Properties

Label 1344.3.f.j.769.8
Level $1344$
Weight $3$
Character 1344.769
Analytic conductor $36.621$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,3,Mod(769,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,0,0,0,0,0,0,0,0,-24,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6213475300\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2 x^{14} - 8 x^{13} - 57 x^{12} + 32 x^{11} + 466 x^{10} + 304 x^{9} + 3000 x^{8} + \cdots + 790321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.8
Root \(0.0550989 - 2.76316i\) of defining polynomial
Character \(\chi\) \(=\) 1344.769
Dual form 1344.3.f.j.769.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +8.94195i q^{5} +(-1.52790 - 6.83122i) q^{7} -3.00000 q^{9} +0.217948 q^{11} +17.2063i q^{13} +15.4879 q^{15} +7.22871i q^{17} -28.0850i q^{19} +(-11.8320 + 2.64641i) q^{21} -23.9086 q^{23} -54.9584 q^{25} +5.19615i q^{27} +26.9807 q^{29} +27.0903i q^{31} -0.377496i q^{33} +(61.0844 - 13.6624i) q^{35} +17.9441 q^{37} +29.8022 q^{39} +18.5536i q^{41} -56.3643 q^{43} -26.8258i q^{45} -75.7660i q^{47} +(-44.3310 + 20.8749i) q^{49} +12.5205 q^{51} -1.03364 q^{53} +1.94888i q^{55} -48.6447 q^{57} +2.32111i q^{59} -60.7334i q^{61} +(4.58371 + 20.4936i) q^{63} -153.858 q^{65} -102.011 q^{67} +41.4108i q^{69} -22.0554 q^{71} -107.319i q^{73} +95.1908i q^{75} +(-0.333003 - 1.48885i) q^{77} -141.639 q^{79} +9.00000 q^{81} +81.0927i q^{83} -64.6388 q^{85} -46.7320i q^{87} -167.406i q^{89} +(117.540 - 26.2896i) q^{91} +46.9218 q^{93} +251.135 q^{95} -53.8065i q^{97} -0.653843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} - 24 q^{21} - 64 q^{25} + 128 q^{29} - 48 q^{37} - 256 q^{49} + 160 q^{53} - 144 q^{57} - 288 q^{65} - 128 q^{77} + 144 q^{81} + 16 q^{85} - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 8.94195i 1.78839i 0.447678 + 0.894195i \(0.352251\pi\)
−0.447678 + 0.894195i \(0.647749\pi\)
\(6\) 0 0
\(7\) −1.52790 6.83122i −0.218272 0.975888i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 0.217948 0.0198134 0.00990671 0.999951i \(-0.496847\pi\)
0.00990671 + 0.999951i \(0.496847\pi\)
\(12\) 0 0
\(13\) 17.2063i 1.32356i 0.749697 + 0.661781i \(0.230199\pi\)
−0.749697 + 0.661781i \(0.769801\pi\)
\(14\) 0 0
\(15\) 15.4879 1.03253
\(16\) 0 0
\(17\) 7.22871i 0.425218i 0.977137 + 0.212609i \(0.0681961\pi\)
−0.977137 + 0.212609i \(0.931804\pi\)
\(18\) 0 0
\(19\) 28.0850i 1.47816i −0.673617 0.739080i \(-0.735260\pi\)
0.673617 0.739080i \(-0.264740\pi\)
\(20\) 0 0
\(21\) −11.8320 + 2.64641i −0.563429 + 0.126019i
\(22\) 0 0
\(23\) −23.9086 −1.03950 −0.519751 0.854318i \(-0.673975\pi\)
−0.519751 + 0.854318i \(0.673975\pi\)
\(24\) 0 0
\(25\) −54.9584 −2.19834
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 26.9807 0.930369 0.465185 0.885214i \(-0.345988\pi\)
0.465185 + 0.885214i \(0.345988\pi\)
\(30\) 0 0
\(31\) 27.0903i 0.873882i 0.899490 + 0.436941i \(0.143938\pi\)
−0.899490 + 0.436941i \(0.856062\pi\)
\(32\) 0 0
\(33\) 0.377496i 0.0114393i
\(34\) 0 0
\(35\) 61.0844 13.6624i 1.74527 0.390355i
\(36\) 0 0
\(37\) 17.9441 0.484976 0.242488 0.970154i \(-0.422037\pi\)
0.242488 + 0.970154i \(0.422037\pi\)
\(38\) 0 0
\(39\) 29.8022 0.764159
\(40\) 0 0
\(41\) 18.5536i 0.452527i 0.974066 + 0.226264i \(0.0726511\pi\)
−0.974066 + 0.226264i \(0.927349\pi\)
\(42\) 0 0
\(43\) −56.3643 −1.31080 −0.655399 0.755283i \(-0.727500\pi\)
−0.655399 + 0.755283i \(0.727500\pi\)
\(44\) 0 0
\(45\) 26.8258i 0.596130i
\(46\) 0 0
\(47\) 75.7660i 1.61204i −0.591886 0.806021i \(-0.701617\pi\)
0.591886 0.806021i \(-0.298383\pi\)
\(48\) 0 0
\(49\) −44.3310 + 20.8749i −0.904715 + 0.426018i
\(50\) 0 0
\(51\) 12.5205 0.245500
\(52\) 0 0
\(53\) −1.03364 −0.0195026 −0.00975131 0.999952i \(-0.503104\pi\)
−0.00975131 + 0.999952i \(0.503104\pi\)
\(54\) 0 0
\(55\) 1.94888i 0.0354341i
\(56\) 0 0
\(57\) −48.6447 −0.853416
\(58\) 0 0
\(59\) 2.32111i 0.0393409i 0.999807 + 0.0196704i \(0.00626170\pi\)
−0.999807 + 0.0196704i \(0.993738\pi\)
\(60\) 0 0
\(61\) 60.7334i 0.995630i −0.867283 0.497815i \(-0.834136\pi\)
0.867283 0.497815i \(-0.165864\pi\)
\(62\) 0 0
\(63\) 4.58371 + 20.4936i 0.0727573 + 0.325296i
\(64\) 0 0
\(65\) −153.858 −2.36705
\(66\) 0 0
\(67\) −102.011 −1.52255 −0.761276 0.648428i \(-0.775427\pi\)
−0.761276 + 0.648428i \(0.775427\pi\)
\(68\) 0 0
\(69\) 41.4108i 0.600157i
\(70\) 0 0
\(71\) −22.0554 −0.310640 −0.155320 0.987864i \(-0.549641\pi\)
−0.155320 + 0.987864i \(0.549641\pi\)
\(72\) 0 0
\(73\) 107.319i 1.47012i −0.678000 0.735062i \(-0.737153\pi\)
0.678000 0.735062i \(-0.262847\pi\)
\(74\) 0 0
\(75\) 95.1908i 1.26921i
\(76\) 0 0
\(77\) −0.333003 1.48885i −0.00432471 0.0193357i
\(78\) 0 0
\(79\) −141.639 −1.79290 −0.896450 0.443146i \(-0.853862\pi\)
−0.896450 + 0.443146i \(0.853862\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 81.0927i 0.977021i 0.872558 + 0.488510i \(0.162460\pi\)
−0.872558 + 0.488510i \(0.837540\pi\)
\(84\) 0 0
\(85\) −64.6388 −0.760456
\(86\) 0 0
\(87\) 46.7320i 0.537149i
\(88\) 0 0
\(89\) 167.406i 1.88096i −0.339846 0.940481i \(-0.610375\pi\)
0.339846 0.940481i \(-0.389625\pi\)
\(90\) 0 0
\(91\) 117.540 26.2896i 1.29165 0.288897i
\(92\) 0 0
\(93\) 46.9218 0.504536
\(94\) 0 0
\(95\) 251.135 2.64353
\(96\) 0 0
\(97\) 53.8065i 0.554706i −0.960768 0.277353i \(-0.910543\pi\)
0.960768 0.277353i \(-0.0894572\pi\)
\(98\) 0 0
\(99\) −0.653843 −0.00660448
\(100\) 0 0
\(101\) 76.3964i 0.756400i 0.925724 + 0.378200i \(0.123457\pi\)
−0.925724 + 0.378200i \(0.876543\pi\)
\(102\) 0 0
\(103\) 140.563i 1.36469i 0.731031 + 0.682344i \(0.239040\pi\)
−0.731031 + 0.682344i \(0.760960\pi\)
\(104\) 0 0
\(105\) −23.6640 105.801i −0.225372 1.00763i
\(106\) 0 0
\(107\) −0.0411514 −0.000384592 −0.000192296 1.00000i \(-0.500061\pi\)
−0.000192296 1.00000i \(0.500061\pi\)
\(108\) 0 0
\(109\) 35.9268 0.329603 0.164802 0.986327i \(-0.447302\pi\)
0.164802 + 0.986327i \(0.447302\pi\)
\(110\) 0 0
\(111\) 31.0801i 0.280001i
\(112\) 0 0
\(113\) 19.2405 0.170270 0.0851349 0.996369i \(-0.472868\pi\)
0.0851349 + 0.996369i \(0.472868\pi\)
\(114\) 0 0
\(115\) 213.789i 1.85904i
\(116\) 0 0
\(117\) 51.6190i 0.441188i
\(118\) 0 0
\(119\) 49.3809 11.0448i 0.414966 0.0928132i
\(120\) 0 0
\(121\) −120.952 −0.999607
\(122\) 0 0
\(123\) 32.1358 0.261267
\(124\) 0 0
\(125\) 267.887i 2.14309i
\(126\) 0 0
\(127\) −223.492 −1.75978 −0.879891 0.475176i \(-0.842384\pi\)
−0.879891 + 0.475176i \(0.842384\pi\)
\(128\) 0 0
\(129\) 97.6259i 0.756790i
\(130\) 0 0
\(131\) 97.0197i 0.740608i −0.928911 0.370304i \(-0.879253\pi\)
0.928911 0.370304i \(-0.120747\pi\)
\(132\) 0 0
\(133\) −191.855 + 42.9112i −1.44252 + 0.322641i
\(134\) 0 0
\(135\) −46.4637 −0.344176
\(136\) 0 0
\(137\) −91.9842 −0.671417 −0.335709 0.941966i \(-0.608976\pi\)
−0.335709 + 0.941966i \(0.608976\pi\)
\(138\) 0 0
\(139\) 80.0063i 0.575585i 0.957693 + 0.287792i \(0.0929213\pi\)
−0.957693 + 0.287792i \(0.907079\pi\)
\(140\) 0 0
\(141\) −131.231 −0.930713
\(142\) 0 0
\(143\) 3.75008i 0.0262243i
\(144\) 0 0
\(145\) 241.260i 1.66386i
\(146\) 0 0
\(147\) 36.1563 + 76.7836i 0.245962 + 0.522337i
\(148\) 0 0
\(149\) −207.058 −1.38965 −0.694827 0.719177i \(-0.744519\pi\)
−0.694827 + 0.719177i \(0.744519\pi\)
\(150\) 0 0
\(151\) 92.5634 0.613002 0.306501 0.951870i \(-0.400842\pi\)
0.306501 + 0.951870i \(0.400842\pi\)
\(152\) 0 0
\(153\) 21.6861i 0.141739i
\(154\) 0 0
\(155\) −242.240 −1.56284
\(156\) 0 0
\(157\) 136.412i 0.868864i −0.900705 0.434432i \(-0.856949\pi\)
0.900705 0.434432i \(-0.143051\pi\)
\(158\) 0 0
\(159\) 1.79031i 0.0112598i
\(160\) 0 0
\(161\) 36.5300 + 163.324i 0.226894 + 1.01444i
\(162\) 0 0
\(163\) 69.9103 0.428897 0.214449 0.976735i \(-0.431205\pi\)
0.214449 + 0.976735i \(0.431205\pi\)
\(164\) 0 0
\(165\) 3.37555 0.0204579
\(166\) 0 0
\(167\) 223.641i 1.33917i −0.742738 0.669583i \(-0.766473\pi\)
0.742738 0.669583i \(-0.233527\pi\)
\(168\) 0 0
\(169\) −127.057 −0.751819
\(170\) 0 0
\(171\) 84.2551i 0.492720i
\(172\) 0 0
\(173\) 259.836i 1.50194i 0.660337 + 0.750970i \(0.270414\pi\)
−0.660337 + 0.750970i \(0.729586\pi\)
\(174\) 0 0
\(175\) 83.9712 + 375.433i 0.479835 + 2.14533i
\(176\) 0 0
\(177\) 4.02029 0.0227135
\(178\) 0 0
\(179\) 122.999 0.687147 0.343574 0.939126i \(-0.388362\pi\)
0.343574 + 0.939126i \(0.388362\pi\)
\(180\) 0 0
\(181\) 165.001i 0.911608i 0.890080 + 0.455804i \(0.150648\pi\)
−0.890080 + 0.455804i \(0.849352\pi\)
\(182\) 0 0
\(183\) −105.193 −0.574827
\(184\) 0 0
\(185\) 160.455i 0.867325i
\(186\) 0 0
\(187\) 1.57548i 0.00842503i
\(188\) 0 0
\(189\) 35.4960 7.93922i 0.187810 0.0420064i
\(190\) 0 0
\(191\) −43.7589 −0.229104 −0.114552 0.993417i \(-0.536543\pi\)
−0.114552 + 0.993417i \(0.536543\pi\)
\(192\) 0 0
\(193\) 179.372 0.929386 0.464693 0.885472i \(-0.346165\pi\)
0.464693 + 0.885472i \(0.346165\pi\)
\(194\) 0 0
\(195\) 266.490i 1.36661i
\(196\) 0 0
\(197\) −315.397 −1.60100 −0.800501 0.599332i \(-0.795433\pi\)
−0.800501 + 0.599332i \(0.795433\pi\)
\(198\) 0 0
\(199\) 270.434i 1.35896i 0.733692 + 0.679482i \(0.237796\pi\)
−0.733692 + 0.679482i \(0.762204\pi\)
\(200\) 0 0
\(201\) 176.688i 0.879046i
\(202\) 0 0
\(203\) −41.2239 184.311i −0.203073 0.907936i
\(204\) 0 0
\(205\) −165.906 −0.809295
\(206\) 0 0
\(207\) 71.7257 0.346501
\(208\) 0 0
\(209\) 6.12107i 0.0292874i
\(210\) 0 0
\(211\) −216.197 −1.02463 −0.512315 0.858798i \(-0.671212\pi\)
−0.512315 + 0.858798i \(0.671212\pi\)
\(212\) 0 0
\(213\) 38.2012i 0.179348i
\(214\) 0 0
\(215\) 504.007i 2.34422i
\(216\) 0 0
\(217\) 185.060 41.3914i 0.852811 0.190744i
\(218\) 0 0
\(219\) −185.882 −0.848777
\(220\) 0 0
\(221\) −124.380 −0.562803
\(222\) 0 0
\(223\) 196.293i 0.880238i 0.897939 + 0.440119i \(0.145064\pi\)
−0.897939 + 0.440119i \(0.854936\pi\)
\(224\) 0 0
\(225\) 164.875 0.732779
\(226\) 0 0
\(227\) 117.290i 0.516695i −0.966052 0.258348i \(-0.916822\pi\)
0.966052 0.258348i \(-0.0831780\pi\)
\(228\) 0 0
\(229\) 20.9887i 0.0916537i 0.998949 + 0.0458269i \(0.0145923\pi\)
−0.998949 + 0.0458269i \(0.985408\pi\)
\(230\) 0 0
\(231\) −2.57876 + 0.576778i −0.0111635 + 0.00249687i
\(232\) 0 0
\(233\) −66.0856 −0.283629 −0.141815 0.989893i \(-0.545294\pi\)
−0.141815 + 0.989893i \(0.545294\pi\)
\(234\) 0 0
\(235\) 677.496 2.88296
\(236\) 0 0
\(237\) 245.326i 1.03513i
\(238\) 0 0
\(239\) −202.686 −0.848057 −0.424028 0.905649i \(-0.639384\pi\)
−0.424028 + 0.905649i \(0.639384\pi\)
\(240\) 0 0
\(241\) 196.382i 0.814862i −0.913236 0.407431i \(-0.866425\pi\)
0.913236 0.407431i \(-0.133575\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −186.662 396.406i −0.761886 1.61798i
\(246\) 0 0
\(247\) 483.240 1.95644
\(248\) 0 0
\(249\) 140.457 0.564083
\(250\) 0 0
\(251\) 341.565i 1.36082i 0.732834 + 0.680408i \(0.238197\pi\)
−0.732834 + 0.680408i \(0.761803\pi\)
\(252\) 0 0
\(253\) −5.21081 −0.0205961
\(254\) 0 0
\(255\) 111.958i 0.439050i
\(256\) 0 0
\(257\) 437.240i 1.70132i −0.525715 0.850661i \(-0.676202\pi\)
0.525715 0.850661i \(-0.323798\pi\)
\(258\) 0 0
\(259\) −27.4168 122.580i −0.105857 0.473282i
\(260\) 0 0
\(261\) −80.9421 −0.310123
\(262\) 0 0
\(263\) −495.520 −1.88411 −0.942054 0.335463i \(-0.891107\pi\)
−0.942054 + 0.335463i \(0.891107\pi\)
\(264\) 0 0
\(265\) 9.24274i 0.0348783i
\(266\) 0 0
\(267\) −289.955 −1.08597
\(268\) 0 0
\(269\) 370.984i 1.37912i 0.724227 + 0.689562i \(0.242197\pi\)
−0.724227 + 0.689562i \(0.757803\pi\)
\(270\) 0 0
\(271\) 244.038i 0.900509i −0.892900 0.450255i \(-0.851333\pi\)
0.892900 0.450255i \(-0.148667\pi\)
\(272\) 0 0
\(273\) −45.5349 203.585i −0.166795 0.745734i
\(274\) 0 0
\(275\) −11.9781 −0.0435566
\(276\) 0 0
\(277\) 143.830 0.519243 0.259621 0.965710i \(-0.416402\pi\)
0.259621 + 0.965710i \(0.416402\pi\)
\(278\) 0 0
\(279\) 81.2710i 0.291294i
\(280\) 0 0
\(281\) 296.565 1.05539 0.527695 0.849434i \(-0.323056\pi\)
0.527695 + 0.849434i \(0.323056\pi\)
\(282\) 0 0
\(283\) 128.051i 0.452477i −0.974072 0.226239i \(-0.927357\pi\)
0.974072 0.226239i \(-0.0726429\pi\)
\(284\) 0 0
\(285\) 434.979i 1.52624i
\(286\) 0 0
\(287\) 126.744 28.3481i 0.441616 0.0987740i
\(288\) 0 0
\(289\) 236.746 0.819189
\(290\) 0 0
\(291\) −93.1956 −0.320260
\(292\) 0 0
\(293\) 314.235i 1.07247i −0.844068 0.536237i \(-0.819845\pi\)
0.844068 0.536237i \(-0.180155\pi\)
\(294\) 0 0
\(295\) −20.7553 −0.0703569
\(296\) 0 0
\(297\) 1.13249i 0.00381310i
\(298\) 0 0
\(299\) 411.378i 1.37585i
\(300\) 0 0
\(301\) 86.1192 + 385.037i 0.286110 + 1.27919i
\(302\) 0 0
\(303\) 132.322 0.436707
\(304\) 0 0
\(305\) 543.075 1.78057
\(306\) 0 0
\(307\) 337.365i 1.09891i 0.835523 + 0.549455i \(0.185165\pi\)
−0.835523 + 0.549455i \(0.814835\pi\)
\(308\) 0 0
\(309\) 243.462 0.787903
\(310\) 0 0
\(311\) 22.0115i 0.0707766i −0.999374 0.0353883i \(-0.988733\pi\)
0.999374 0.0353883i \(-0.0112668\pi\)
\(312\) 0 0
\(313\) 342.307i 1.09363i 0.837253 + 0.546816i \(0.184160\pi\)
−0.837253 + 0.546816i \(0.815840\pi\)
\(314\) 0 0
\(315\) −183.253 + 40.9873i −0.581756 + 0.130118i
\(316\) 0 0
\(317\) 562.714 1.77512 0.887562 0.460689i \(-0.152398\pi\)
0.887562 + 0.460689i \(0.152398\pi\)
\(318\) 0 0
\(319\) 5.88038 0.0184338
\(320\) 0 0
\(321\) 0.0712763i 0.000222044i
\(322\) 0 0
\(323\) 203.019 0.628541
\(324\) 0 0
\(325\) 945.632i 2.90964i
\(326\) 0 0
\(327\) 62.2270i 0.190297i
\(328\) 0 0
\(329\) −517.574 + 115.763i −1.57317 + 0.351864i
\(330\) 0 0
\(331\) −268.238 −0.810388 −0.405194 0.914231i \(-0.632796\pi\)
−0.405194 + 0.914231i \(0.632796\pi\)
\(332\) 0 0
\(333\) −53.8323 −0.161659
\(334\) 0 0
\(335\) 912.177i 2.72292i
\(336\) 0 0
\(337\) 394.060 1.16932 0.584659 0.811279i \(-0.301228\pi\)
0.584659 + 0.811279i \(0.301228\pi\)
\(338\) 0 0
\(339\) 33.3255i 0.0983053i
\(340\) 0 0
\(341\) 5.90427i 0.0173146i
\(342\) 0 0
\(343\) 210.334 + 270.940i 0.613219 + 0.789913i
\(344\) 0 0
\(345\) −370.293 −1.07331
\(346\) 0 0
\(347\) 452.174 1.30310 0.651548 0.758608i \(-0.274120\pi\)
0.651548 + 0.758608i \(0.274120\pi\)
\(348\) 0 0
\(349\) 153.300i 0.439256i −0.975584 0.219628i \(-0.929516\pi\)
0.975584 0.219628i \(-0.0704843\pi\)
\(350\) 0 0
\(351\) −89.4067 −0.254720
\(352\) 0 0
\(353\) 51.4528i 0.145759i 0.997341 + 0.0728794i \(0.0232188\pi\)
−0.997341 + 0.0728794i \(0.976781\pi\)
\(354\) 0 0
\(355\) 197.219i 0.555546i
\(356\) 0 0
\(357\) −19.1301 85.5302i −0.0535858 0.239581i
\(358\) 0 0
\(359\) 485.866 1.35339 0.676694 0.736264i \(-0.263412\pi\)
0.676694 + 0.736264i \(0.263412\pi\)
\(360\) 0 0
\(361\) −427.770 −1.18496
\(362\) 0 0
\(363\) 209.496i 0.577124i
\(364\) 0 0
\(365\) 959.642 2.62916
\(366\) 0 0
\(367\) 503.758i 1.37264i 0.727301 + 0.686318i \(0.240774\pi\)
−0.727301 + 0.686318i \(0.759226\pi\)
\(368\) 0 0
\(369\) 55.6609i 0.150842i
\(370\) 0 0
\(371\) 1.57930 + 7.06101i 0.00425687 + 0.0190324i
\(372\) 0 0
\(373\) −412.067 −1.10474 −0.552369 0.833600i \(-0.686276\pi\)
−0.552369 + 0.833600i \(0.686276\pi\)
\(374\) 0 0
\(375\) −463.994 −1.23732
\(376\) 0 0
\(377\) 464.239i 1.23140i
\(378\) 0 0
\(379\) 527.336 1.39139 0.695694 0.718338i \(-0.255097\pi\)
0.695694 + 0.718338i \(0.255097\pi\)
\(380\) 0 0
\(381\) 387.100i 1.01601i
\(382\) 0 0
\(383\) 128.775i 0.336227i −0.985768 0.168113i \(-0.946233\pi\)
0.985768 0.168113i \(-0.0537674\pi\)
\(384\) 0 0
\(385\) 13.3132 2.97770i 0.0345797 0.00773427i
\(386\) 0 0
\(387\) 169.093 0.436933
\(388\) 0 0
\(389\) 183.645 0.472094 0.236047 0.971742i \(-0.424148\pi\)
0.236047 + 0.971742i \(0.424148\pi\)
\(390\) 0 0
\(391\) 172.828i 0.442016i
\(392\) 0 0
\(393\) −168.043 −0.427590
\(394\) 0 0
\(395\) 1266.53i 3.20640i
\(396\) 0 0
\(397\) 556.331i 1.40134i 0.713487 + 0.700668i \(0.247115\pi\)
−0.713487 + 0.700668i \(0.752885\pi\)
\(398\) 0 0
\(399\) 74.3244 + 332.303i 0.186277 + 0.832839i
\(400\) 0 0
\(401\) 697.265 1.73881 0.869407 0.494096i \(-0.164501\pi\)
0.869407 + 0.494096i \(0.164501\pi\)
\(402\) 0 0
\(403\) −466.125 −1.15664
\(404\) 0 0
\(405\) 80.4775i 0.198710i
\(406\) 0 0
\(407\) 3.91087 0.00960903
\(408\) 0 0
\(409\) 324.662i 0.793795i −0.917863 0.396898i \(-0.870087\pi\)
0.917863 0.396898i \(-0.129913\pi\)
\(410\) 0 0
\(411\) 159.321i 0.387643i
\(412\) 0 0
\(413\) 15.8560 3.54644i 0.0383923 0.00858701i
\(414\) 0 0
\(415\) −725.127 −1.74729
\(416\) 0 0
\(417\) 138.575 0.332314
\(418\) 0 0
\(419\) 153.023i 0.365211i −0.983186 0.182606i \(-0.941547\pi\)
0.983186 0.182606i \(-0.0584531\pi\)
\(420\) 0 0
\(421\) 289.979 0.688786 0.344393 0.938826i \(-0.388085\pi\)
0.344393 + 0.938826i \(0.388085\pi\)
\(422\) 0 0
\(423\) 227.298i 0.537348i
\(424\) 0 0
\(425\) 397.279i 0.934774i
\(426\) 0 0
\(427\) −414.883 + 92.7948i −0.971623 + 0.217318i
\(428\) 0 0
\(429\) 6.49532 0.0151406
\(430\) 0 0
\(431\) 492.468 1.14262 0.571309 0.820735i \(-0.306436\pi\)
0.571309 + 0.820735i \(0.306436\pi\)
\(432\) 0 0
\(433\) 264.451i 0.610741i −0.952234 0.305370i \(-0.901220\pi\)
0.952234 0.305370i \(-0.0987802\pi\)
\(434\) 0 0
\(435\) 417.875 0.960632
\(436\) 0 0
\(437\) 671.473i 1.53655i
\(438\) 0 0
\(439\) 440.202i 1.00274i −0.865233 0.501369i \(-0.832830\pi\)
0.865233 0.501369i \(-0.167170\pi\)
\(440\) 0 0
\(441\) 132.993 62.6246i 0.301572 0.142006i
\(442\) 0 0
\(443\) −397.990 −0.898398 −0.449199 0.893432i \(-0.648291\pi\)
−0.449199 + 0.893432i \(0.648291\pi\)
\(444\) 0 0
\(445\) 1496.93 3.36389
\(446\) 0 0
\(447\) 358.636i 0.802317i
\(448\) 0 0
\(449\) −315.334 −0.702302 −0.351151 0.936319i \(-0.614210\pi\)
−0.351151 + 0.936319i \(0.614210\pi\)
\(450\) 0 0
\(451\) 4.04372i 0.00896612i
\(452\) 0 0
\(453\) 160.324i 0.353917i
\(454\) 0 0
\(455\) 235.080 + 1051.04i 0.516660 + 2.30997i
\(456\) 0 0
\(457\) −26.5749 −0.0581507 −0.0290754 0.999577i \(-0.509256\pi\)
−0.0290754 + 0.999577i \(0.509256\pi\)
\(458\) 0 0
\(459\) −37.5615 −0.0818333
\(460\) 0 0
\(461\) 666.865i 1.44656i 0.690554 + 0.723281i \(0.257367\pi\)
−0.690554 + 0.723281i \(0.742633\pi\)
\(462\) 0 0
\(463\) 385.038 0.831616 0.415808 0.909452i \(-0.363499\pi\)
0.415808 + 0.909452i \(0.363499\pi\)
\(464\) 0 0
\(465\) 419.573i 0.902307i
\(466\) 0 0
\(467\) 392.617i 0.840722i 0.907357 + 0.420361i \(0.138097\pi\)
−0.907357 + 0.420361i \(0.861903\pi\)
\(468\) 0 0
\(469\) 155.863 + 696.859i 0.332330 + 1.48584i
\(470\) 0 0
\(471\) −236.272 −0.501639
\(472\) 0 0
\(473\) −12.2845 −0.0259714
\(474\) 0 0
\(475\) 1543.51i 3.24950i
\(476\) 0 0
\(477\) 3.10092 0.00650087
\(478\) 0 0
\(479\) 545.583i 1.13900i −0.821990 0.569502i \(-0.807136\pi\)
0.821990 0.569502i \(-0.192864\pi\)
\(480\) 0 0
\(481\) 308.752i 0.641896i
\(482\) 0 0
\(483\) 282.886 63.2717i 0.585686 0.130997i
\(484\) 0 0
\(485\) 481.135 0.992031
\(486\) 0 0
\(487\) −721.663 −1.48186 −0.740928 0.671585i \(-0.765614\pi\)
−0.740928 + 0.671585i \(0.765614\pi\)
\(488\) 0 0
\(489\) 121.088i 0.247624i
\(490\) 0 0
\(491\) 424.072 0.863691 0.431845 0.901948i \(-0.357863\pi\)
0.431845 + 0.901948i \(0.357863\pi\)
\(492\) 0 0
\(493\) 195.036i 0.395610i
\(494\) 0 0
\(495\) 5.84663i 0.0118114i
\(496\) 0 0
\(497\) 33.6986 + 150.666i 0.0678040 + 0.303150i
\(498\) 0 0
\(499\) 121.152 0.242789 0.121395 0.992604i \(-0.461263\pi\)
0.121395 + 0.992604i \(0.461263\pi\)
\(500\) 0 0
\(501\) −387.357 −0.773167
\(502\) 0 0
\(503\) 617.407i 1.22745i 0.789520 + 0.613724i \(0.210329\pi\)
−0.789520 + 0.613724i \(0.789671\pi\)
\(504\) 0 0
\(505\) −683.132 −1.35274
\(506\) 0 0
\(507\) 220.070i 0.434063i
\(508\) 0 0
\(509\) 247.898i 0.487029i −0.969897 0.243515i \(-0.921700\pi\)
0.969897 0.243515i \(-0.0783004\pi\)
\(510\) 0 0
\(511\) −733.120 + 163.973i −1.43468 + 0.320887i
\(512\) 0 0
\(513\) 145.934 0.284472
\(514\) 0 0
\(515\) −1256.91 −2.44060
\(516\) 0 0
\(517\) 16.5130i 0.0319401i
\(518\) 0 0
\(519\) 450.048 0.867145
\(520\) 0 0
\(521\) 121.749i 0.233684i 0.993151 + 0.116842i \(0.0372771\pi\)
−0.993151 + 0.116842i \(0.962723\pi\)
\(522\) 0 0
\(523\) 157.002i 0.300195i −0.988671 0.150098i \(-0.952041\pi\)
0.988671 0.150098i \(-0.0479588\pi\)
\(524\) 0 0
\(525\) 650.269 145.442i 1.23861 0.277033i
\(526\) 0 0
\(527\) −195.828 −0.371591
\(528\) 0 0
\(529\) 42.6188 0.0805649
\(530\) 0 0
\(531\) 6.96334i 0.0131136i
\(532\) 0 0
\(533\) −319.239 −0.598948
\(534\) 0 0
\(535\) 0.367973i 0.000687801i
\(536\) 0 0
\(537\) 213.041i 0.396725i
\(538\) 0 0
\(539\) −9.66184 + 4.54963i −0.0179255 + 0.00844087i
\(540\) 0 0
\(541\) −44.7003 −0.0826253 −0.0413126 0.999146i \(-0.513154\pi\)
−0.0413126 + 0.999146i \(0.513154\pi\)
\(542\) 0 0
\(543\) 285.790 0.526317
\(544\) 0 0
\(545\) 321.255i 0.589459i
\(546\) 0 0
\(547\) −135.263 −0.247282 −0.123641 0.992327i \(-0.539457\pi\)
−0.123641 + 0.992327i \(0.539457\pi\)
\(548\) 0 0
\(549\) 182.200i 0.331877i
\(550\) 0 0
\(551\) 757.754i 1.37523i
\(552\) 0 0
\(553\) 216.411 + 967.567i 0.391339 + 1.74967i
\(554\) 0 0
\(555\) 277.917 0.500750
\(556\) 0 0
\(557\) 13.3127 0.0239006 0.0119503 0.999929i \(-0.496196\pi\)
0.0119503 + 0.999929i \(0.496196\pi\)
\(558\) 0 0
\(559\) 969.822i 1.73492i
\(560\) 0 0
\(561\) 2.72881 0.00486420
\(562\) 0 0
\(563\) 323.122i 0.573928i −0.957941 0.286964i \(-0.907354\pi\)
0.957941 0.286964i \(-0.0926461\pi\)
\(564\) 0 0
\(565\) 172.047i 0.304509i
\(566\) 0 0
\(567\) −13.7511 61.4809i −0.0242524 0.108432i
\(568\) 0 0
\(569\) −673.022 −1.18282 −0.591408 0.806373i \(-0.701428\pi\)
−0.591408 + 0.806373i \(0.701428\pi\)
\(570\) 0 0
\(571\) −731.978 −1.28192 −0.640962 0.767573i \(-0.721464\pi\)
−0.640962 + 0.767573i \(0.721464\pi\)
\(572\) 0 0
\(573\) 75.7926i 0.132273i
\(574\) 0 0
\(575\) 1313.98 2.28518
\(576\) 0 0
\(577\) 37.6656i 0.0652784i −0.999467 0.0326392i \(-0.989609\pi\)
0.999467 0.0326392i \(-0.0103912\pi\)
\(578\) 0 0
\(579\) 310.681i 0.536582i
\(580\) 0 0
\(581\) 553.962 123.902i 0.953463 0.213256i
\(582\) 0 0
\(583\) −0.225279 −0.000386414
\(584\) 0 0
\(585\) 461.574 0.789015
\(586\) 0 0
\(587\) 825.132i 1.40568i 0.711350 + 0.702838i \(0.248084\pi\)
−0.711350 + 0.702838i \(0.751916\pi\)
\(588\) 0 0
\(589\) 760.833 1.29174
\(590\) 0 0
\(591\) 546.284i 0.924339i
\(592\) 0 0
\(593\) 391.122i 0.659566i 0.944057 + 0.329783i \(0.106976\pi\)
−0.944057 + 0.329783i \(0.893024\pi\)
\(594\) 0 0
\(595\) 98.7618 + 441.562i 0.165986 + 0.742120i
\(596\) 0 0
\(597\) 468.405 0.784599
\(598\) 0 0
\(599\) −338.153 −0.564530 −0.282265 0.959337i \(-0.591086\pi\)
−0.282265 + 0.959337i \(0.591086\pi\)
\(600\) 0 0
\(601\) 551.622i 0.917840i −0.888478 0.458920i \(-0.848237\pi\)
0.888478 0.458920i \(-0.151763\pi\)
\(602\) 0 0
\(603\) 306.033 0.507517
\(604\) 0 0
\(605\) 1081.55i 1.78769i
\(606\) 0 0
\(607\) 566.613i 0.933465i −0.884399 0.466732i \(-0.845431\pi\)
0.884399 0.466732i \(-0.154569\pi\)
\(608\) 0 0
\(609\) −319.236 + 71.4019i −0.524197 + 0.117245i
\(610\) 0 0
\(611\) 1303.65 2.13364
\(612\) 0 0
\(613\) −486.369 −0.793424 −0.396712 0.917943i \(-0.629849\pi\)
−0.396712 + 0.917943i \(0.629849\pi\)
\(614\) 0 0
\(615\) 287.357i 0.467247i
\(616\) 0 0
\(617\) 534.919 0.866968 0.433484 0.901161i \(-0.357284\pi\)
0.433484 + 0.901161i \(0.357284\pi\)
\(618\) 0 0
\(619\) 181.263i 0.292833i 0.989223 + 0.146416i \(0.0467739\pi\)
−0.989223 + 0.146416i \(0.953226\pi\)
\(620\) 0 0
\(621\) 124.232i 0.200052i
\(622\) 0 0
\(623\) −1143.58 + 255.780i −1.83561 + 0.410561i
\(624\) 0 0
\(625\) 1021.47 1.63435
\(626\) 0 0
\(627\) −10.6020 −0.0169091
\(628\) 0 0
\(629\) 129.713i 0.206221i
\(630\) 0 0
\(631\) 495.437 0.785162 0.392581 0.919717i \(-0.371582\pi\)
0.392581 + 0.919717i \(0.371582\pi\)
\(632\) 0 0
\(633\) 374.464i 0.591570i
\(634\) 0 0
\(635\) 1998.46i 3.14718i
\(636\) 0 0
\(637\) −359.180 762.774i −0.563861 1.19745i
\(638\) 0 0
\(639\) 66.1663 0.103547
\(640\) 0 0
\(641\) 165.776 0.258622 0.129311 0.991604i \(-0.458724\pi\)
0.129311 + 0.991604i \(0.458724\pi\)
\(642\) 0 0
\(643\) 959.473i 1.49218i 0.665844 + 0.746091i \(0.268071\pi\)
−0.665844 + 0.746091i \(0.731929\pi\)
\(644\) 0 0
\(645\) −872.965 −1.35343
\(646\) 0 0
\(647\) 537.895i 0.831368i 0.909509 + 0.415684i \(0.136458\pi\)
−0.909509 + 0.415684i \(0.863542\pi\)
\(648\) 0 0
\(649\) 0.505881i 0.000779478i
\(650\) 0 0
\(651\) −71.6920 320.533i −0.110126 0.492370i
\(652\) 0 0
\(653\) −1045.13 −1.60050 −0.800251 0.599665i \(-0.795300\pi\)
−0.800251 + 0.599665i \(0.795300\pi\)
\(654\) 0 0
\(655\) 867.545 1.32450
\(656\) 0 0
\(657\) 321.957i 0.490042i
\(658\) 0 0
\(659\) 286.734 0.435105 0.217553 0.976049i \(-0.430193\pi\)
0.217553 + 0.976049i \(0.430193\pi\)
\(660\) 0 0
\(661\) 397.426i 0.601249i −0.953743 0.300625i \(-0.902805\pi\)
0.953743 0.300625i \(-0.0971952\pi\)
\(662\) 0 0
\(663\) 215.432i 0.324935i
\(664\) 0 0
\(665\) −383.710 1715.56i −0.577008 2.57979i
\(666\) 0 0
\(667\) −645.070 −0.967121
\(668\) 0 0
\(669\) 339.990 0.508206
\(670\) 0 0
\(671\) 13.2367i 0.0197268i
\(672\) 0 0
\(673\) −506.181 −0.752126 −0.376063 0.926594i \(-0.622722\pi\)
−0.376063 + 0.926594i \(0.622722\pi\)
\(674\) 0 0
\(675\) 285.572i 0.423070i
\(676\) 0 0
\(677\) 360.038i 0.531814i −0.963999 0.265907i \(-0.914329\pi\)
0.963999 0.265907i \(-0.0856714\pi\)
\(678\) 0 0
\(679\) −367.564 + 82.2112i −0.541331 + 0.121077i
\(680\) 0 0
\(681\) −203.152 −0.298314
\(682\) 0 0
\(683\) 426.969 0.625137 0.312568 0.949895i \(-0.398811\pi\)
0.312568 + 0.949895i \(0.398811\pi\)
\(684\) 0 0
\(685\) 822.518i 1.20076i
\(686\) 0 0
\(687\) 36.3535 0.0529163
\(688\) 0 0
\(689\) 17.7851i 0.0258129i
\(690\) 0 0
\(691\) 322.616i 0.466882i −0.972371 0.233441i \(-0.925001\pi\)
0.972371 0.233441i \(-0.0749986\pi\)
\(692\) 0 0
\(693\) 0.999009 + 4.46654i 0.00144157 + 0.00644523i
\(694\) 0 0
\(695\) −715.412 −1.02937
\(696\) 0 0
\(697\) −134.119 −0.192423
\(698\) 0 0
\(699\) 114.464i 0.163753i
\(700\) 0 0
\(701\) 311.014 0.443672 0.221836 0.975084i \(-0.428795\pi\)
0.221836 + 0.975084i \(0.428795\pi\)
\(702\) 0 0
\(703\) 503.961i 0.716872i
\(704\) 0 0
\(705\) 1173.46i 1.66448i
\(706\) 0 0
\(707\) 521.880 116.726i 0.738161 0.165101i
\(708\) 0 0
\(709\) −432.555 −0.610092 −0.305046 0.952338i \(-0.598672\pi\)
−0.305046 + 0.952338i \(0.598672\pi\)
\(710\) 0 0
\(711\) 424.917 0.597633
\(712\) 0 0
\(713\) 647.691i 0.908402i
\(714\) 0 0
\(715\) −33.5330 −0.0468993
\(716\) 0 0
\(717\) 351.062i 0.489626i
\(718\) 0 0
\(719\) 880.875i 1.22514i −0.790417 0.612569i \(-0.790136\pi\)
0.790417 0.612569i \(-0.209864\pi\)
\(720\) 0 0
\(721\) 960.216 214.767i 1.33178 0.297873i
\(722\) 0 0
\(723\) −340.143 −0.470461
\(724\) 0 0
\(725\) −1482.82 −2.04527
\(726\) 0 0
\(727\) 551.001i 0.757910i 0.925415 + 0.378955i \(0.123717\pi\)
−0.925415 + 0.378955i \(0.876283\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 407.442i 0.557376i
\(732\) 0 0
\(733\) 779.917i 1.06401i 0.846742 + 0.532003i \(0.178561\pi\)
−0.846742 + 0.532003i \(0.821439\pi\)
\(734\) 0 0
\(735\) −686.595 + 323.308i −0.934143 + 0.439875i
\(736\) 0 0
\(737\) −22.2331 −0.0301670
\(738\) 0 0
\(739\) −1248.94 −1.69004 −0.845019 0.534736i \(-0.820411\pi\)
−0.845019 + 0.534736i \(0.820411\pi\)
\(740\) 0 0
\(741\) 836.997i 1.12955i
\(742\) 0 0
\(743\) 75.4519 0.101550 0.0507752 0.998710i \(-0.483831\pi\)
0.0507752 + 0.998710i \(0.483831\pi\)
\(744\) 0 0
\(745\) 1851.51i 2.48524i
\(746\) 0 0
\(747\) 243.278i 0.325674i
\(748\) 0 0
\(749\) 0.0628753 + 0.281114i 8.39457e−5 + 0.000375319i
\(750\) 0 0
\(751\) 127.424 0.169673 0.0848365 0.996395i \(-0.472963\pi\)
0.0848365 + 0.996395i \(0.472963\pi\)
\(752\) 0 0
\(753\) 591.607 0.785667
\(754\) 0 0
\(755\) 827.697i 1.09629i
\(756\) 0 0
\(757\) −952.912 −1.25880 −0.629401 0.777081i \(-0.716700\pi\)
−0.629401 + 0.777081i \(0.716700\pi\)
\(758\) 0 0
\(759\) 9.02539i 0.0118912i
\(760\) 0 0
\(761\) 675.155i 0.887194i 0.896226 + 0.443597i \(0.146298\pi\)
−0.896226 + 0.443597i \(0.853702\pi\)
\(762\) 0 0
\(763\) −54.8926 245.424i −0.0719432 0.321656i
\(764\) 0 0
\(765\) 193.916 0.253485
\(766\) 0 0
\(767\) −39.9378 −0.0520702
\(768\) 0 0
\(769\) 382.917i 0.497941i 0.968511 + 0.248971i \(0.0800922\pi\)
−0.968511 + 0.248971i \(0.919908\pi\)
\(770\) 0 0
\(771\) −757.321 −0.982258
\(772\) 0 0
\(773\) 435.628i 0.563555i 0.959480 + 0.281777i \(0.0909239\pi\)
−0.959480 + 0.281777i \(0.909076\pi\)
\(774\) 0 0
\(775\) 1488.84i 1.92109i
\(776\) 0 0
\(777\) −212.315 + 47.4874i −0.273249 + 0.0611163i
\(778\) 0 0
\(779\) 521.079 0.668908
\(780\) 0 0
\(781\) −4.80693 −0.00615484
\(782\) 0 0
\(783\) 140.196i 0.179050i
\(784\) 0 0
\(785\) 1219.79 1.55387
\(786\) 0 0
\(787\) 271.750i 0.345299i −0.984983 0.172649i \(-0.944767\pi\)
0.984983 0.172649i \(-0.0552327\pi\)
\(788\) 0 0
\(789\) 858.266i 1.08779i
\(790\) 0 0
\(791\) −29.3976 131.436i −0.0371651 0.166164i
\(792\) 0 0
\(793\) 1045.00 1.31778
\(794\) 0 0
\(795\) −16.0089 −0.0201370
\(796\) 0 0
\(797\) 663.119i 0.832019i 0.909360 + 0.416009i \(0.136572\pi\)
−0.909360 + 0.416009i \(0.863428\pi\)
\(798\) 0 0
\(799\) 547.691 0.685470
\(800\) 0 0
\(801\) 502.217i 0.626988i
\(802\) 0 0
\(803\) 23.3899i 0.0291282i
\(804\) 0 0
\(805\) −1460.44 + 326.649i −1.81421 + 0.405775i
\(806\) 0 0
\(807\) 642.563 0.796237
\(808\) 0 0
\(809\) −572.673 −0.707878 −0.353939 0.935269i \(-0.615158\pi\)
−0.353939 + 0.935269i \(0.615158\pi\)
\(810\) 0 0
\(811\) 471.069i 0.580849i −0.956898 0.290425i \(-0.906203\pi\)
0.956898 0.290425i \(-0.0937965\pi\)
\(812\) 0 0
\(813\) −422.686 −0.519909
\(814\) 0 0
\(815\) 625.134i 0.767035i
\(816\) 0 0
\(817\) 1582.99i 1.93757i
\(818\) 0 0
\(819\) −352.620 + 78.8688i −0.430550 + 0.0962989i
\(820\) 0 0
\(821\) −59.6541 −0.0726603 −0.0363301 0.999340i \(-0.511567\pi\)
−0.0363301 + 0.999340i \(0.511567\pi\)
\(822\) 0 0
\(823\) −353.320 −0.429307 −0.214654 0.976690i \(-0.568862\pi\)
−0.214654 + 0.976690i \(0.568862\pi\)
\(824\) 0 0
\(825\) 20.7466i 0.0251474i
\(826\) 0 0
\(827\) 1045.08 1.26370 0.631850 0.775090i \(-0.282296\pi\)
0.631850 + 0.775090i \(0.282296\pi\)
\(828\) 0 0
\(829\) 95.8922i 0.115672i −0.998326 0.0578361i \(-0.981580\pi\)
0.998326 0.0578361i \(-0.0184201\pi\)
\(830\) 0 0
\(831\) 249.121i 0.299785i
\(832\) 0 0
\(833\) −150.899 320.456i −0.181151 0.384701i
\(834\) 0 0
\(835\) 1999.78 2.39495
\(836\) 0 0
\(837\) −140.765 −0.168179
\(838\) 0 0
\(839\) 903.440i 1.07681i 0.842687 + 0.538403i \(0.180972\pi\)
−0.842687 + 0.538403i \(0.819028\pi\)
\(840\) 0 0
\(841\) −113.042 −0.134413
\(842\) 0 0
\(843\) 513.665i 0.609330i
\(844\) 0 0
\(845\) 1136.14i 1.34454i
\(846\) 0 0
\(847\) 184.804 + 826.253i 0.218186 + 0.975505i
\(848\) 0 0
\(849\) −221.791 −0.261238
\(850\) 0 0
\(851\) −429.017 −0.504133
\(852\) 0 0
\(853\) 380.188i 0.445707i −0.974852 0.222854i \(-0.928463\pi\)
0.974852 0.222854i \(-0.0715372\pi\)
\(854\) 0 0
\(855\) −753.405 −0.881176
\(856\) 0 0
\(857\) 1312.54i 1.53155i 0.643109 + 0.765775i \(0.277644\pi\)
−0.643109 + 0.765775i \(0.722356\pi\)
\(858\) 0 0
\(859\) 1253.26i 1.45898i 0.683991 + 0.729491i \(0.260243\pi\)
−0.683991 + 0.729491i \(0.739757\pi\)
\(860\) 0 0
\(861\) −49.1004 219.527i −0.0570272 0.254967i
\(862\) 0 0
\(863\) 188.946 0.218941 0.109471 0.993990i \(-0.465084\pi\)
0.109471 + 0.993990i \(0.465084\pi\)
\(864\) 0 0
\(865\) −2323.44 −2.68605
\(866\) 0 0
\(867\) 410.056i 0.472959i
\(868\) 0 0
\(869\) −30.8699 −0.0355235
\(870\) 0 0
\(871\) 1755.23i 2.01519i
\(872\) 0 0
\(873\) 161.420i 0.184902i
\(874\) 0 0
\(875\) −1829.99 + 409.305i −2.09142 + 0.467777i
\(876\) 0 0
\(877\) −1103.53 −1.25831 −0.629153 0.777282i \(-0.716598\pi\)
−0.629153 + 0.777282i \(0.716598\pi\)
\(878\) 0 0
\(879\) −544.271 −0.619193
\(880\) 0 0
\(881\) 488.950i 0.554994i 0.960727 + 0.277497i \(0.0895048\pi\)
−0.960727 + 0.277497i \(0.910495\pi\)
\(882\) 0 0
\(883\) 254.920 0.288698 0.144349 0.989527i \(-0.453891\pi\)
0.144349 + 0.989527i \(0.453891\pi\)
\(884\) 0 0
\(885\) 35.9492i 0.0406205i
\(886\) 0 0
\(887\) 1195.09i 1.34734i 0.739033 + 0.673669i \(0.235283\pi\)
−0.739033 + 0.673669i \(0.764717\pi\)
\(888\) 0 0
\(889\) 341.475 + 1526.72i 0.384111 + 1.71735i
\(890\) 0 0
\(891\) 1.96153 0.00220149
\(892\) 0 0
\(893\) −2127.89 −2.38286
\(894\) 0 0
\(895\) 1099.85i 1.22889i
\(896\) 0 0
\(897\) −712.528 −0.794345
\(898\) 0 0
\(899\) 730.916i 0.813033i
\(900\) 0 0
\(901\) 7.47188i 0.00829287i
\(902\) 0 0
\(903\) 666.903 149.163i 0.738542 0.165186i
\(904\) 0 0
\(905\) −1475.43 −1.63031
\(906\) 0 0
\(907\) 771.911 0.851059 0.425530 0.904944i \(-0.360088\pi\)
0.425530 + 0.904944i \(0.360088\pi\)
\(908\) 0 0
\(909\) 229.189i 0.252133i
\(910\) 0 0
\(911\) −674.122 −0.739980 −0.369990 0.929036i \(-0.620639\pi\)
−0.369990 + 0.929036i \(0.620639\pi\)
\(912\) 0 0
\(913\) 17.6740i 0.0193581i
\(914\) 0 0
\(915\) 940.634i 1.02802i
\(916\) 0 0
\(917\) −662.762 + 148.237i −0.722751 + 0.161654i
\(918\) 0 0
\(919\) 1654.31 1.80012 0.900058 0.435769i \(-0.143524\pi\)
0.900058 + 0.435769i \(0.143524\pi\)
\(920\) 0 0
\(921\) 584.334 0.634456
\(922\) 0 0
\(923\) 379.493i 0.411152i
\(924\) 0 0
\(925\) −986.180 −1.06614
\(926\) 0 0
\(927\) 421.689i 0.454896i
\(928\) 0 0
\(929\) 973.605i 1.04801i 0.851714 + 0.524007i \(0.175563\pi\)
−0.851714 + 0.524007i \(0.824437\pi\)
\(930\) 0 0
\(931\) 586.272 + 1245.04i 0.629723 + 1.33731i
\(932\) 0 0
\(933\) −38.1251 −0.0408629
\(934\) 0 0
\(935\) −14.0879 −0.0150672
\(936\) 0 0
\(937\) 606.298i 0.647063i 0.946217 + 0.323532i \(0.104870\pi\)
−0.946217 + 0.323532i \(0.895130\pi\)
\(938\) 0 0
\(939\) 592.893 0.631409
\(940\) 0 0
\(941\) 640.116i 0.680251i −0.940380 0.340125i \(-0.889530\pi\)
0.940380 0.340125i \(-0.110470\pi\)
\(942\) 0 0
\(943\) 443.590i 0.470403i
\(944\) 0 0
\(945\) 70.9921 + 317.404i 0.0751239 + 0.335877i
\(946\) 0 0
\(947\) −1525.84 −1.61124 −0.805619 0.592434i \(-0.798167\pi\)
−0.805619 + 0.592434i \(0.798167\pi\)
\(948\) 0 0
\(949\) 1846.57 1.94580
\(950\) 0 0
\(951\) 974.649i 1.02487i
\(952\) 0 0
\(953\) 478.187 0.501770 0.250885 0.968017i \(-0.419278\pi\)
0.250885 + 0.968017i \(0.419278\pi\)
\(954\) 0 0
\(955\) 391.289i 0.409727i
\(956\) 0 0
\(957\) 10.1851i 0.0106428i
\(958\) 0 0
\(959\) 140.543 + 628.364i 0.146552 + 0.655228i
\(960\) 0 0
\(961\) 227.114 0.236331
\(962\) 0 0
\(963\) 0.123454 0.000128197
\(964\) 0 0
\(965\) 1603.93i 1.66211i
\(966\) 0 0
\(967\) −1654.02 −1.71047 −0.855233 0.518244i \(-0.826586\pi\)
−0.855233 + 0.518244i \(0.826586\pi\)
\(968\) 0 0
\(969\) 351.639i 0.362888i
\(970\) 0 0
\(971\) 171.930i 0.177065i −0.996073 0.0885323i \(-0.971782\pi\)
0.996073 0.0885323i \(-0.0282177\pi\)
\(972\) 0 0
\(973\) 546.540 122.242i 0.561706 0.125634i
\(974\) 0 0
\(975\) −1637.88 −1.67988
\(976\) 0 0
\(977\) −499.902 −0.511670 −0.255835 0.966720i \(-0.582350\pi\)
−0.255835 + 0.966720i \(0.582350\pi\)
\(978\) 0 0
\(979\) 36.4857i 0.0372683i
\(980\) 0 0
\(981\) −107.780 −0.109868
\(982\) 0 0
\(983\) 497.601i 0.506206i −0.967439 0.253103i \(-0.918549\pi\)
0.967439 0.253103i \(-0.0814512\pi\)
\(984\) 0 0
\(985\) 2820.27i 2.86322i
\(986\) 0 0
\(987\) 200.508 + 896.464i 0.203149 + 0.908272i
\(988\) 0 0
\(989\) 1347.59 1.36258
\(990\) 0 0
\(991\) 328.000 0.330979 0.165490 0.986212i \(-0.447080\pi\)
0.165490 + 0.986212i \(0.447080\pi\)
\(992\) 0 0
\(993\) 464.603i 0.467878i
\(994\) 0 0
\(995\) −2418.21 −2.43036
\(996\) 0 0
\(997\) 966.951i 0.969861i 0.874553 + 0.484930i \(0.161155\pi\)
−0.874553 + 0.484930i \(0.838845\pi\)
\(998\) 0 0
\(999\) 93.2403i 0.0933336i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.3.f.j.769.8 16
4.3 odd 2 inner 1344.3.f.j.769.16 16
7.6 odd 2 inner 1344.3.f.j.769.9 16
8.3 odd 2 672.3.f.b.97.1 16
8.5 even 2 672.3.f.b.97.9 yes 16
24.5 odd 2 2016.3.f.g.1441.15 16
24.11 even 2 2016.3.f.g.1441.16 16
28.27 even 2 inner 1344.3.f.j.769.1 16
56.13 odd 2 672.3.f.b.97.8 yes 16
56.27 even 2 672.3.f.b.97.16 yes 16
168.83 odd 2 2016.3.f.g.1441.2 16
168.125 even 2 2016.3.f.g.1441.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.f.b.97.1 16 8.3 odd 2
672.3.f.b.97.8 yes 16 56.13 odd 2
672.3.f.b.97.9 yes 16 8.5 even 2
672.3.f.b.97.16 yes 16 56.27 even 2
1344.3.f.j.769.1 16 28.27 even 2 inner
1344.3.f.j.769.8 16 1.1 even 1 trivial
1344.3.f.j.769.9 16 7.6 odd 2 inner
1344.3.f.j.769.16 16 4.3 odd 2 inner
2016.3.f.g.1441.1 16 168.125 even 2
2016.3.f.g.1441.2 16 168.83 odd 2
2016.3.f.g.1441.15 16 24.5 odd 2
2016.3.f.g.1441.16 16 24.11 even 2