Properties

Label 1344.4.b
Level $1344$
Weight $4$
Character orbit 1344.b
Rep. character $\chi_{1344}(895,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $10$
Sturm bound $1024$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(1024\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1344, [\chi])\).

Total New Old
Modular forms 792 96 696
Cusp forms 744 96 648
Eisenstein series 48 0 48

Trace form

\( 96 q + 864 q^{9} - 120 q^{21} - 2400 q^{25} - 400 q^{29} - 1024 q^{37} - 752 q^{53} + 3504 q^{77} + 7776 q^{81} - 4704 q^{85} + 3696 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1344.4.b.a 1344.b 28.d $2$ $79.299$ \(\Q(\sqrt{-3}) \) None 336.4.b.b \(0\) \(-6\) \(0\) \(-28\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 q^{3}-8\beta q^{5}+(-7\beta-14)q^{7}+\cdots\)
1344.4.b.b 1344.b 28.d $2$ $79.299$ \(\Q(\sqrt{-6}) \) None 336.4.b.a \(0\) \(-6\) \(0\) \(34\) $\mathrm{SU}(2)[C_{2}]$ \(q-3q^{3}+\beta q^{5}+(17-3\beta )q^{7}+9q^{9}+\cdots\)
1344.4.b.c 1344.b 28.d $2$ $79.299$ \(\Q(\sqrt{-6}) \) None 336.4.b.a \(0\) \(6\) \(0\) \(-34\) $\mathrm{SU}(2)[C_{2}]$ \(q+3q^{3}+\beta q^{5}+(-17+3\beta )q^{7}+9q^{9}+\cdots\)
1344.4.b.d 1344.b 28.d $2$ $79.299$ \(\Q(\sqrt{-3}) \) None 336.4.b.b \(0\) \(6\) \(0\) \(28\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 q^{3}-8\beta q^{5}+(7\beta+14)q^{7}+9 q^{9}+\cdots\)
1344.4.b.e 1344.b 28.d $8$ $79.299$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 336.4.b.e \(0\) \(-24\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-3q^{3}+\beta _{5}q^{5}-\beta _{3}q^{7}+9q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)
1344.4.b.f 1344.b 28.d $8$ $79.299$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 336.4.b.e \(0\) \(24\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+3q^{3}+\beta _{5}q^{5}+\beta _{3}q^{7}+9q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
1344.4.b.g 1344.b 28.d $12$ $79.299$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 84.4.b.a \(0\) \(-36\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q-3q^{3}-\beta _{7}q^{5}+(-1-\beta _{2})q^{7}+9q^{9}+\cdots\)
1344.4.b.h 1344.b 28.d $12$ $79.299$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 84.4.b.a \(0\) \(36\) \(0\) \(10\) $\mathrm{SU}(2)[C_{2}]$ \(q+3q^{3}-\beta _{7}q^{5}+(1+\beta _{2})q^{7}+9q^{9}+\cdots\)
1344.4.b.i 1344.b 28.d $24$ $79.299$ None 672.4.b.a \(0\) \(-72\) \(0\) \(20\) $\mathrm{SU}(2)[C_{2}]$
1344.4.b.j 1344.b 28.d $24$ $79.299$ None 672.4.b.a \(0\) \(72\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1344, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)