i
\(768\) 0 0
\(769\) −179.757 + 103.783i −0.233754 + 0.134958i −0.612303 0.790623i \(-0.709757\pi\)
0.378548 + 0.925581i \(0.376423\pi\)
\(770\) 1396.26 552.561i 1.81332 0.717611i
\(771\) 0 0
\(772\) −254.387 + 68.1628i −0.329517 + 0.0882938i
\(773\) 199.628 199.628i 0.258251 0.258251i −0.566091 0.824342i \(-0.691545\pi\)
0.824342 + 0.566091i \(0.191545\pi\)
\(774\) 0 0
\(775\) −367.506 111.084i −0.474202 0.143334i
\(776\) −417.401 + 722.960i −0.537888 + 0.931649i
\(777\) 0 0
\(778\) −498.093 133.464i −0.640222 0.171547i
\(779\) 31.5414 18.2104i 0.0404896 0.0233767i
\(780\) 0 0
\(781\) −126.190 + 218.568i −0.161575 + 0.279856i
\(782\) 277.273 + 277.273i 0.354569 + 0.354569i
\(783\) 0 0
\(784\) 1320.94i 1.68487i
\(785\) 840.576 97.1229i 1.07080 0.123723i
\(786\) 0 0
\(787\) −335.169 + 1250.87i −0.425882 + 1.58941i 0.336108 + 0.941823i \(0.390889\pi\)
−0.761990 + 0.647589i \(0.775777\pi\)
\(788\) −240.178 64.3556i −0.304795 0.0816695i
\(789\) 0 0
\(790\) −172.487 1492.84i −0.218338 1.88967i
\(791\) 1806.28 2.28354
\(792\) 0 0
\(793\) 387.915 387.915i 0.489174 0.489174i
\(794\) 332.739 + 192.107i 0.419067 + 0.241948i
\(795\) 0 0
\(796\) 286.040 + 495.436i 0.359347 + 0.622407i
\(797\) 130.147 485.714i 0.163296 0.609428i −0.834956 0.550317i \(-0.814507\pi\)
0.998251 0.0591106i \(-0.0188265\pi\)
\(798\) 0 0
\(799\) 17.2187 + 9.94121i 0.0215503 + 0.0124421i
\(800\) −362.340 676.276i −0.452925 0.845345i
\(801\) 0 0
\(802\) −1088.94 1088.94i −1.35778 1.35778i
\(803\) −154.336 575.991i −0.192200 0.717299i
\(804\) 0 0
\(805\) −274.847 694.506i −0.341425 0.862740i
\(806\) −185.559 321.397i −0.230222 0.398756i
\(807\) 0 0
\(808\) 33.5194 + 125.096i 0.0414844 + 0.154822i
\(809\) 329.434i 0.407212i 0.979053 + 0.203606i \(0.0652661\pi\)
−0.979053 + 0.203606i \(0.934734\pi\)
\(810\) 0 0
\(811\) −736.236 −0.907812 −0.453906 0.891049i \(-0.649970\pi\)
−0.453906 + 0.891049i \(0.649970\pi\)
\(812\) −725.270 + 194.336i −0.893190 + 0.239330i
\(813\) 0 0
\(814\) 473.123 273.158i 0.581233 0.335575i
\(815\) −987.588 427.553i −1.21176 0.524606i
\(816\) 0 0
\(817\) 143.382 38.4192i 0.175499 0.0470247i
\(818\) −901.008 + 901.008i −1.10148 + 1.10148i
\(819\) 0 0
\(820\) 15.0235 101.627i 0.0183213 0.123936i
\(821\) −235.531 + 407.952i −0.286883 + 0.496896i −0.973064 0.230535i \(-0.925953\pi\)
0.686181 + 0.727431i \(0.259286\pi\)
\(822\) 0 0
\(823\) 842.487 + 225.744i 1.02368 + 0.274294i 0.731334 0.682019i \(-0.238898\pi\)
0.292344 + 0.956313i \(0.405565\pi\)
\(824\) −618.258 + 356.951i −0.750313 + 0.433194i
\(825\) 0 0
\(826\) 156.850 271.673i 0.189892 0.328902i
\(827\) −796.631 796.631i −0.963278 0.963278i 0.0360709 0.999349i \(-0.488516\pi\)
−0.999349 + 0.0360709i \(0.988516\pi\)
\(828\) 0 0
\(829\) 860.599i 1.03812i −0.854739 0.519059i \(-0.826283\pi\)
0.854739 0.519059i \(-0.173717\pi\)
\(830\) −834.730 + 1052.82i −1.00570 + 1.26846i
\(831\) 0 0
\(832\) −10.4050 + 38.8320i −0.0125060 + 0.0466731i
\(833\) −727.363 194.896i −0.873185 0.233969i
\(834\) 0 0
\(835\) 561.062 64.8270i 0.671931 0.0776371i
\(836\) 89.1799 0.106675
\(837\) 0 0
\(838\) 256.897 256.897i 0.306560 0.306560i
\(839\) −878.746 507.344i −1.04737 0.604701i −0.125460 0.992099i \(-0.540041\pi\)
−0.921913 + 0.387398i \(0.873374\pi\)
\(840\) 0 0
\(841\) 131.022 + 226.938i 0.155794 + 0.269842i
\(842\) −405.555 + 1513.55i −0.481657 + 1.79757i
\(843\) 0 0
\(844\) −240.066 138.602i −0.284439 0.164221i
\(845\) 53.6558 362.958i 0.0634979 0.429536i
\(846\) 0 0
\(847\) −55.5433 55.5433i −0.0655765 0.0655765i
\(848\) 331.848 + 1238.47i 0.391330 + 1.46046i
\(849\) 0 0
\(850\) 685.450 160.542i 0.806412 0.188872i
\(851\) −135.870 235.334i −0.159660 0.276539i
\(852\) 0 0
\(853\) 90.6761 + 338.408i 0.106303 + 0.396726i 0.998490 0.0549394i \(-0.0174966\pi\)
−0.892187 + 0.451666i \(0.850830\pi\)
\(854\) 1487.36i 1.74164i
\(855\) 0 0
\(856\) −716.241 −0.836730
\(857\) 1041.37 279.033i 1.21513 0.325593i 0.406358 0.913714i \(-0.366799\pi\)
0.808773 + 0.588121i \(0.200132\pi\)
\(858\) 0 0
\(859\) −508.578 + 293.627i −0.592058 + 0.341825i −0.765911 0.642947i \(-0.777712\pi\)
0.173853 + 0.984772i \(0.444378\pi\)
\(860\) 166.348 384.240i 0.193428 0.446791i
\(861\) 0 0
\(862\) −1756.36 + 470.615i −2.03754 + 0.545957i
\(863\) 659.791 659.791i 0.764532 0.764532i −0.212606 0.977138i \(-0.568195\pi\)
0.977138 + 0.212606i \(0.0681951\pi\)
\(864\) 0 0
\(865\) −286.222 + 212.497i −0.330892 + 0.245661i
\(866\) 122.162 211.591i 0.141065 0.244331i
\(867\) 0 0
\(868\) 335.361 + 89.8598i 0.386361 + 0.103525i
\(869\) −1193.09 + 688.833i −1.37295 + 0.792674i
\(870\) 0 0
\(871\) 239.932 415.575i 0.275467 0.477123i
\(872\) −608.657 608.657i −0.698001 0.698001i
\(873\) 0 0
\(874\) 128.554i 0.147087i
\(875\) −1319.67 238.093i −1.50819 0.272107i
\(876\) 0 0
\(877\) −3.29344 + 12.2913i −0.00375535 + 0.0140152i −0.967778 0.251805i \(-0.918976\pi\)
0.964023 + 0.265820i \(0.0856426\pi\)
\(878\) 801.886 + 214.865i 0.913309 + 0.244721i
\(879\) 0 0
\(880\) −703.367 + 887.139i −0.799281 + 1.00811i
\(881\) −933.779 −1.05991 −0.529954 0.848026i \(-0.677791\pi\)
−0.529954 + 0.848026i \(0.677791\pi\)
\(882\) 0 0
\(883\) −463.817 + 463.817i −0.525274 + 0.525274i −0.919159 0.393886i \(-0.871131\pi\)
0.393886 + 0.919159i \(0.371131\pi\)
\(884\) 203.356 + 117.408i 0.230041 + 0.132814i
\(885\) 0 0
\(886\) −381.500 660.777i −0.430586 0.745798i
\(887\) −69.4192 + 259.076i −0.0782630 + 0.292081i −0.993953 0.109803i \(-0.964978\pi\)
0.915690 + 0.401884i \(0.131645\pi\)
\(888\) 0 0
\(889\) −1245.25 718.948i −1.40074 0.808715i
\(890\) −159.501 + 118.417i −0.179215 + 0.133053i
\(891\) 0 0
\(892\) −46.1152 46.1152i −0.0516986 0.0516986i
\(893\) −1.68705 6.29616i −0.00188920 0.00705057i
\(894\) 0 0
\(895\) −214.877 + 85.0363i −0.240086 + 0.0950127i
\(896\) −712.950 1234.87i −0.795703 1.37820i
\(897\) 0 0
\(898\) −250.648 935.432i −0.279118 1.04168i
\(899\) 510.042i 0.567344i
\(900\) 0 0
\(901\) −730.915 −0.811227
\(902\) −263.638 + 70.6415i −0.292281 + 0.0783165i
\(903\) 0 0
\(904\) −682.010 + 393.759i −0.754436 + 0.435574i
\(905\) −305.925 773.036i −0.338038 0.854183i
\(906\) 0 0
\(907\) −182.473 + 48.8935i −0.201183 + 0.0539069i −0.358003 0.933720i \(-0.616542\pi\)
0.156820 + 0.987627i \(0.449876\pi\)
\(908\) 97.4601 97.4601i 0.107335 0.107335i
\(909\) 0 0
\(910\) −772.679 1040.76i −0.849097 1.14369i
\(911\) 432.982 749.947i 0.475282 0.823213i −0.524317 0.851523i \(-0.675679\pi\)
0.999599 + 0.0283104i \(0.00901269\pi\)
\(912\) 0 0
\(913\) 1189.76 + 318.796i 1.30313 + 0.349174i
\(914\) 364.849 210.646i 0.399178 0.230466i
\(915\) 0 0
\(916\) 293.001 507.492i 0.319870 0.554031i
\(917\) 858.818 + 858.818i 0.936551 + 0.936551i
\(918\) 0 0
\(919\) 864.507i 0.940704i −0.882479 0.470352i \(-0.844127\pi\)
0.882479 0.470352i \(-0.155873\pi\)
\(920\) 255.174 + 202.314i 0.277363 + 0.219907i
\(921\) 0 0
\(922\) −484.717 + 1808.99i −0.525724 + 1.96203i
\(923\) 210.437 + 56.3864i 0.227992 + 0.0610903i
\(924\) 0 0
\(925\) −487.625 15.4790i −0.527162 0.0167340i
\(926\) 430.687 0.465104
\(927\) 0 0
\(928\) 720.719 720.719i 0.776637 0.776637i
\(929\) −884.539 510.689i −0.952142 0.549719i −0.0583960 0.998293i \(-0.518599\pi\)
−0.893746 + 0.448574i \(0.851932\pi\)
\(930\) 0 0
\(931\) 123.435 + 213.796i 0.132584 + 0.229642i
\(932\) 82.3748 307.427i 0.0883850 0.329857i
\(933\) 0 0
\(934\) 579.804 + 334.750i 0.620775 + 0.358404i
\(935\) −384.717 518.194i −0.411462 0.554218i
\(936\) 0 0
\(937\) 776.808 + 776.808i 0.829037 + 0.829037i 0.987384 0.158347i \(-0.0506163\pi\)
−0.158347 + 0.987384i \(0.550616\pi\)
\(938\) 336.728 + 1256.69i 0.358985 + 1.33975i
\(939\) 0 0
\(940\) −16.8726 7.30461i −0.0179496 0.00777086i
\(941\) 851.116 + 1474.18i 0.904480 + 1.56661i 0.821614 + 0.570044i \(0.193074\pi\)
0.0828659 + 0.996561i \(0.473593\pi\)
\(942\) 0 0
\(943\) 35.1375 + 131.135i 0.0372614 + 0.139061i
\(944\) 236.514i 0.250545i
\(945\) 0 0
\(946\) −1112.41 −1.17591
\(947\) 703.326 188.456i 0.742688 0.199003i 0.132416 0.991194i \(-0.457727\pi\)
0.610273 + 0.792192i \(0.291060\pi\)
\(948\) 0 0
\(949\) −445.784 + 257.374i −0.469741 + 0.271205i
\(950\) −196.116 121.683i −0.206438 0.128088i
\(951\) 0 0
\(952\) 552.257 147.977i 0.580102 0.155438i
\(953\) 783.686 783.686i 0.822336 0.822336i −0.164106 0.986443i \(-0.552474\pi\)
0.986443 + 0.164106i \(0.0524741\pi\)
\(954\) 0 0
\(955\) 576.512 + 85.2253i 0.603678 + 0.0892412i
\(956\) −165.833 + 287.231i −0.173465 + 0.300450i
\(957\) 0 0
\(958\) −373.050 99.9583i −0.389405 0.104341i
\(959\) −224.669 + 129.713i −0.234274 + 0.135258i
\(960\) 0 0
\(961\) 362.580 628.006i 0.377294 0.653492i
\(962\) −333.466 333.466i −0.346638 0.346638i
\(963\) 0 0
\(964\) 42.8137i 0.0444126i
\(965\) −71.7194 620.714i −0.0743206 0.643227i
\(966\) 0 0
\(967\) 316.923 1182.77i 0.327738 1.22314i −0.583792 0.811903i \(-0.698432\pi\)
0.911530 0.411233i \(-0.134902\pi\)
\(968\) 33.0799 + 8.86374i 0.0341735 + 0.00915676i
\(969\) 0 0
\(970\) 1728.18 + 1370.19i 1.78163 + 1.41256i
\(971\) 313.188 0.322542 0.161271 0.986910i \(-0.448441\pi\)
0.161271 + 0.986910i \(0.448441\pi\)
\(972\) 0 0
\(973\) −859.926 + 859.926i −0.883788 + 0.883788i
\(974\) −1365.42 788.327i −1.40187 0.809371i
\(975\) 0 0
\(976\) −560.696 971.155i −0.574484 0.995035i
\(977\) −399.627 + 1491.43i −0.409035 + 1.52654i 0.387455 + 0.921889i \(0.373354\pi\)
−0.796490 + 0.604652i \(0.793312\pi\)
\(978\) 0 0
\(979\) 157.717 + 91.0580i 0.161100 + 0.0930112i
\(980\) 688.857 + 101.833i 0.702916 + 0.103911i
\(981\) 0 0
\(982\) −699.242 699.242i −0.712059 0.712059i
\(983\) 177.336 + 661.825i 0.180402 + 0.673271i 0.995568 + 0.0940430i \(0.0299791\pi\)
−0.815166 + 0.579228i \(0.803354\pi\)
\(984\) 0 0
\(985\) 234.380 541.386i 0.237950 0.549630i
\(986\) 467.626 + 809.953i 0.474266 + 0.821453i
\(987\) 0 0
\(988\) −19.9244 74.3590i −0.0201664 0.0752621i
\(989\) 553.320i 0.559474i
\(990\) 0 0
\(991\) 888.305 0.896373 0.448186 0.893940i \(-0.352070\pi\)
0.448186 + 0.893940i \(0.352070\pi\)
\(992\) −455.237 + 121.980i −0.458909 + 0.122964i
\(993\) 0 0
\(994\) −511.533 + 295.334i −0.514620 + 0.297116i
\(995\) −1262.07 + 499.457i −1.26841 + 0.501967i
\(996\) 0 0
\(997\) 197.259 52.8555i 0.197853 0.0530146i −0.158532 0.987354i \(-0.550676\pi\)
0.356385 + 0.934339i \(0.384009\pi\)
\(998\) 477.617 477.617i 0.478574 0.478574i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.l.a.127.8 40
3.2 odd 2 45.3.k.a.7.3 40
5.3 odd 4 inner 135.3.l.a.73.3 40
9.2 odd 6 405.3.g.h.82.8 20
9.4 even 3 inner 135.3.l.a.37.3 40
9.5 odd 6 45.3.k.a.22.8 yes 40
9.7 even 3 405.3.g.g.82.3 20
15.2 even 4 225.3.o.b.43.3 40
15.8 even 4 45.3.k.a.43.8 yes 40
15.14 odd 2 225.3.o.b.7.8 40
45.13 odd 12 inner 135.3.l.a.118.8 40
45.14 odd 6 225.3.o.b.157.3 40
45.23 even 12 45.3.k.a.13.3 yes 40
45.32 even 12 225.3.o.b.193.8 40
45.38 even 12 405.3.g.h.163.8 20
45.43 odd 12 405.3.g.g.163.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.3 40 3.2 odd 2
45.3.k.a.13.3 yes 40 45.23 even 12
45.3.k.a.22.8 yes 40 9.5 odd 6
45.3.k.a.43.8 yes 40 15.8 even 4
135.3.l.a.37.3 40 9.4 even 3 inner
135.3.l.a.73.3 40 5.3 odd 4 inner
135.3.l.a.118.8 40 45.13 odd 12 inner
135.3.l.a.127.8 40 1.1 even 1 trivial
225.3.o.b.7.8 40 15.14 odd 2
225.3.o.b.43.3 40 15.2 even 4
225.3.o.b.157.3 40 45.14 odd 6
225.3.o.b.193.8 40 45.32 even 12
405.3.g.g.82.3 20 9.7 even 3
405.3.g.g.163.3 20 45.43 odd 12
405.3.g.h.82.8 20 9.2 odd 6
405.3.g.h.163.8 20 45.38 even 12