Properties

Label 1344.3.f.h.769.2
Level $1344$
Weight $3$
Character 1344.769
Analytic conductor $36.621$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,3,Mod(769,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4,0,-24,0,-16,0,0,0,-24,0,0,0,0,0,-12,0,-96,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6213475300\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.551252791296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 17x^{6} + 26x^{5} + 270x^{4} - 302x^{3} - 1007x^{2} - 3502x + 10609 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.2
Root \(-1.39023 - 2.19650i\) of defining polynomial
Character \(\chi\) \(=\) 1344.769
Dual form 1344.3.f.h.769.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -3.76315i q^{5} +(-2.78047 - 6.42409i) q^{7} -3.00000 q^{9} +19.3926 q^{11} -10.3961i q^{13} -6.51796 q^{15} -13.8088i q^{17} -3.87797i q^{19} +(-11.1269 + 4.81591i) q^{21} -23.4580 q^{23} +10.8387 q^{25} +5.19615i q^{27} +26.7787 q^{29} -51.0424i q^{31} -33.5890i q^{33} +(-24.1748 + 10.4633i) q^{35} +55.2961 q^{37} -18.0065 q^{39} +4.59089i q^{41} +7.68092 q^{43} +11.2894i q^{45} +78.2491i q^{47} +(-33.5380 + 35.7240i) q^{49} -23.9176 q^{51} +6.58689 q^{53} -72.9772i q^{55} -6.71685 q^{57} -93.9754i q^{59} +33.9447i q^{61} +(8.34141 + 19.2723i) q^{63} -39.1219 q^{65} -111.481 q^{67} +40.6304i q^{69} -32.6658 q^{71} -76.3129i q^{73} -18.7732i q^{75} +(-53.9205 - 124.580i) q^{77} -60.5380 q^{79} +9.00000 q^{81} +37.8324i q^{83} -51.9647 q^{85} -46.3821i q^{87} +2.36600i q^{89} +(-66.7852 + 28.9059i) q^{91} -88.4080 q^{93} -14.5934 q^{95} +131.563i q^{97} -58.1778 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 24 q^{9} - 16 q^{11} - 24 q^{15} - 12 q^{21} - 96 q^{23} + 64 q^{29} - 120 q^{35} + 40 q^{37} + 48 q^{39} + 136 q^{43} + 112 q^{49} - 24 q^{51} - 112 q^{53} - 72 q^{57} - 12 q^{63} - 208 q^{65}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 3.76315i 0.752630i −0.926492 0.376315i \(-0.877191\pi\)
0.926492 0.376315i \(-0.122809\pi\)
\(6\) 0 0
\(7\) −2.78047 6.42409i −0.397210 0.917728i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 19.3926 1.76296 0.881482 0.472217i \(-0.156546\pi\)
0.881482 + 0.472217i \(0.156546\pi\)
\(12\) 0 0
\(13\) 10.3961i 0.799696i −0.916581 0.399848i \(-0.869063\pi\)
0.916581 0.399848i \(-0.130937\pi\)
\(14\) 0 0
\(15\) −6.51796 −0.434531
\(16\) 0 0
\(17\) 13.8088i 0.812285i −0.913810 0.406142i \(-0.866874\pi\)
0.913810 0.406142i \(-0.133126\pi\)
\(18\) 0 0
\(19\) 3.87797i 0.204104i −0.994779 0.102052i \(-0.967459\pi\)
0.994779 0.102052i \(-0.0325408\pi\)
\(20\) 0 0
\(21\) −11.1269 + 4.81591i −0.529850 + 0.229329i
\(22\) 0 0
\(23\) −23.4580 −1.01991 −0.509956 0.860201i \(-0.670338\pi\)
−0.509956 + 0.860201i \(0.670338\pi\)
\(24\) 0 0
\(25\) 10.8387 0.433549
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 26.7787 0.923404 0.461702 0.887035i \(-0.347239\pi\)
0.461702 + 0.887035i \(0.347239\pi\)
\(30\) 0 0
\(31\) 51.0424i 1.64653i −0.567658 0.823265i \(-0.692150\pi\)
0.567658 0.823265i \(-0.307850\pi\)
\(32\) 0 0
\(33\) 33.5890i 1.01785i
\(34\) 0 0
\(35\) −24.1748 + 10.4633i −0.690709 + 0.298952i
\(36\) 0 0
\(37\) 55.2961 1.49449 0.747245 0.664549i \(-0.231376\pi\)
0.747245 + 0.664549i \(0.231376\pi\)
\(38\) 0 0
\(39\) −18.0065 −0.461705
\(40\) 0 0
\(41\) 4.59089i 0.111973i 0.998432 + 0.0559865i \(0.0178304\pi\)
−0.998432 + 0.0559865i \(0.982170\pi\)
\(42\) 0 0
\(43\) 7.68092 0.178626 0.0893130 0.996004i \(-0.471533\pi\)
0.0893130 + 0.996004i \(0.471533\pi\)
\(44\) 0 0
\(45\) 11.2894i 0.250877i
\(46\) 0 0
\(47\) 78.2491i 1.66488i 0.554119 + 0.832438i \(0.313055\pi\)
−0.554119 + 0.832438i \(0.686945\pi\)
\(48\) 0 0
\(49\) −33.5380 + 35.7240i −0.684449 + 0.729061i
\(50\) 0 0
\(51\) −23.9176 −0.468973
\(52\) 0 0
\(53\) 6.58689 0.124281 0.0621405 0.998067i \(-0.480207\pi\)
0.0621405 + 0.998067i \(0.480207\pi\)
\(54\) 0 0
\(55\) 72.9772i 1.32686i
\(56\) 0 0
\(57\) −6.71685 −0.117839
\(58\) 0 0
\(59\) 93.9754i 1.59280i −0.604768 0.796402i \(-0.706734\pi\)
0.604768 0.796402i \(-0.293266\pi\)
\(60\) 0 0
\(61\) 33.9447i 0.556470i 0.960513 + 0.278235i \(0.0897495\pi\)
−0.960513 + 0.278235i \(0.910251\pi\)
\(62\) 0 0
\(63\) 8.34141 + 19.2723i 0.132403 + 0.305909i
\(64\) 0 0
\(65\) −39.1219 −0.601875
\(66\) 0 0
\(67\) −111.481 −1.66390 −0.831948 0.554854i \(-0.812774\pi\)
−0.831948 + 0.554854i \(0.812774\pi\)
\(68\) 0 0
\(69\) 40.6304i 0.588846i
\(70\) 0 0
\(71\) −32.6658 −0.460082 −0.230041 0.973181i \(-0.573886\pi\)
−0.230041 + 0.973181i \(0.573886\pi\)
\(72\) 0 0
\(73\) 76.3129i 1.04538i −0.852522 0.522691i \(-0.824928\pi\)
0.852522 0.522691i \(-0.175072\pi\)
\(74\) 0 0
\(75\) 18.7732i 0.250310i
\(76\) 0 0
\(77\) −53.9205 124.580i −0.700267 1.61792i
\(78\) 0 0
\(79\) −60.5380 −0.766304 −0.383152 0.923685i \(-0.625161\pi\)
−0.383152 + 0.923685i \(0.625161\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 37.8324i 0.455813i 0.973683 + 0.227906i \(0.0731880\pi\)
−0.973683 + 0.227906i \(0.926812\pi\)
\(84\) 0 0
\(85\) −51.9647 −0.611350
\(86\) 0 0
\(87\) 46.3821i 0.533128i
\(88\) 0 0
\(89\) 2.36600i 0.0265842i 0.999912 + 0.0132921i \(0.00423114\pi\)
−0.999912 + 0.0132921i \(0.995769\pi\)
\(90\) 0 0
\(91\) −66.7852 + 28.9059i −0.733903 + 0.317647i
\(92\) 0 0
\(93\) −88.4080 −0.950624
\(94\) 0 0
\(95\) −14.5934 −0.153615
\(96\) 0 0
\(97\) 131.563i 1.35632i 0.734913 + 0.678161i \(0.237223\pi\)
−0.734913 + 0.678161i \(0.762777\pi\)
\(98\) 0 0
\(99\) −58.1778 −0.587655
\(100\) 0 0
\(101\) 15.6865i 0.155312i 0.996980 + 0.0776559i \(0.0247435\pi\)
−0.996980 + 0.0776559i \(0.975256\pi\)
\(102\) 0 0
\(103\) 158.794i 1.54169i 0.637021 + 0.770846i \(0.280166\pi\)
−0.637021 + 0.770846i \(0.719834\pi\)
\(104\) 0 0
\(105\) 18.1230 + 41.8720i 0.172600 + 0.398781i
\(106\) 0 0
\(107\) −54.4863 −0.509218 −0.254609 0.967044i \(-0.581947\pi\)
−0.254609 + 0.967044i \(0.581947\pi\)
\(108\) 0 0
\(109\) −46.3852 −0.425552 −0.212776 0.977101i \(-0.568251\pi\)
−0.212776 + 0.977101i \(0.568251\pi\)
\(110\) 0 0
\(111\) 95.7757i 0.862844i
\(112\) 0 0
\(113\) 43.3245 0.383402 0.191701 0.981453i \(-0.438600\pi\)
0.191701 + 0.981453i \(0.438600\pi\)
\(114\) 0 0
\(115\) 88.2758i 0.767616i
\(116\) 0 0
\(117\) 31.1882i 0.266565i
\(118\) 0 0
\(119\) −88.7093 + 38.3951i −0.745457 + 0.322648i
\(120\) 0 0
\(121\) 255.073 2.10804
\(122\) 0 0
\(123\) 7.95165 0.0646476
\(124\) 0 0
\(125\) 134.866i 1.07893i
\(126\) 0 0
\(127\) −150.320 −1.18362 −0.591812 0.806076i \(-0.701587\pi\)
−0.591812 + 0.806076i \(0.701587\pi\)
\(128\) 0 0
\(129\) 13.3037i 0.103130i
\(130\) 0 0
\(131\) 201.373i 1.53720i −0.639732 0.768598i \(-0.720955\pi\)
0.639732 0.768598i \(-0.279045\pi\)
\(132\) 0 0
\(133\) −24.9125 + 10.7826i −0.187312 + 0.0810720i
\(134\) 0 0
\(135\) 19.5539 0.144844
\(136\) 0 0
\(137\) −5.63627 −0.0411406 −0.0205703 0.999788i \(-0.506548\pi\)
−0.0205703 + 0.999788i \(0.506548\pi\)
\(138\) 0 0
\(139\) 81.3364i 0.585154i −0.956242 0.292577i \(-0.905487\pi\)
0.956242 0.292577i \(-0.0945127\pi\)
\(140\) 0 0
\(141\) 135.531 0.961216
\(142\) 0 0
\(143\) 201.607i 1.40984i
\(144\) 0 0
\(145\) 100.772i 0.694981i
\(146\) 0 0
\(147\) 61.8758 + 58.0895i 0.420924 + 0.395167i
\(148\) 0 0
\(149\) 56.3232 0.378008 0.189004 0.981976i \(-0.439474\pi\)
0.189004 + 0.981976i \(0.439474\pi\)
\(150\) 0 0
\(151\) 65.8620 0.436172 0.218086 0.975930i \(-0.430019\pi\)
0.218086 + 0.975930i \(0.430019\pi\)
\(152\) 0 0
\(153\) 41.4265i 0.270762i
\(154\) 0 0
\(155\) −192.080 −1.23923
\(156\) 0 0
\(157\) 268.600i 1.71083i 0.517945 + 0.855414i \(0.326697\pi\)
−0.517945 + 0.855414i \(0.673303\pi\)
\(158\) 0 0
\(159\) 11.4088i 0.0717537i
\(160\) 0 0
\(161\) 65.2242 + 150.696i 0.405119 + 0.936001i
\(162\) 0 0
\(163\) −185.843 −1.14014 −0.570069 0.821597i \(-0.693084\pi\)
−0.570069 + 0.821597i \(0.693084\pi\)
\(164\) 0 0
\(165\) −126.400 −0.766062
\(166\) 0 0
\(167\) 73.9811i 0.443000i −0.975160 0.221500i \(-0.928905\pi\)
0.975160 0.221500i \(-0.0710954\pi\)
\(168\) 0 0
\(169\) 60.9221 0.360486
\(170\) 0 0
\(171\) 11.6339i 0.0680346i
\(172\) 0 0
\(173\) 156.300i 0.903468i −0.892153 0.451734i \(-0.850806\pi\)
0.892153 0.451734i \(-0.149194\pi\)
\(174\) 0 0
\(175\) −30.1367 69.6290i −0.172210 0.397880i
\(176\) 0 0
\(177\) −162.770 −0.919606
\(178\) 0 0
\(179\) 7.47589 0.0417648 0.0208824 0.999782i \(-0.493352\pi\)
0.0208824 + 0.999782i \(0.493352\pi\)
\(180\) 0 0
\(181\) 199.003i 1.09946i 0.835342 + 0.549731i \(0.185270\pi\)
−0.835342 + 0.549731i \(0.814730\pi\)
\(182\) 0 0
\(183\) 58.7939 0.321278
\(184\) 0 0
\(185\) 208.088i 1.12480i
\(186\) 0 0
\(187\) 267.790i 1.43203i
\(188\) 0 0
\(189\) 33.3806 14.4477i 0.176617 0.0764431i
\(190\) 0 0
\(191\) −230.401 −1.20629 −0.603144 0.797632i \(-0.706086\pi\)
−0.603144 + 0.797632i \(0.706086\pi\)
\(192\) 0 0
\(193\) −385.249 −1.99611 −0.998055 0.0623370i \(-0.980145\pi\)
−0.998055 + 0.0623370i \(0.980145\pi\)
\(194\) 0 0
\(195\) 67.7611i 0.347493i
\(196\) 0 0
\(197\) 325.670 1.65315 0.826575 0.562827i \(-0.190286\pi\)
0.826575 + 0.562827i \(0.190286\pi\)
\(198\) 0 0
\(199\) 54.1376i 0.272048i 0.990706 + 0.136024i \(0.0434325\pi\)
−0.990706 + 0.136024i \(0.956568\pi\)
\(200\) 0 0
\(201\) 193.091i 0.960651i
\(202\) 0 0
\(203\) −74.4574 172.029i −0.366785 0.847434i
\(204\) 0 0
\(205\) 17.2762 0.0842741
\(206\) 0 0
\(207\) 70.3739 0.339971
\(208\) 0 0
\(209\) 75.2040i 0.359828i
\(210\) 0 0
\(211\) 285.042 1.35091 0.675455 0.737402i \(-0.263947\pi\)
0.675455 + 0.737402i \(0.263947\pi\)
\(212\) 0 0
\(213\) 56.5788i 0.265628i
\(214\) 0 0
\(215\) 28.9044i 0.134439i
\(216\) 0 0
\(217\) −327.901 + 141.922i −1.51107 + 0.654018i
\(218\) 0 0
\(219\) −132.178 −0.603551
\(220\) 0 0
\(221\) −143.557 −0.649581
\(222\) 0 0
\(223\) 4.66059i 0.0208995i −0.999945 0.0104497i \(-0.996674\pi\)
0.999945 0.0104497i \(-0.00332632\pi\)
\(224\) 0 0
\(225\) −32.5162 −0.144516
\(226\) 0 0
\(227\) 234.981i 1.03516i 0.855636 + 0.517579i \(0.173166\pi\)
−0.855636 + 0.517579i \(0.826834\pi\)
\(228\) 0 0
\(229\) 278.190i 1.21480i −0.794395 0.607402i \(-0.792212\pi\)
0.794395 0.607402i \(-0.207788\pi\)
\(230\) 0 0
\(231\) −215.779 + 93.3931i −0.934107 + 0.404299i
\(232\) 0 0
\(233\) −209.817 −0.900504 −0.450252 0.892902i \(-0.648666\pi\)
−0.450252 + 0.892902i \(0.648666\pi\)
\(234\) 0 0
\(235\) 294.463 1.25303
\(236\) 0 0
\(237\) 104.855i 0.442426i
\(238\) 0 0
\(239\) 325.282 1.36101 0.680507 0.732741i \(-0.261759\pi\)
0.680507 + 0.732741i \(0.261759\pi\)
\(240\) 0 0
\(241\) 125.858i 0.522231i −0.965308 0.261115i \(-0.915910\pi\)
0.965308 0.261115i \(-0.0840903\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 134.435 + 126.208i 0.548713 + 0.515136i
\(246\) 0 0
\(247\) −40.3156 −0.163221
\(248\) 0 0
\(249\) 65.5277 0.263164
\(250\) 0 0
\(251\) 267.651i 1.06634i 0.846008 + 0.533170i \(0.178999\pi\)
−0.846008 + 0.533170i \(0.821001\pi\)
\(252\) 0 0
\(253\) −454.911 −1.79807
\(254\) 0 0
\(255\) 90.0055i 0.352963i
\(256\) 0 0
\(257\) 508.452i 1.97841i −0.146531 0.989206i \(-0.546811\pi\)
0.146531 0.989206i \(-0.453189\pi\)
\(258\) 0 0
\(259\) −153.749 355.228i −0.593626 1.37154i
\(260\) 0 0
\(261\) −80.3362 −0.307801
\(262\) 0 0
\(263\) −265.869 −1.01091 −0.505454 0.862854i \(-0.668675\pi\)
−0.505454 + 0.862854i \(0.668675\pi\)
\(264\) 0 0
\(265\) 24.7875i 0.0935376i
\(266\) 0 0
\(267\) 4.09803 0.0153484
\(268\) 0 0
\(269\) 201.938i 0.750698i −0.926883 0.375349i \(-0.877523\pi\)
0.926883 0.375349i \(-0.122477\pi\)
\(270\) 0 0
\(271\) 302.239i 1.11527i −0.830085 0.557637i \(-0.811708\pi\)
0.830085 0.557637i \(-0.188292\pi\)
\(272\) 0 0
\(273\) 50.0665 + 115.675i 0.183394 + 0.423719i
\(274\) 0 0
\(275\) 210.191 0.764331
\(276\) 0 0
\(277\) 359.698 1.29855 0.649274 0.760554i \(-0.275073\pi\)
0.649274 + 0.760554i \(0.275073\pi\)
\(278\) 0 0
\(279\) 153.127i 0.548843i
\(280\) 0 0
\(281\) 533.204 1.89752 0.948762 0.315992i \(-0.102337\pi\)
0.948762 + 0.315992i \(0.102337\pi\)
\(282\) 0 0
\(283\) 514.640i 1.81852i 0.416233 + 0.909258i \(0.363350\pi\)
−0.416233 + 0.909258i \(0.636650\pi\)
\(284\) 0 0
\(285\) 25.2765i 0.0886894i
\(286\) 0 0
\(287\) 29.4923 12.7648i 0.102761 0.0444767i
\(288\) 0 0
\(289\) 98.3158 0.340193
\(290\) 0 0
\(291\) 227.874 0.783073
\(292\) 0 0
\(293\) 393.368i 1.34255i 0.741208 + 0.671276i \(0.234253\pi\)
−0.741208 + 0.671276i \(0.765747\pi\)
\(294\) 0 0
\(295\) −353.643 −1.19879
\(296\) 0 0
\(297\) 100.767i 0.339283i
\(298\) 0 0
\(299\) 243.870i 0.815620i
\(300\) 0 0
\(301\) −21.3566 49.3430i −0.0709520 0.163930i
\(302\) 0 0
\(303\) 27.1698 0.0896693
\(304\) 0 0
\(305\) 127.739 0.418816
\(306\) 0 0
\(307\) 149.373i 0.486557i 0.969957 + 0.243278i \(0.0782229\pi\)
−0.969957 + 0.243278i \(0.921777\pi\)
\(308\) 0 0
\(309\) 275.040 0.890097
\(310\) 0 0
\(311\) 198.689i 0.638873i −0.947608 0.319436i \(-0.896506\pi\)
0.947608 0.319436i \(-0.103494\pi\)
\(312\) 0 0
\(313\) 547.057i 1.74779i 0.486118 + 0.873893i \(0.338412\pi\)
−0.486118 + 0.873893i \(0.661588\pi\)
\(314\) 0 0
\(315\) 72.5245 31.3899i 0.230236 0.0996506i
\(316\) 0 0
\(317\) 182.012 0.574171 0.287086 0.957905i \(-0.407314\pi\)
0.287086 + 0.957905i \(0.407314\pi\)
\(318\) 0 0
\(319\) 519.309 1.62793
\(320\) 0 0
\(321\) 94.3730i 0.293997i
\(322\) 0 0
\(323\) −53.5503 −0.165790
\(324\) 0 0
\(325\) 112.680i 0.346707i
\(326\) 0 0
\(327\) 80.3416i 0.245693i
\(328\) 0 0
\(329\) 502.680 217.569i 1.52790 0.661305i
\(330\) 0 0
\(331\) 94.5420 0.285625 0.142813 0.989750i \(-0.454385\pi\)
0.142813 + 0.989750i \(0.454385\pi\)
\(332\) 0 0
\(333\) −165.888 −0.498163
\(334\) 0 0
\(335\) 419.519i 1.25230i
\(336\) 0 0
\(337\) −41.6805 −0.123681 −0.0618406 0.998086i \(-0.519697\pi\)
−0.0618406 + 0.998086i \(0.519697\pi\)
\(338\) 0 0
\(339\) 75.0402i 0.221357i
\(340\) 0 0
\(341\) 989.845i 2.90277i
\(342\) 0 0
\(343\) 322.746 + 116.122i 0.940949 + 0.338547i
\(344\) 0 0
\(345\) 152.898 0.443183
\(346\) 0 0
\(347\) 266.888 0.769129 0.384564 0.923098i \(-0.374352\pi\)
0.384564 + 0.923098i \(0.374352\pi\)
\(348\) 0 0
\(349\) 121.506i 0.348154i −0.984732 0.174077i \(-0.944306\pi\)
0.984732 0.174077i \(-0.0556941\pi\)
\(350\) 0 0
\(351\) 54.0195 0.153902
\(352\) 0 0
\(353\) 655.237i 1.85619i −0.372337 0.928097i \(-0.621444\pi\)
0.372337 0.928097i \(-0.378556\pi\)
\(354\) 0 0
\(355\) 122.926i 0.346271i
\(356\) 0 0
\(357\) 66.5022 + 153.649i 0.186281 + 0.430390i
\(358\) 0 0
\(359\) 220.525 0.614277 0.307138 0.951665i \(-0.400629\pi\)
0.307138 + 0.951665i \(0.400629\pi\)
\(360\) 0 0
\(361\) 345.961 0.958342
\(362\) 0 0
\(363\) 441.800i 1.21708i
\(364\) 0 0
\(365\) −287.177 −0.786785
\(366\) 0 0
\(367\) 324.086i 0.883068i 0.897244 + 0.441534i \(0.145566\pi\)
−0.897244 + 0.441534i \(0.854434\pi\)
\(368\) 0 0
\(369\) 13.7727i 0.0373243i
\(370\) 0 0
\(371\) −18.3147 42.3148i −0.0493656 0.114056i
\(372\) 0 0
\(373\) −108.432 −0.290702 −0.145351 0.989380i \(-0.546431\pi\)
−0.145351 + 0.989380i \(0.546431\pi\)
\(374\) 0 0
\(375\) −233.595 −0.622921
\(376\) 0 0
\(377\) 278.393i 0.738443i
\(378\) 0 0
\(379\) 10.3008 0.0271788 0.0135894 0.999908i \(-0.495674\pi\)
0.0135894 + 0.999908i \(0.495674\pi\)
\(380\) 0 0
\(381\) 260.362i 0.683365i
\(382\) 0 0
\(383\) 60.5108i 0.157992i 0.996875 + 0.0789958i \(0.0251714\pi\)
−0.996875 + 0.0789958i \(0.974829\pi\)
\(384\) 0 0
\(385\) −468.813 + 202.911i −1.21770 + 0.527041i
\(386\) 0 0
\(387\) −23.0428 −0.0595420
\(388\) 0 0
\(389\) 237.516 0.610581 0.305290 0.952259i \(-0.401246\pi\)
0.305290 + 0.952259i \(0.401246\pi\)
\(390\) 0 0
\(391\) 323.927i 0.828459i
\(392\) 0 0
\(393\) −348.788 −0.887500
\(394\) 0 0
\(395\) 227.813i 0.576743i
\(396\) 0 0
\(397\) 246.791i 0.621640i −0.950469 0.310820i \(-0.899396\pi\)
0.950469 0.310820i \(-0.100604\pi\)
\(398\) 0 0
\(399\) 18.6760 + 43.1497i 0.0468070 + 0.108144i
\(400\) 0 0
\(401\) −292.374 −0.729112 −0.364556 0.931181i \(-0.618779\pi\)
−0.364556 + 0.931181i \(0.618779\pi\)
\(402\) 0 0
\(403\) −530.639 −1.31672
\(404\) 0 0
\(405\) 33.8683i 0.0836255i
\(406\) 0 0
\(407\) 1072.34 2.63473
\(408\) 0 0
\(409\) 537.456i 1.31407i 0.753859 + 0.657037i \(0.228190\pi\)
−0.753859 + 0.657037i \(0.771810\pi\)
\(410\) 0 0
\(411\) 9.76230i 0.0237526i
\(412\) 0 0
\(413\) −603.707 + 261.296i −1.46176 + 0.632677i
\(414\) 0 0
\(415\) 142.369 0.343058
\(416\) 0 0
\(417\) −140.879 −0.337839
\(418\) 0 0
\(419\) 369.290i 0.881361i −0.897664 0.440680i \(-0.854737\pi\)
0.897664 0.440680i \(-0.145263\pi\)
\(420\) 0 0
\(421\) 1.84724 0.00438774 0.00219387 0.999998i \(-0.499302\pi\)
0.00219387 + 0.999998i \(0.499302\pi\)
\(422\) 0 0
\(423\) 234.747i 0.554958i
\(424\) 0 0
\(425\) 149.670i 0.352165i
\(426\) 0 0
\(427\) 218.064 94.3822i 0.510688 0.221036i
\(428\) 0 0
\(429\) −349.193 −0.813969
\(430\) 0 0
\(431\) 473.957 1.09967 0.549834 0.835274i \(-0.314691\pi\)
0.549834 + 0.835274i \(0.314691\pi\)
\(432\) 0 0
\(433\) 115.253i 0.266174i 0.991104 + 0.133087i \(0.0424889\pi\)
−0.991104 + 0.133087i \(0.957511\pi\)
\(434\) 0 0
\(435\) −174.543 −0.401248
\(436\) 0 0
\(437\) 90.9694i 0.208168i
\(438\) 0 0
\(439\) 274.329i 0.624894i −0.949935 0.312447i \(-0.898851\pi\)
0.949935 0.312447i \(-0.101149\pi\)
\(440\) 0 0
\(441\) 100.614 107.172i 0.228150 0.243020i
\(442\) 0 0
\(443\) 171.563 0.387275 0.193637 0.981073i \(-0.437971\pi\)
0.193637 + 0.981073i \(0.437971\pi\)
\(444\) 0 0
\(445\) 8.90360 0.0200081
\(446\) 0 0
\(447\) 97.5547i 0.218243i
\(448\) 0 0
\(449\) −380.428 −0.847278 −0.423639 0.905831i \(-0.639248\pi\)
−0.423639 + 0.905831i \(0.639248\pi\)
\(450\) 0 0
\(451\) 89.0293i 0.197404i
\(452\) 0 0
\(453\) 114.076i 0.251824i
\(454\) 0 0
\(455\) 108.777 + 251.323i 0.239071 + 0.552357i
\(456\) 0 0
\(457\) 150.525 0.329375 0.164688 0.986346i \(-0.447338\pi\)
0.164688 + 0.986346i \(0.447338\pi\)
\(458\) 0 0
\(459\) 71.7529 0.156324
\(460\) 0 0
\(461\) 17.3349i 0.0376029i −0.999823 0.0188014i \(-0.994015\pi\)
0.999823 0.0188014i \(-0.00598504\pi\)
\(462\) 0 0
\(463\) −79.1458 −0.170941 −0.0854706 0.996341i \(-0.527239\pi\)
−0.0854706 + 0.996341i \(0.527239\pi\)
\(464\) 0 0
\(465\) 332.692i 0.715468i
\(466\) 0 0
\(467\) 470.490i 1.00747i 0.863857 + 0.503736i \(0.168042\pi\)
−0.863857 + 0.503736i \(0.831958\pi\)
\(468\) 0 0
\(469\) 309.969 + 716.165i 0.660916 + 1.52700i
\(470\) 0 0
\(471\) 465.229 0.987747
\(472\) 0 0
\(473\) 148.953 0.314911
\(474\) 0 0
\(475\) 42.0323i 0.0884890i
\(476\) 0 0
\(477\) −19.7607 −0.0414270
\(478\) 0 0
\(479\) 245.422i 0.512364i 0.966629 + 0.256182i \(0.0824646\pi\)
−0.966629 + 0.256182i \(0.917535\pi\)
\(480\) 0 0
\(481\) 574.861i 1.19514i
\(482\) 0 0
\(483\) 261.014 112.972i 0.540401 0.233896i
\(484\) 0 0
\(485\) 495.092 1.02081
\(486\) 0 0
\(487\) 748.094 1.53613 0.768064 0.640373i \(-0.221220\pi\)
0.768064 + 0.640373i \(0.221220\pi\)
\(488\) 0 0
\(489\) 321.889i 0.658259i
\(490\) 0 0
\(491\) 528.089 1.07554 0.537769 0.843092i \(-0.319267\pi\)
0.537769 + 0.843092i \(0.319267\pi\)
\(492\) 0 0
\(493\) 369.783i 0.750068i
\(494\) 0 0
\(495\) 218.932i 0.442286i
\(496\) 0 0
\(497\) 90.8262 + 209.848i 0.182749 + 0.422230i
\(498\) 0 0
\(499\) 174.083 0.348863 0.174431 0.984669i \(-0.444191\pi\)
0.174431 + 0.984669i \(0.444191\pi\)
\(500\) 0 0
\(501\) −128.139 −0.255766
\(502\) 0 0
\(503\) 645.875i 1.28404i −0.766686 0.642022i \(-0.778096\pi\)
0.766686 0.642022i \(-0.221904\pi\)
\(504\) 0 0
\(505\) 59.0306 0.116892
\(506\) 0 0
\(507\) 105.520i 0.208127i
\(508\) 0 0
\(509\) 293.593i 0.576803i −0.957510 0.288401i \(-0.906876\pi\)
0.957510 0.288401i \(-0.0931237\pi\)
\(510\) 0 0
\(511\) −490.241 + 212.185i −0.959376 + 0.415236i
\(512\) 0 0
\(513\) 20.1505 0.0392798
\(514\) 0 0
\(515\) 597.567 1.16032
\(516\) 0 0
\(517\) 1517.46i 2.93512i
\(518\) 0 0
\(519\) −270.719 −0.521617
\(520\) 0 0
\(521\) 324.494i 0.622829i 0.950274 + 0.311415i \(0.100803\pi\)
−0.950274 + 0.311415i \(0.899197\pi\)
\(522\) 0 0
\(523\) 162.076i 0.309897i 0.987923 + 0.154949i \(0.0495212\pi\)
−0.987923 + 0.154949i \(0.950479\pi\)
\(524\) 0 0
\(525\) −120.601 + 52.1983i −0.229716 + 0.0994254i
\(526\) 0 0
\(527\) −704.837 −1.33745
\(528\) 0 0
\(529\) 21.2764 0.0402201
\(530\) 0 0
\(531\) 281.926i 0.530934i
\(532\) 0 0
\(533\) 47.7271 0.0895443
\(534\) 0 0
\(535\) 205.040i 0.383252i
\(536\) 0 0
\(537\) 12.9486i 0.0241129i
\(538\) 0 0
\(539\) −650.389 + 692.781i −1.20666 + 1.28531i
\(540\) 0 0
\(541\) −440.049 −0.813400 −0.406700 0.913562i \(-0.633321\pi\)
−0.406700 + 0.913562i \(0.633321\pi\)
\(542\) 0 0
\(543\) 344.683 0.634775
\(544\) 0 0
\(545\) 174.554i 0.320283i
\(546\) 0 0
\(547\) 1067.12 1.95085 0.975427 0.220321i \(-0.0707106\pi\)
0.975427 + 0.220321i \(0.0707106\pi\)
\(548\) 0 0
\(549\) 101.834i 0.185490i
\(550\) 0 0
\(551\) 103.847i 0.188470i
\(552\) 0 0
\(553\) 168.324 + 388.902i 0.304383 + 0.703258i
\(554\) 0 0
\(555\) −360.418 −0.649402
\(556\) 0 0
\(557\) 118.784 0.213257 0.106628 0.994299i \(-0.465994\pi\)
0.106628 + 0.994299i \(0.465994\pi\)
\(558\) 0 0
\(559\) 79.8512i 0.142847i
\(560\) 0 0
\(561\) −463.825 −0.826783
\(562\) 0 0
\(563\) 939.344i 1.66846i −0.551415 0.834231i \(-0.685912\pi\)
0.551415 0.834231i \(-0.314088\pi\)
\(564\) 0 0
\(565\) 163.036i 0.288560i
\(566\) 0 0
\(567\) −25.0242 57.8169i −0.0441344 0.101970i
\(568\) 0 0
\(569\) 658.156 1.15669 0.578345 0.815793i \(-0.303699\pi\)
0.578345 + 0.815793i \(0.303699\pi\)
\(570\) 0 0
\(571\) 609.733 1.06783 0.533916 0.845537i \(-0.320720\pi\)
0.533916 + 0.845537i \(0.320720\pi\)
\(572\) 0 0
\(573\) 399.066i 0.696451i
\(574\) 0 0
\(575\) −254.254 −0.442182
\(576\) 0 0
\(577\) 228.215i 0.395521i −0.980250 0.197760i \(-0.936633\pi\)
0.980250 0.197760i \(-0.0633668\pi\)
\(578\) 0 0
\(579\) 667.271i 1.15245i
\(580\) 0 0
\(581\) 243.039 105.192i 0.418312 0.181053i
\(582\) 0 0
\(583\) 127.737 0.219103
\(584\) 0 0
\(585\) 117.366 0.200625
\(586\) 0 0
\(587\) 469.966i 0.800624i −0.916379 0.400312i \(-0.868902\pi\)
0.916379 0.400312i \(-0.131098\pi\)
\(588\) 0 0
\(589\) −197.941 −0.336063
\(590\) 0 0
\(591\) 564.078i 0.954446i
\(592\) 0 0
\(593\) 324.759i 0.547654i −0.961779 0.273827i \(-0.911710\pi\)
0.961779 0.273827i \(-0.0882896\pi\)
\(594\) 0 0
\(595\) 144.486 + 333.826i 0.242834 + 0.561053i
\(596\) 0 0
\(597\) 93.7691 0.157067
\(598\) 0 0
\(599\) −439.936 −0.734451 −0.367225 0.930132i \(-0.619692\pi\)
−0.367225 + 0.930132i \(0.619692\pi\)
\(600\) 0 0
\(601\) 762.072i 1.26801i 0.773330 + 0.634003i \(0.218589\pi\)
−0.773330 + 0.634003i \(0.781411\pi\)
\(602\) 0 0
\(603\) 334.443 0.554632
\(604\) 0 0
\(605\) 959.878i 1.58658i
\(606\) 0 0
\(607\) 96.1044i 0.158327i 0.996862 + 0.0791634i \(0.0252249\pi\)
−0.996862 + 0.0791634i \(0.974775\pi\)
\(608\) 0 0
\(609\) −297.963 + 128.964i −0.489266 + 0.211764i
\(610\) 0 0
\(611\) 813.482 1.33139
\(612\) 0 0
\(613\) 99.6647 0.162585 0.0812926 0.996690i \(-0.474095\pi\)
0.0812926 + 0.996690i \(0.474095\pi\)
\(614\) 0 0
\(615\) 29.9232i 0.0486557i
\(616\) 0 0
\(617\) −492.064 −0.797510 −0.398755 0.917058i \(-0.630558\pi\)
−0.398755 + 0.917058i \(0.630558\pi\)
\(618\) 0 0
\(619\) 1057.98i 1.70917i −0.519309 0.854587i \(-0.673810\pi\)
0.519309 0.854587i \(-0.326190\pi\)
\(620\) 0 0
\(621\) 121.891i 0.196282i
\(622\) 0 0
\(623\) 15.1994 6.57858i 0.0243971 0.0105595i
\(624\) 0 0
\(625\) −236.554 −0.378487
\(626\) 0 0
\(627\) −130.257 −0.207747
\(628\) 0 0
\(629\) 763.576i 1.21395i
\(630\) 0 0
\(631\) −689.786 −1.09316 −0.546582 0.837406i \(-0.684071\pi\)
−0.546582 + 0.837406i \(0.684071\pi\)
\(632\) 0 0
\(633\) 493.707i 0.779948i
\(634\) 0 0
\(635\) 565.677i 0.890830i
\(636\) 0 0
\(637\) 371.388 + 348.663i 0.583027 + 0.547351i
\(638\) 0 0
\(639\) 97.9974 0.153361
\(640\) 0 0
\(641\) −298.810 −0.466162 −0.233081 0.972457i \(-0.574881\pi\)
−0.233081 + 0.972457i \(0.574881\pi\)
\(642\) 0 0
\(643\) 635.333i 0.988076i 0.869440 + 0.494038i \(0.164480\pi\)
−0.869440 + 0.494038i \(0.835520\pi\)
\(644\) 0 0
\(645\) −50.0639 −0.0776185
\(646\) 0 0
\(647\) 135.921i 0.210078i −0.994468 0.105039i \(-0.966503\pi\)
0.994468 0.105039i \(-0.0334968\pi\)
\(648\) 0 0
\(649\) 1822.43i 2.80806i
\(650\) 0 0
\(651\) 245.816 + 567.942i 0.377597 + 0.872414i
\(652\) 0 0
\(653\) 893.314 1.36802 0.684008 0.729475i \(-0.260235\pi\)
0.684008 + 0.729475i \(0.260235\pi\)
\(654\) 0 0
\(655\) −757.795 −1.15694
\(656\) 0 0
\(657\) 228.939i 0.348461i
\(658\) 0 0
\(659\) −780.417 −1.18424 −0.592122 0.805848i \(-0.701710\pi\)
−0.592122 + 0.805848i \(0.701710\pi\)
\(660\) 0 0
\(661\) 158.047i 0.239103i 0.992828 + 0.119552i \(0.0381457\pi\)
−0.992828 + 0.119552i \(0.961854\pi\)
\(662\) 0 0
\(663\) 248.649i 0.375036i
\(664\) 0 0
\(665\) 40.5764 + 93.7493i 0.0610172 + 0.140976i
\(666\) 0 0
\(667\) −628.175 −0.941791
\(668\) 0 0
\(669\) −8.07237 −0.0120663
\(670\) 0 0
\(671\) 658.276i 0.981038i
\(672\) 0 0
\(673\) −343.166 −0.509905 −0.254953 0.966954i \(-0.582060\pi\)
−0.254953 + 0.966954i \(0.582060\pi\)
\(674\) 0 0
\(675\) 56.3196i 0.0834365i
\(676\) 0 0
\(677\) 392.542i 0.579825i 0.957053 + 0.289913i \(0.0936262\pi\)
−0.957053 + 0.289913i \(0.906374\pi\)
\(678\) 0 0
\(679\) 845.175 365.807i 1.24473 0.538744i
\(680\) 0 0
\(681\) 406.998 0.597648
\(682\) 0 0
\(683\) −785.575 −1.15018 −0.575091 0.818089i \(-0.695033\pi\)
−0.575091 + 0.818089i \(0.695033\pi\)
\(684\) 0 0
\(685\) 21.2101i 0.0309637i
\(686\) 0 0
\(687\) −481.839 −0.701367
\(688\) 0 0
\(689\) 68.4777i 0.0993871i
\(690\) 0 0
\(691\) 614.068i 0.888666i −0.895862 0.444333i \(-0.853441\pi\)
0.895862 0.444333i \(-0.146559\pi\)
\(692\) 0 0
\(693\) 161.762 + 373.740i 0.233422 + 0.539307i
\(694\) 0 0
\(695\) −306.081 −0.440404
\(696\) 0 0
\(697\) 63.3949 0.0909539
\(698\) 0 0
\(699\) 363.414i 0.519906i
\(700\) 0 0
\(701\) −873.078 −1.24548 −0.622738 0.782431i \(-0.713980\pi\)
−0.622738 + 0.782431i \(0.713980\pi\)
\(702\) 0 0
\(703\) 214.437i 0.305031i
\(704\) 0 0
\(705\) 510.025i 0.723440i
\(706\) 0 0
\(707\) 100.771 43.6158i 0.142534 0.0616913i
\(708\) 0 0
\(709\) −597.884 −0.843277 −0.421639 0.906764i \(-0.638545\pi\)
−0.421639 + 0.906764i \(0.638545\pi\)
\(710\) 0 0
\(711\) 181.614 0.255435
\(712\) 0 0
\(713\) 1197.35i 1.67931i
\(714\) 0 0
\(715\) −758.675 −1.06108
\(716\) 0 0
\(717\) 563.406i 0.785782i
\(718\) 0 0
\(719\) 862.986i 1.20026i 0.799903 + 0.600129i \(0.204884\pi\)
−0.799903 + 0.600129i \(0.795116\pi\)
\(720\) 0 0
\(721\) 1020.11 441.523i 1.41485 0.612376i
\(722\) 0 0
\(723\) −217.992 −0.301510
\(724\) 0 0
\(725\) 290.247 0.400341
\(726\) 0 0
\(727\) 259.735i 0.357270i 0.983915 + 0.178635i \(0.0571681\pi\)
−0.983915 + 0.178635i \(0.942832\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 106.065i 0.145095i
\(732\) 0 0
\(733\) 216.829i 0.295810i −0.989002 0.147905i \(-0.952747\pi\)
0.989002 0.147905i \(-0.0472531\pi\)
\(734\) 0 0
\(735\) 218.599 232.848i 0.297414 0.316799i
\(736\) 0 0
\(737\) −2161.91 −2.93339
\(738\) 0 0
\(739\) −596.194 −0.806758 −0.403379 0.915033i \(-0.632164\pi\)
−0.403379 + 0.915033i \(0.632164\pi\)
\(740\) 0 0
\(741\) 69.8287i 0.0942357i
\(742\) 0 0
\(743\) 307.869 0.414359 0.207179 0.978303i \(-0.433572\pi\)
0.207179 + 0.978303i \(0.433572\pi\)
\(744\) 0 0
\(745\) 211.953i 0.284500i
\(746\) 0 0
\(747\) 113.497i 0.151938i
\(748\) 0 0
\(749\) 151.497 + 350.025i 0.202266 + 0.467323i
\(750\) 0 0
\(751\) 967.485 1.28826 0.644131 0.764915i \(-0.277219\pi\)
0.644131 + 0.764915i \(0.277219\pi\)
\(752\) 0 0
\(753\) 463.586 0.615651
\(754\) 0 0
\(755\) 247.848i 0.328276i
\(756\) 0 0
\(757\) 1164.53 1.53834 0.769171 0.639042i \(-0.220669\pi\)
0.769171 + 0.639042i \(0.220669\pi\)
\(758\) 0 0
\(759\) 787.929i 1.03812i
\(760\) 0 0
\(761\) 1226.50i 1.61170i −0.592119 0.805851i \(-0.701708\pi\)
0.592119 0.805851i \(-0.298292\pi\)
\(762\) 0 0
\(763\) 128.973 + 297.983i 0.169034 + 0.390541i
\(764\) 0 0
\(765\) 155.894 0.203783
\(766\) 0 0
\(767\) −976.973 −1.27376
\(768\) 0 0
\(769\) 835.523i 1.08651i 0.839569 + 0.543253i \(0.182807\pi\)
−0.839569 + 0.543253i \(0.817193\pi\)
\(770\) 0 0
\(771\) −880.665 −1.14224
\(772\) 0 0
\(773\) 534.533i 0.691505i −0.938326 0.345752i \(-0.887624\pi\)
0.938326 0.345752i \(-0.112376\pi\)
\(774\) 0 0
\(775\) 553.234i 0.713851i
\(776\) 0 0
\(777\) −615.272 + 266.301i −0.791856 + 0.342730i
\(778\) 0 0
\(779\) 17.8033 0.0228541
\(780\) 0 0
\(781\) −633.475 −0.811108
\(782\) 0 0
\(783\) 139.146i 0.177709i
\(784\) 0 0
\(785\) 1010.78 1.28762
\(786\) 0 0
\(787\) 199.536i 0.253540i 0.991932 + 0.126770i \(0.0404610\pi\)
−0.991932 + 0.126770i \(0.959539\pi\)
\(788\) 0 0
\(789\) 460.498i 0.583648i
\(790\) 0 0
\(791\) −120.462 278.320i −0.152291 0.351859i
\(792\) 0 0
\(793\) 352.891 0.445007
\(794\) 0 0
\(795\) −42.9331 −0.0540039
\(796\) 0 0
\(797\) 451.538i 0.566546i 0.959039 + 0.283273i \(0.0914203\pi\)
−0.959039 + 0.283273i \(0.908580\pi\)
\(798\) 0 0
\(799\) 1080.53 1.35235
\(800\) 0 0
\(801\) 7.09799i 0.00886141i
\(802\) 0 0
\(803\) 1479.91i 1.84297i
\(804\) 0 0
\(805\) 567.092 245.448i 0.704462 0.304904i
\(806\) 0 0
\(807\) −349.767 −0.433416
\(808\) 0 0
\(809\) 665.841 0.823042 0.411521 0.911400i \(-0.364998\pi\)
0.411521 + 0.911400i \(0.364998\pi\)
\(810\) 0 0
\(811\) 84.5863i 0.104299i 0.998639 + 0.0521494i \(0.0166072\pi\)
−0.998639 + 0.0521494i \(0.983393\pi\)
\(812\) 0 0
\(813\) −523.494 −0.643904
\(814\) 0 0
\(815\) 699.353i 0.858102i
\(816\) 0 0
\(817\) 29.7864i 0.0364583i
\(818\) 0 0
\(819\) 200.356 86.7177i 0.244634 0.105882i
\(820\) 0 0
\(821\) 91.2306 0.111121 0.0555607 0.998455i \(-0.482305\pi\)
0.0555607 + 0.998455i \(0.482305\pi\)
\(822\) 0 0
\(823\) −1061.69 −1.29002 −0.645012 0.764173i \(-0.723148\pi\)
−0.645012 + 0.764173i \(0.723148\pi\)
\(824\) 0 0
\(825\) 364.062i 0.441287i
\(826\) 0 0
\(827\) 385.891 0.466615 0.233308 0.972403i \(-0.425045\pi\)
0.233308 + 0.972403i \(0.425045\pi\)
\(828\) 0 0
\(829\) 135.122i 0.162994i −0.996674 0.0814972i \(-0.974030\pi\)
0.996674 0.0814972i \(-0.0259702\pi\)
\(830\) 0 0
\(831\) 623.015i 0.749717i
\(832\) 0 0
\(833\) 493.307 + 463.121i 0.592205 + 0.555967i
\(834\) 0 0
\(835\) −278.402 −0.333415
\(836\) 0 0
\(837\) 265.224 0.316875
\(838\) 0 0
\(839\) 1376.59i 1.64075i −0.571825 0.820376i \(-0.693764\pi\)
0.571825 0.820376i \(-0.306236\pi\)
\(840\) 0 0
\(841\) −123.900 −0.147324
\(842\) 0 0
\(843\) 923.537i 1.09554i
\(844\) 0 0
\(845\) 229.259i 0.271312i
\(846\) 0 0
\(847\) −709.223 1638.61i −0.837336 1.93461i
\(848\) 0 0
\(849\) 891.383 1.04992
\(850\) 0 0
\(851\) −1297.14 −1.52425
\(852\) 0 0
\(853\) 1172.84i 1.37496i −0.726203 0.687480i \(-0.758717\pi\)
0.726203 0.687480i \(-0.241283\pi\)
\(854\) 0 0
\(855\) 43.7801 0.0512049
\(856\) 0 0
\(857\) 903.580i 1.05435i 0.849756 + 0.527176i \(0.176749\pi\)
−0.849756 + 0.527176i \(0.823251\pi\)
\(858\) 0 0
\(859\) 16.2939i 0.0189684i −0.999955 0.00948421i \(-0.996981\pi\)
0.999955 0.00948421i \(-0.00301896\pi\)
\(860\) 0 0
\(861\) −22.1093 51.0822i −0.0256787 0.0593289i
\(862\) 0 0
\(863\) 27.5419 0.0319142 0.0159571 0.999873i \(-0.494920\pi\)
0.0159571 + 0.999873i \(0.494920\pi\)
\(864\) 0 0
\(865\) −588.180 −0.679977
\(866\) 0 0
\(867\) 170.288i 0.196411i
\(868\) 0 0
\(869\) −1173.99 −1.35097
\(870\) 0 0
\(871\) 1158.96i 1.33061i
\(872\) 0 0
\(873\) 394.690i 0.452107i
\(874\) 0 0
\(875\) −866.395 + 374.992i −0.990165 + 0.428562i
\(876\) 0 0
\(877\) −951.041 −1.08443 −0.542213 0.840241i \(-0.682413\pi\)
−0.542213 + 0.840241i \(0.682413\pi\)
\(878\) 0 0
\(879\) 681.333 0.775123
\(880\) 0 0
\(881\) 495.395i 0.562309i 0.959662 + 0.281155i \(0.0907174\pi\)
−0.959662 + 0.281155i \(0.909283\pi\)
\(882\) 0 0
\(883\) −1443.19 −1.63442 −0.817209 0.576342i \(-0.804480\pi\)
−0.817209 + 0.576342i \(0.804480\pi\)
\(884\) 0 0
\(885\) 612.528i 0.692122i
\(886\) 0 0
\(887\) 534.307i 0.602375i −0.953565 0.301188i \(-0.902617\pi\)
0.953565 0.301188i \(-0.0973830\pi\)
\(888\) 0 0
\(889\) 417.961 + 965.671i 0.470147 + 1.08624i
\(890\) 0 0
\(891\) 174.533 0.195885
\(892\) 0 0
\(893\) 303.448 0.339807
\(894\) 0 0
\(895\) 28.1329i 0.0314334i
\(896\) 0 0
\(897\) 422.396 0.470898
\(898\) 0 0
\(899\) 1366.85i 1.52041i
\(900\) 0 0
\(901\) 90.9574i 0.100952i
\(902\) 0 0
\(903\) −85.4645 + 36.9906i −0.0946451 + 0.0409642i
\(904\) 0 0
\(905\) 748.876 0.827488
\(906\) 0 0
\(907\) 420.676 0.463810 0.231905 0.972738i \(-0.425504\pi\)
0.231905 + 0.972738i \(0.425504\pi\)
\(908\) 0 0
\(909\) 47.0595i 0.0517706i
\(910\) 0 0
\(911\) 495.015 0.543376 0.271688 0.962385i \(-0.412418\pi\)
0.271688 + 0.962385i \(0.412418\pi\)
\(912\) 0 0
\(913\) 733.670i 0.803581i
\(914\) 0 0
\(915\) 221.250i 0.241804i
\(916\) 0 0
\(917\) −1293.64 + 559.910i −1.41073 + 0.610589i
\(918\) 0 0
\(919\) −881.176 −0.958842 −0.479421 0.877585i \(-0.659153\pi\)
−0.479421 + 0.877585i \(0.659153\pi\)
\(920\) 0 0
\(921\) 258.721 0.280914
\(922\) 0 0
\(923\) 339.595i 0.367926i
\(924\) 0 0
\(925\) 599.339 0.647934
\(926\) 0 0
\(927\) 476.383i 0.513898i
\(928\) 0 0
\(929\) 1229.74i 1.32373i −0.749625 0.661863i \(-0.769766\pi\)
0.749625 0.661863i \(-0.230234\pi\)
\(930\) 0 0
\(931\) 138.537 + 130.059i 0.148804 + 0.139699i
\(932\) 0 0
\(933\) −344.140 −0.368853
\(934\) 0 0
\(935\) −1007.73 −1.07779
\(936\) 0 0
\(937\) 43.8963i 0.0468477i −0.999726 0.0234239i \(-0.992543\pi\)
0.999726 0.0234239i \(-0.00745673\pi\)
\(938\) 0 0
\(939\) 947.531 1.00908
\(940\) 0 0
\(941\) 533.698i 0.567161i −0.958948 0.283580i \(-0.908478\pi\)
0.958948 0.283580i \(-0.0915222\pi\)
\(942\) 0 0
\(943\) 107.693i 0.114202i
\(944\) 0 0
\(945\) −54.3690 125.616i −0.0575333 0.132927i
\(946\) 0 0
\(947\) 1563.48 1.65098 0.825491 0.564415i \(-0.190898\pi\)
0.825491 + 0.564415i \(0.190898\pi\)
\(948\) 0 0
\(949\) −793.352 −0.835988
\(950\) 0 0
\(951\) 315.255i 0.331498i
\(952\) 0 0
\(953\) 844.464 0.886111 0.443055 0.896494i \(-0.353894\pi\)
0.443055 + 0.896494i \(0.353894\pi\)
\(954\) 0 0
\(955\) 867.033i 0.907888i
\(956\) 0 0
\(957\) 899.470i 0.939885i
\(958\) 0 0
\(959\) 15.6715 + 36.2079i 0.0163415 + 0.0377559i
\(960\) 0 0
\(961\) −1644.33 −1.71106
\(962\) 0 0
\(963\) 163.459 0.169739
\(964\) 0 0
\(965\) 1449.75i 1.50233i
\(966\) 0 0
\(967\) −1436.89 −1.48593 −0.742965 0.669330i \(-0.766581\pi\)
−0.742965 + 0.669330i \(0.766581\pi\)
\(968\) 0 0
\(969\) 92.7519i 0.0957192i
\(970\) 0 0
\(971\) 906.910i 0.933996i −0.884258 0.466998i \(-0.845335\pi\)
0.884258 0.466998i \(-0.154665\pi\)
\(972\) 0 0
\(973\) −522.513 + 226.153i −0.537012 + 0.232429i
\(974\) 0 0
\(975\) −195.167 −0.200172
\(976\) 0 0
\(977\) −797.054 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(978\) 0 0
\(979\) 45.8829i 0.0468671i
\(980\) 0 0
\(981\) 139.156 0.141851
\(982\) 0 0
\(983\) 876.423i 0.891580i 0.895138 + 0.445790i \(0.147077\pi\)
−0.895138 + 0.445790i \(0.852923\pi\)
\(984\) 0 0
\(985\) 1225.55i 1.24421i
\(986\) 0 0
\(987\) −376.841 870.667i −0.381805 0.882135i
\(988\) 0 0
\(989\) −180.179 −0.182183
\(990\) 0 0
\(991\) 407.126 0.410823 0.205412 0.978676i \(-0.434147\pi\)
0.205412 + 0.978676i \(0.434147\pi\)
\(992\) 0 0
\(993\) 163.751i 0.164906i
\(994\) 0 0
\(995\) 203.728 0.204751
\(996\) 0 0
\(997\) 1801.91i 1.80733i −0.428240 0.903665i \(-0.640866\pi\)
0.428240 0.903665i \(-0.359134\pi\)
\(998\) 0 0
\(999\) 287.327i 0.287615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.3.f.h.769.2 8
4.3 odd 2 1344.3.f.g.769.6 8
7.6 odd 2 inner 1344.3.f.h.769.7 8
8.3 odd 2 168.3.f.a.97.3 8
8.5 even 2 336.3.f.d.97.7 8
24.5 odd 2 1008.3.f.j.433.2 8
24.11 even 2 504.3.f.c.433.2 8
28.27 even 2 1344.3.f.g.769.3 8
56.3 even 6 1176.3.z.f.313.3 8
56.11 odd 6 1176.3.z.a.313.2 8
56.13 odd 2 336.3.f.d.97.2 8
56.19 even 6 1176.3.z.a.913.2 8
56.27 even 2 168.3.f.a.97.6 yes 8
56.51 odd 6 1176.3.z.f.913.3 8
168.83 odd 2 504.3.f.c.433.7 8
168.125 even 2 1008.3.f.j.433.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.f.a.97.3 8 8.3 odd 2
168.3.f.a.97.6 yes 8 56.27 even 2
336.3.f.d.97.2 8 56.13 odd 2
336.3.f.d.97.7 8 8.5 even 2
504.3.f.c.433.2 8 24.11 even 2
504.3.f.c.433.7 8 168.83 odd 2
1008.3.f.j.433.2 8 24.5 odd 2
1008.3.f.j.433.7 8 168.125 even 2
1176.3.z.a.313.2 8 56.11 odd 6
1176.3.z.a.913.2 8 56.19 even 6
1176.3.z.f.313.3 8 56.3 even 6
1176.3.z.f.913.3 8 56.51 odd 6
1344.3.f.g.769.3 8 28.27 even 2
1344.3.f.g.769.6 8 4.3 odd 2
1344.3.f.h.769.2 8 1.1 even 1 trivial
1344.3.f.h.769.7 8 7.6 odd 2 inner