Properties

Label 1344.2.c.h.673.4
Level $1344$
Weight $2$
Character 1344.673
Analytic conductor $10.732$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,2,Mod(673,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.673"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,4,0,-4,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7318940317\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 673.4
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1344.673
Dual form 1344.2.c.h.673.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +0.732051i q^{5} +1.00000 q^{7} -1.00000 q^{9} -2.73205i q^{11} -4.00000i q^{13} -0.732051 q^{15} +4.19615 q^{17} +3.46410i q^{19} +1.00000i q^{21} +4.73205 q^{23} +4.46410 q^{25} -1.00000i q^{27} -7.46410i q^{29} -2.00000 q^{31} +2.73205 q^{33} +0.732051i q^{35} -2.00000i q^{37} +4.00000 q^{39} +9.66025 q^{41} +8.92820i q^{43} -0.732051i q^{45} -4.00000 q^{47} +1.00000 q^{49} +4.19615i q^{51} -3.46410i q^{53} +2.00000 q^{55} -3.46410 q^{57} +8.00000i q^{59} +8.39230i q^{61} -1.00000 q^{63} +2.92820 q^{65} +6.39230i q^{67} +4.73205i q^{69} -3.66025 q^{71} -8.53590 q^{73} +4.46410i q^{75} -2.73205i q^{77} +12.3923 q^{79} +1.00000 q^{81} -2.53590i q^{83} +3.07180i q^{85} +7.46410 q^{87} +12.1962 q^{89} -4.00000i q^{91} -2.00000i q^{93} -2.53590 q^{95} -2.39230 q^{97} +2.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 4 q^{9} + 4 q^{15} - 4 q^{17} + 12 q^{23} + 4 q^{25} - 8 q^{31} + 4 q^{33} + 16 q^{39} + 4 q^{41} - 16 q^{47} + 4 q^{49} + 8 q^{55} - 4 q^{63} - 16 q^{65} + 20 q^{71} - 48 q^{73} + 8 q^{79}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.732051i 0.327383i 0.986512 + 0.163692i \(0.0523402\pi\)
−0.986512 + 0.163692i \(0.947660\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 2.73205i − 0.823744i −0.911242 0.411872i \(-0.864875\pi\)
0.911242 0.411872i \(-0.135125\pi\)
\(12\) 0 0
\(13\) − 4.00000i − 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) −0.732051 −0.189015
\(16\) 0 0
\(17\) 4.19615 1.01772 0.508858 0.860850i \(-0.330068\pi\)
0.508858 + 0.860850i \(0.330068\pi\)
\(18\) 0 0
\(19\) 3.46410i 0.794719i 0.917663 + 0.397360i \(0.130073\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 1.00000i 0.218218i
\(22\) 0 0
\(23\) 4.73205 0.986701 0.493350 0.869831i \(-0.335772\pi\)
0.493350 + 0.869831i \(0.335772\pi\)
\(24\) 0 0
\(25\) 4.46410 0.892820
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) − 7.46410i − 1.38605i −0.720914 0.693024i \(-0.756278\pi\)
0.720914 0.693024i \(-0.243722\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 2.73205 0.475589
\(34\) 0 0
\(35\) 0.732051i 0.123739i
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 9.66025 1.50868 0.754339 0.656485i \(-0.227957\pi\)
0.754339 + 0.656485i \(0.227957\pi\)
\(42\) 0 0
\(43\) 8.92820i 1.36154i 0.732498 + 0.680769i \(0.238354\pi\)
−0.732498 + 0.680769i \(0.761646\pi\)
\(44\) 0 0
\(45\) − 0.732051i − 0.109128i
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 4.19615i 0.587579i
\(52\) 0 0
\(53\) − 3.46410i − 0.475831i −0.971286 0.237915i \(-0.923536\pi\)
0.971286 0.237915i \(-0.0764641\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −3.46410 −0.458831
\(58\) 0 0
\(59\) 8.00000i 1.04151i 0.853706 + 0.520756i \(0.174350\pi\)
−0.853706 + 0.520756i \(0.825650\pi\)
\(60\) 0 0
\(61\) 8.39230i 1.07452i 0.843415 + 0.537262i \(0.180541\pi\)
−0.843415 + 0.537262i \(0.819459\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 2.92820 0.363199
\(66\) 0 0
\(67\) 6.39230i 0.780944i 0.920615 + 0.390472i \(0.127688\pi\)
−0.920615 + 0.390472i \(0.872312\pi\)
\(68\) 0 0
\(69\) 4.73205i 0.569672i
\(70\) 0 0
\(71\) −3.66025 −0.434392 −0.217196 0.976128i \(-0.569691\pi\)
−0.217196 + 0.976128i \(0.569691\pi\)
\(72\) 0 0
\(73\) −8.53590 −0.999051 −0.499526 0.866299i \(-0.666492\pi\)
−0.499526 + 0.866299i \(0.666492\pi\)
\(74\) 0 0
\(75\) 4.46410i 0.515470i
\(76\) 0 0
\(77\) − 2.73205i − 0.311346i
\(78\) 0 0
\(79\) 12.3923 1.39424 0.697122 0.716953i \(-0.254464\pi\)
0.697122 + 0.716953i \(0.254464\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 2.53590i − 0.278351i −0.990268 0.139176i \(-0.955555\pi\)
0.990268 0.139176i \(-0.0444452\pi\)
\(84\) 0 0
\(85\) 3.07180i 0.333183i
\(86\) 0 0
\(87\) 7.46410 0.800236
\(88\) 0 0
\(89\) 12.1962 1.29279 0.646395 0.763003i \(-0.276276\pi\)
0.646395 + 0.763003i \(0.276276\pi\)
\(90\) 0 0
\(91\) − 4.00000i − 0.419314i
\(92\) 0 0
\(93\) − 2.00000i − 0.207390i
\(94\) 0 0
\(95\) −2.53590 −0.260178
\(96\) 0 0
\(97\) −2.39230 −0.242902 −0.121451 0.992597i \(-0.538755\pi\)
−0.121451 + 0.992597i \(0.538755\pi\)
\(98\) 0 0
\(99\) 2.73205i 0.274581i
\(100\) 0 0
\(101\) − 11.2679i − 1.12120i −0.828086 0.560601i \(-0.810570\pi\)
0.828086 0.560601i \(-0.189430\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) −0.732051 −0.0714408
\(106\) 0 0
\(107\) − 8.19615i − 0.792352i −0.918175 0.396176i \(-0.870337\pi\)
0.918175 0.396176i \(-0.129663\pi\)
\(108\) 0 0
\(109\) − 10.9282i − 1.04673i −0.852108 0.523366i \(-0.824676\pi\)
0.852108 0.523366i \(-0.175324\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 6.39230 0.601337 0.300669 0.953729i \(-0.402790\pi\)
0.300669 + 0.953729i \(0.402790\pi\)
\(114\) 0 0
\(115\) 3.46410i 0.323029i
\(116\) 0 0
\(117\) 4.00000i 0.369800i
\(118\) 0 0
\(119\) 4.19615 0.384661
\(120\) 0 0
\(121\) 3.53590 0.321445
\(122\) 0 0
\(123\) 9.66025i 0.871036i
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) −19.3205 −1.71442 −0.857209 0.514969i \(-0.827804\pi\)
−0.857209 + 0.514969i \(0.827804\pi\)
\(128\) 0 0
\(129\) −8.92820 −0.786084
\(130\) 0 0
\(131\) − 4.39230i − 0.383757i −0.981419 0.191879i \(-0.938542\pi\)
0.981419 0.191879i \(-0.0614580\pi\)
\(132\) 0 0
\(133\) 3.46410i 0.300376i
\(134\) 0 0
\(135\) 0.732051 0.0630049
\(136\) 0 0
\(137\) −3.46410 −0.295958 −0.147979 0.988990i \(-0.547277\pi\)
−0.147979 + 0.988990i \(0.547277\pi\)
\(138\) 0 0
\(139\) 10.9282i 0.926918i 0.886118 + 0.463459i \(0.153392\pi\)
−0.886118 + 0.463459i \(0.846608\pi\)
\(140\) 0 0
\(141\) − 4.00000i − 0.336861i
\(142\) 0 0
\(143\) −10.9282 −0.913862
\(144\) 0 0
\(145\) 5.46410 0.453769
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 2.39230i 0.195985i 0.995187 + 0.0979926i \(0.0312422\pi\)
−0.995187 + 0.0979926i \(0.968758\pi\)
\(150\) 0 0
\(151\) 1.07180 0.0872216 0.0436108 0.999049i \(-0.486114\pi\)
0.0436108 + 0.999049i \(0.486114\pi\)
\(152\) 0 0
\(153\) −4.19615 −0.339239
\(154\) 0 0
\(155\) − 1.46410i − 0.117599i
\(156\) 0 0
\(157\) − 8.39230i − 0.669779i −0.942257 0.334889i \(-0.891301\pi\)
0.942257 0.334889i \(-0.108699\pi\)
\(158\) 0 0
\(159\) 3.46410 0.274721
\(160\) 0 0
\(161\) 4.73205 0.372938
\(162\) 0 0
\(163\) 4.53590i 0.355279i 0.984096 + 0.177639i \(0.0568461\pi\)
−0.984096 + 0.177639i \(0.943154\pi\)
\(164\) 0 0
\(165\) 2.00000i 0.155700i
\(166\) 0 0
\(167\) 16.3923 1.26847 0.634237 0.773138i \(-0.281314\pi\)
0.634237 + 0.773138i \(0.281314\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) − 3.46410i − 0.264906i
\(172\) 0 0
\(173\) 16.0526i 1.22045i 0.792227 + 0.610227i \(0.208922\pi\)
−0.792227 + 0.610227i \(0.791078\pi\)
\(174\) 0 0
\(175\) 4.46410 0.337454
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) − 20.5885i − 1.53885i −0.638735 0.769427i \(-0.720542\pi\)
0.638735 0.769427i \(-0.279458\pi\)
\(180\) 0 0
\(181\) 18.9282i 1.40692i 0.710734 + 0.703461i \(0.248363\pi\)
−0.710734 + 0.703461i \(0.751637\pi\)
\(182\) 0 0
\(183\) −8.39230 −0.620377
\(184\) 0 0
\(185\) 1.46410 0.107643
\(186\) 0 0
\(187\) − 11.4641i − 0.838338i
\(188\) 0 0
\(189\) − 1.00000i − 0.0727393i
\(190\) 0 0
\(191\) −24.7321 −1.78955 −0.894774 0.446519i \(-0.852664\pi\)
−0.894774 + 0.446519i \(0.852664\pi\)
\(192\) 0 0
\(193\) −24.3923 −1.75580 −0.877898 0.478847i \(-0.841055\pi\)
−0.877898 + 0.478847i \(0.841055\pi\)
\(194\) 0 0
\(195\) 2.92820i 0.209693i
\(196\) 0 0
\(197\) − 26.7846i − 1.90832i −0.299290 0.954162i \(-0.596750\pi\)
0.299290 0.954162i \(-0.403250\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −6.39230 −0.450878
\(202\) 0 0
\(203\) − 7.46410i − 0.523877i
\(204\) 0 0
\(205\) 7.07180i 0.493916i
\(206\) 0 0
\(207\) −4.73205 −0.328900
\(208\) 0 0
\(209\) 9.46410 0.654646
\(210\) 0 0
\(211\) 0.143594i 0.00988539i 0.999988 + 0.00494269i \(0.00157331\pi\)
−0.999988 + 0.00494269i \(0.998427\pi\)
\(212\) 0 0
\(213\) − 3.66025i − 0.250796i
\(214\) 0 0
\(215\) −6.53590 −0.445745
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) − 8.53590i − 0.576803i
\(220\) 0 0
\(221\) − 16.7846i − 1.12906i
\(222\) 0 0
\(223\) −5.07180 −0.339633 −0.169816 0.985476i \(-0.554317\pi\)
−0.169816 + 0.985476i \(0.554317\pi\)
\(224\) 0 0
\(225\) −4.46410 −0.297607
\(226\) 0 0
\(227\) − 11.3205i − 0.751369i −0.926748 0.375684i \(-0.877408\pi\)
0.926748 0.375684i \(-0.122592\pi\)
\(228\) 0 0
\(229\) 10.9282i 0.722156i 0.932536 + 0.361078i \(0.117591\pi\)
−0.932536 + 0.361078i \(0.882409\pi\)
\(230\) 0 0
\(231\) 2.73205 0.179756
\(232\) 0 0
\(233\) 12.9282 0.846955 0.423477 0.905907i \(-0.360809\pi\)
0.423477 + 0.905907i \(0.360809\pi\)
\(234\) 0 0
\(235\) − 2.92820i − 0.191015i
\(236\) 0 0
\(237\) 12.3923i 0.804967i
\(238\) 0 0
\(239\) −27.6603 −1.78919 −0.894597 0.446875i \(-0.852537\pi\)
−0.894597 + 0.446875i \(0.852537\pi\)
\(240\) 0 0
\(241\) −7.46410 −0.480805 −0.240403 0.970673i \(-0.577279\pi\)
−0.240403 + 0.970673i \(0.577279\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0.732051i 0.0467690i
\(246\) 0 0
\(247\) 13.8564 0.881662
\(248\) 0 0
\(249\) 2.53590 0.160706
\(250\) 0 0
\(251\) − 23.3205i − 1.47198i −0.676994 0.735989i \(-0.736718\pi\)
0.676994 0.735989i \(-0.263282\pi\)
\(252\) 0 0
\(253\) − 12.9282i − 0.812789i
\(254\) 0 0
\(255\) −3.07180 −0.192363
\(256\) 0 0
\(257\) 3.80385 0.237277 0.118639 0.992937i \(-0.462147\pi\)
0.118639 + 0.992937i \(0.462147\pi\)
\(258\) 0 0
\(259\) − 2.00000i − 0.124274i
\(260\) 0 0
\(261\) 7.46410i 0.462016i
\(262\) 0 0
\(263\) 6.19615 0.382071 0.191036 0.981583i \(-0.438815\pi\)
0.191036 + 0.981583i \(0.438815\pi\)
\(264\) 0 0
\(265\) 2.53590 0.155779
\(266\) 0 0
\(267\) 12.1962i 0.746392i
\(268\) 0 0
\(269\) 19.2679i 1.17479i 0.809301 + 0.587394i \(0.199846\pi\)
−0.809301 + 0.587394i \(0.800154\pi\)
\(270\) 0 0
\(271\) −15.0718 −0.915546 −0.457773 0.889069i \(-0.651353\pi\)
−0.457773 + 0.889069i \(0.651353\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) − 12.1962i − 0.735456i
\(276\) 0 0
\(277\) 16.9282i 1.01712i 0.861027 + 0.508559i \(0.169821\pi\)
−0.861027 + 0.508559i \(0.830179\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) −28.9282 −1.72571 −0.862856 0.505450i \(-0.831327\pi\)
−0.862856 + 0.505450i \(0.831327\pi\)
\(282\) 0 0
\(283\) 2.39230i 0.142208i 0.997469 + 0.0711039i \(0.0226522\pi\)
−0.997469 + 0.0711039i \(0.977348\pi\)
\(284\) 0 0
\(285\) − 2.53590i − 0.150214i
\(286\) 0 0
\(287\) 9.66025 0.570227
\(288\) 0 0
\(289\) 0.607695 0.0357468
\(290\) 0 0
\(291\) − 2.39230i − 0.140239i
\(292\) 0 0
\(293\) − 13.8038i − 0.806429i −0.915105 0.403215i \(-0.867893\pi\)
0.915105 0.403215i \(-0.132107\pi\)
\(294\) 0 0
\(295\) −5.85641 −0.340973
\(296\) 0 0
\(297\) −2.73205 −0.158530
\(298\) 0 0
\(299\) − 18.9282i − 1.09465i
\(300\) 0 0
\(301\) 8.92820i 0.514613i
\(302\) 0 0
\(303\) 11.2679 0.647327
\(304\) 0 0
\(305\) −6.14359 −0.351781
\(306\) 0 0
\(307\) − 25.3205i − 1.44512i −0.691309 0.722559i \(-0.742966\pi\)
0.691309 0.722559i \(-0.257034\pi\)
\(308\) 0 0
\(309\) 14.0000i 0.796432i
\(310\) 0 0
\(311\) −31.7128 −1.79827 −0.899134 0.437673i \(-0.855803\pi\)
−0.899134 + 0.437673i \(0.855803\pi\)
\(312\) 0 0
\(313\) −0.928203 −0.0524651 −0.0262326 0.999656i \(-0.508351\pi\)
−0.0262326 + 0.999656i \(0.508351\pi\)
\(314\) 0 0
\(315\) − 0.732051i − 0.0412464i
\(316\) 0 0
\(317\) 18.3923i 1.03301i 0.856283 + 0.516507i \(0.172768\pi\)
−0.856283 + 0.516507i \(0.827232\pi\)
\(318\) 0 0
\(319\) −20.3923 −1.14175
\(320\) 0 0
\(321\) 8.19615 0.457465
\(322\) 0 0
\(323\) 14.5359i 0.808799i
\(324\) 0 0
\(325\) − 17.8564i − 0.990495i
\(326\) 0 0
\(327\) 10.9282 0.604331
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) − 12.9282i − 0.710598i −0.934753 0.355299i \(-0.884379\pi\)
0.934753 0.355299i \(-0.115621\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) −4.67949 −0.255668
\(336\) 0 0
\(337\) −33.7128 −1.83645 −0.918227 0.396055i \(-0.870379\pi\)
−0.918227 + 0.396055i \(0.870379\pi\)
\(338\) 0 0
\(339\) 6.39230i 0.347182i
\(340\) 0 0
\(341\) 5.46410i 0.295898i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −3.46410 −0.186501
\(346\) 0 0
\(347\) 13.2679i 0.712261i 0.934436 + 0.356130i \(0.115904\pi\)
−0.934436 + 0.356130i \(0.884096\pi\)
\(348\) 0 0
\(349\) 15.3205i 0.820088i 0.912066 + 0.410044i \(0.134487\pi\)
−0.912066 + 0.410044i \(0.865513\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) 18.3397 0.976126 0.488063 0.872808i \(-0.337704\pi\)
0.488063 + 0.872808i \(0.337704\pi\)
\(354\) 0 0
\(355\) − 2.67949i − 0.142213i
\(356\) 0 0
\(357\) 4.19615i 0.222084i
\(358\) 0 0
\(359\) 21.8038 1.15076 0.575382 0.817885i \(-0.304854\pi\)
0.575382 + 0.817885i \(0.304854\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 0 0
\(363\) 3.53590i 0.185587i
\(364\) 0 0
\(365\) − 6.24871i − 0.327072i
\(366\) 0 0
\(367\) −13.8564 −0.723299 −0.361649 0.932314i \(-0.617786\pi\)
−0.361649 + 0.932314i \(0.617786\pi\)
\(368\) 0 0
\(369\) −9.66025 −0.502893
\(370\) 0 0
\(371\) − 3.46410i − 0.179847i
\(372\) 0 0
\(373\) 12.0000i 0.621336i 0.950518 + 0.310668i \(0.100553\pi\)
−0.950518 + 0.310668i \(0.899447\pi\)
\(374\) 0 0
\(375\) −6.92820 −0.357771
\(376\) 0 0
\(377\) −29.8564 −1.53768
\(378\) 0 0
\(379\) 15.0718i 0.774186i 0.922041 + 0.387093i \(0.126521\pi\)
−0.922041 + 0.387093i \(0.873479\pi\)
\(380\) 0 0
\(381\) − 19.3205i − 0.989820i
\(382\) 0 0
\(383\) 28.3923 1.45078 0.725390 0.688339i \(-0.241660\pi\)
0.725390 + 0.688339i \(0.241660\pi\)
\(384\) 0 0
\(385\) 2.00000 0.101929
\(386\) 0 0
\(387\) − 8.92820i − 0.453846i
\(388\) 0 0
\(389\) − 27.4641i − 1.39249i −0.717807 0.696243i \(-0.754854\pi\)
0.717807 0.696243i \(-0.245146\pi\)
\(390\) 0 0
\(391\) 19.8564 1.00418
\(392\) 0 0
\(393\) 4.39230 0.221562
\(394\) 0 0
\(395\) 9.07180i 0.456452i
\(396\) 0 0
\(397\) 15.3205i 0.768914i 0.923143 + 0.384457i \(0.125611\pi\)
−0.923143 + 0.384457i \(0.874389\pi\)
\(398\) 0 0
\(399\) −3.46410 −0.173422
\(400\) 0 0
\(401\) −13.3205 −0.665194 −0.332597 0.943069i \(-0.607925\pi\)
−0.332597 + 0.943069i \(0.607925\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 0.732051i 0.0363759i
\(406\) 0 0
\(407\) −5.46410 −0.270845
\(408\) 0 0
\(409\) −40.2487 −1.99017 −0.995085 0.0990210i \(-0.968429\pi\)
−0.995085 + 0.0990210i \(0.968429\pi\)
\(410\) 0 0
\(411\) − 3.46410i − 0.170872i
\(412\) 0 0
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) 1.85641 0.0911274
\(416\) 0 0
\(417\) −10.9282 −0.535156
\(418\) 0 0
\(419\) − 22.9282i − 1.12012i −0.828453 0.560058i \(-0.810779\pi\)
0.828453 0.560058i \(-0.189221\pi\)
\(420\) 0 0
\(421\) − 38.7846i − 1.89025i −0.326714 0.945123i \(-0.605942\pi\)
0.326714 0.945123i \(-0.394058\pi\)
\(422\) 0 0
\(423\) 4.00000 0.194487
\(424\) 0 0
\(425\) 18.7321 0.908638
\(426\) 0 0
\(427\) 8.39230i 0.406132i
\(428\) 0 0
\(429\) − 10.9282i − 0.527619i
\(430\) 0 0
\(431\) 6.19615 0.298458 0.149229 0.988803i \(-0.452321\pi\)
0.149229 + 0.988803i \(0.452321\pi\)
\(432\) 0 0
\(433\) 34.7846 1.67164 0.835821 0.549002i \(-0.184992\pi\)
0.835821 + 0.549002i \(0.184992\pi\)
\(434\) 0 0
\(435\) 5.46410i 0.261984i
\(436\) 0 0
\(437\) 16.3923i 0.784150i
\(438\) 0 0
\(439\) 13.8564 0.661330 0.330665 0.943748i \(-0.392727\pi\)
0.330665 + 0.943748i \(0.392727\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 10.0526i 0.477611i 0.971067 + 0.238806i \(0.0767559\pi\)
−0.971067 + 0.238806i \(0.923244\pi\)
\(444\) 0 0
\(445\) 8.92820i 0.423237i
\(446\) 0 0
\(447\) −2.39230 −0.113152
\(448\) 0 0
\(449\) −16.5359 −0.780377 −0.390189 0.920735i \(-0.627590\pi\)
−0.390189 + 0.920735i \(0.627590\pi\)
\(450\) 0 0
\(451\) − 26.3923i − 1.24277i
\(452\) 0 0
\(453\) 1.07180i 0.0503574i
\(454\) 0 0
\(455\) 2.92820 0.137276
\(456\) 0 0
\(457\) −10.7846 −0.504483 −0.252241 0.967664i \(-0.581168\pi\)
−0.252241 + 0.967664i \(0.581168\pi\)
\(458\) 0 0
\(459\) − 4.19615i − 0.195860i
\(460\) 0 0
\(461\) 20.7321i 0.965588i 0.875734 + 0.482794i \(0.160378\pi\)
−0.875734 + 0.482794i \(0.839622\pi\)
\(462\) 0 0
\(463\) −21.1769 −0.984175 −0.492087 0.870546i \(-0.663766\pi\)
−0.492087 + 0.870546i \(0.663766\pi\)
\(464\) 0 0
\(465\) 1.46410 0.0678961
\(466\) 0 0
\(467\) 20.3923i 0.943643i 0.881694 + 0.471822i \(0.156403\pi\)
−0.881694 + 0.471822i \(0.843597\pi\)
\(468\) 0 0
\(469\) 6.39230i 0.295169i
\(470\) 0 0
\(471\) 8.39230 0.386697
\(472\) 0 0
\(473\) 24.3923 1.12156
\(474\) 0 0
\(475\) 15.4641i 0.709542i
\(476\) 0 0
\(477\) 3.46410i 0.158610i
\(478\) 0 0
\(479\) −30.6410 −1.40002 −0.700012 0.714131i \(-0.746822\pi\)
−0.700012 + 0.714131i \(0.746822\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) 4.73205i 0.215316i
\(484\) 0 0
\(485\) − 1.75129i − 0.0795219i
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) −4.53590 −0.205120
\(490\) 0 0
\(491\) − 27.1244i − 1.22411i −0.790817 0.612053i \(-0.790344\pi\)
0.790817 0.612053i \(-0.209656\pi\)
\(492\) 0 0
\(493\) − 31.3205i − 1.41060i
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) −3.66025 −0.164185
\(498\) 0 0
\(499\) 11.8564i 0.530766i 0.964143 + 0.265383i \(0.0854983\pi\)
−0.964143 + 0.265383i \(0.914502\pi\)
\(500\) 0 0
\(501\) 16.3923i 0.732354i
\(502\) 0 0
\(503\) 16.3923 0.730897 0.365448 0.930832i \(-0.380916\pi\)
0.365448 + 0.930832i \(0.380916\pi\)
\(504\) 0 0
\(505\) 8.24871 0.367063
\(506\) 0 0
\(507\) − 3.00000i − 0.133235i
\(508\) 0 0
\(509\) 30.5885i 1.35581i 0.735150 + 0.677905i \(0.237112\pi\)
−0.735150 + 0.677905i \(0.762888\pi\)
\(510\) 0 0
\(511\) −8.53590 −0.377606
\(512\) 0 0
\(513\) 3.46410 0.152944
\(514\) 0 0
\(515\) 10.2487i 0.451612i
\(516\) 0 0
\(517\) 10.9282i 0.480622i
\(518\) 0 0
\(519\) −16.0526 −0.704629
\(520\) 0 0
\(521\) 3.80385 0.166650 0.0833248 0.996522i \(-0.473446\pi\)
0.0833248 + 0.996522i \(0.473446\pi\)
\(522\) 0 0
\(523\) − 14.9282i − 0.652765i −0.945238 0.326382i \(-0.894170\pi\)
0.945238 0.326382i \(-0.105830\pi\)
\(524\) 0 0
\(525\) 4.46410i 0.194829i
\(526\) 0 0
\(527\) −8.39230 −0.365575
\(528\) 0 0
\(529\) −0.607695 −0.0264215
\(530\) 0 0
\(531\) − 8.00000i − 0.347170i
\(532\) 0 0
\(533\) − 38.6410i − 1.67373i
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 20.5885 0.888458
\(538\) 0 0
\(539\) − 2.73205i − 0.117678i
\(540\) 0 0
\(541\) − 26.0000i − 1.11783i −0.829226 0.558914i \(-0.811218\pi\)
0.829226 0.558914i \(-0.188782\pi\)
\(542\) 0 0
\(543\) −18.9282 −0.812287
\(544\) 0 0
\(545\) 8.00000 0.342682
\(546\) 0 0
\(547\) 44.2487i 1.89194i 0.324257 + 0.945969i \(0.394886\pi\)
−0.324257 + 0.945969i \(0.605114\pi\)
\(548\) 0 0
\(549\) − 8.39230i − 0.358175i
\(550\) 0 0
\(551\) 25.8564 1.10152
\(552\) 0 0
\(553\) 12.3923 0.526974
\(554\) 0 0
\(555\) 1.46410i 0.0621477i
\(556\) 0 0
\(557\) 24.5359i 1.03962i 0.854282 + 0.519810i \(0.173997\pi\)
−0.854282 + 0.519810i \(0.826003\pi\)
\(558\) 0 0
\(559\) 35.7128 1.51049
\(560\) 0 0
\(561\) 11.4641 0.484015
\(562\) 0 0
\(563\) 46.6410i 1.96568i 0.184448 + 0.982842i \(0.440950\pi\)
−0.184448 + 0.982842i \(0.559050\pi\)
\(564\) 0 0
\(565\) 4.67949i 0.196868i
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 35.8564 1.50318 0.751589 0.659631i \(-0.229288\pi\)
0.751589 + 0.659631i \(0.229288\pi\)
\(570\) 0 0
\(571\) 1.60770i 0.0672799i 0.999434 + 0.0336400i \(0.0107100\pi\)
−0.999434 + 0.0336400i \(0.989290\pi\)
\(572\) 0 0
\(573\) − 24.7321i − 1.03320i
\(574\) 0 0
\(575\) 21.1244 0.880947
\(576\) 0 0
\(577\) 44.6410 1.85843 0.929215 0.369540i \(-0.120485\pi\)
0.929215 + 0.369540i \(0.120485\pi\)
\(578\) 0 0
\(579\) − 24.3923i − 1.01371i
\(580\) 0 0
\(581\) − 2.53590i − 0.105207i
\(582\) 0 0
\(583\) −9.46410 −0.391963
\(584\) 0 0
\(585\) −2.92820 −0.121066
\(586\) 0 0
\(587\) 27.3205i 1.12764i 0.825898 + 0.563819i \(0.190668\pi\)
−0.825898 + 0.563819i \(0.809332\pi\)
\(588\) 0 0
\(589\) − 6.92820i − 0.285472i
\(590\) 0 0
\(591\) 26.7846 1.10177
\(592\) 0 0
\(593\) 1.66025 0.0681785 0.0340892 0.999419i \(-0.489147\pi\)
0.0340892 + 0.999419i \(0.489147\pi\)
\(594\) 0 0
\(595\) 3.07180i 0.125931i
\(596\) 0 0
\(597\) 8.00000i 0.327418i
\(598\) 0 0
\(599\) 2.19615 0.0897324 0.0448662 0.998993i \(-0.485714\pi\)
0.0448662 + 0.998993i \(0.485714\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) − 6.39230i − 0.260315i
\(604\) 0 0
\(605\) 2.58846i 0.105236i
\(606\) 0 0
\(607\) 46.6410 1.89310 0.946550 0.322556i \(-0.104542\pi\)
0.946550 + 0.322556i \(0.104542\pi\)
\(608\) 0 0
\(609\) 7.46410 0.302461
\(610\) 0 0
\(611\) 16.0000i 0.647291i
\(612\) 0 0
\(613\) − 14.1436i − 0.571254i −0.958341 0.285627i \(-0.907798\pi\)
0.958341 0.285627i \(-0.0922019\pi\)
\(614\) 0 0
\(615\) −7.07180 −0.285162
\(616\) 0 0
\(617\) −28.5359 −1.14881 −0.574406 0.818571i \(-0.694767\pi\)
−0.574406 + 0.818571i \(0.694767\pi\)
\(618\) 0 0
\(619\) 9.85641i 0.396162i 0.980186 + 0.198081i \(0.0634710\pi\)
−0.980186 + 0.198081i \(0.936529\pi\)
\(620\) 0 0
\(621\) − 4.73205i − 0.189891i
\(622\) 0 0
\(623\) 12.1962 0.488629
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) 0 0
\(627\) 9.46410i 0.377960i
\(628\) 0 0
\(629\) − 8.39230i − 0.334623i
\(630\) 0 0
\(631\) −29.4641 −1.17295 −0.586474 0.809968i \(-0.699484\pi\)
−0.586474 + 0.809968i \(0.699484\pi\)
\(632\) 0 0
\(633\) −0.143594 −0.00570733
\(634\) 0 0
\(635\) − 14.1436i − 0.561271i
\(636\) 0 0
\(637\) − 4.00000i − 0.158486i
\(638\) 0 0
\(639\) 3.66025 0.144797
\(640\) 0 0
\(641\) −43.4641 −1.71673 −0.858364 0.513041i \(-0.828519\pi\)
−0.858364 + 0.513041i \(0.828519\pi\)
\(642\) 0 0
\(643\) 8.24871i 0.325297i 0.986684 + 0.162649i \(0.0520037\pi\)
−0.986684 + 0.162649i \(0.947996\pi\)
\(644\) 0 0
\(645\) − 6.53590i − 0.257351i
\(646\) 0 0
\(647\) −44.1051 −1.73395 −0.866976 0.498351i \(-0.833939\pi\)
−0.866976 + 0.498351i \(0.833939\pi\)
\(648\) 0 0
\(649\) 21.8564 0.857939
\(650\) 0 0
\(651\) − 2.00000i − 0.0783862i
\(652\) 0 0
\(653\) 31.8564i 1.24664i 0.781968 + 0.623319i \(0.214216\pi\)
−0.781968 + 0.623319i \(0.785784\pi\)
\(654\) 0 0
\(655\) 3.21539 0.125636
\(656\) 0 0
\(657\) 8.53590 0.333017
\(658\) 0 0
\(659\) 19.1244i 0.744979i 0.928036 + 0.372490i \(0.121496\pi\)
−0.928036 + 0.372490i \(0.878504\pi\)
\(660\) 0 0
\(661\) 19.6077i 0.762651i 0.924441 + 0.381325i \(0.124532\pi\)
−0.924441 + 0.381325i \(0.875468\pi\)
\(662\) 0 0
\(663\) 16.7846 0.651860
\(664\) 0 0
\(665\) −2.53590 −0.0983379
\(666\) 0 0
\(667\) − 35.3205i − 1.36762i
\(668\) 0 0
\(669\) − 5.07180i − 0.196087i
\(670\) 0 0
\(671\) 22.9282 0.885133
\(672\) 0 0
\(673\) 25.1769 0.970499 0.485249 0.874376i \(-0.338729\pi\)
0.485249 + 0.874376i \(0.338729\pi\)
\(674\) 0 0
\(675\) − 4.46410i − 0.171823i
\(676\) 0 0
\(677\) − 31.2679i − 1.20172i −0.799352 0.600862i \(-0.794824\pi\)
0.799352 0.600862i \(-0.205176\pi\)
\(678\) 0 0
\(679\) −2.39230 −0.0918082
\(680\) 0 0
\(681\) 11.3205 0.433803
\(682\) 0 0
\(683\) 31.9090i 1.22096i 0.792031 + 0.610481i \(0.209024\pi\)
−0.792031 + 0.610481i \(0.790976\pi\)
\(684\) 0 0
\(685\) − 2.53590i − 0.0968917i
\(686\) 0 0
\(687\) −10.9282 −0.416937
\(688\) 0 0
\(689\) −13.8564 −0.527887
\(690\) 0 0
\(691\) − 24.7846i − 0.942851i −0.881906 0.471425i \(-0.843740\pi\)
0.881906 0.471425i \(-0.156260\pi\)
\(692\) 0 0
\(693\) 2.73205i 0.103782i
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) 40.5359 1.53541
\(698\) 0 0
\(699\) 12.9282i 0.488990i
\(700\) 0 0
\(701\) − 33.7128i − 1.27332i −0.771147 0.636658i \(-0.780316\pi\)
0.771147 0.636658i \(-0.219684\pi\)
\(702\) 0 0
\(703\) 6.92820 0.261302
\(704\) 0 0
\(705\) 2.92820 0.110283
\(706\) 0 0
\(707\) − 11.2679i − 0.423775i
\(708\) 0 0
\(709\) 2.92820i 0.109971i 0.998487 + 0.0549855i \(0.0175113\pi\)
−0.998487 + 0.0549855i \(0.982489\pi\)
\(710\) 0 0
\(711\) −12.3923 −0.464748
\(712\) 0 0
\(713\) −9.46410 −0.354433
\(714\) 0 0
\(715\) − 8.00000i − 0.299183i
\(716\) 0 0
\(717\) − 27.6603i − 1.03299i
\(718\) 0 0
\(719\) −17.4641 −0.651301 −0.325651 0.945490i \(-0.605583\pi\)
−0.325651 + 0.945490i \(0.605583\pi\)
\(720\) 0 0
\(721\) 14.0000 0.521387
\(722\) 0 0
\(723\) − 7.46410i − 0.277593i
\(724\) 0 0
\(725\) − 33.3205i − 1.23749i
\(726\) 0 0
\(727\) −24.6410 −0.913885 −0.456942 0.889496i \(-0.651055\pi\)
−0.456942 + 0.889496i \(0.651055\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 37.4641i 1.38566i
\(732\) 0 0
\(733\) − 46.9282i − 1.73333i −0.498888 0.866666i \(-0.666258\pi\)
0.498888 0.866666i \(-0.333742\pi\)
\(734\) 0 0
\(735\) −0.732051 −0.0270021
\(736\) 0 0
\(737\) 17.4641 0.643298
\(738\) 0 0
\(739\) − 14.3923i − 0.529429i −0.964327 0.264715i \(-0.914722\pi\)
0.964327 0.264715i \(-0.0852778\pi\)
\(740\) 0 0
\(741\) 13.8564i 0.509028i
\(742\) 0 0
\(743\) 29.8038 1.09340 0.546699 0.837329i \(-0.315884\pi\)
0.546699 + 0.837329i \(0.315884\pi\)
\(744\) 0 0
\(745\) −1.75129 −0.0641623
\(746\) 0 0
\(747\) 2.53590i 0.0927837i
\(748\) 0 0
\(749\) − 8.19615i − 0.299481i
\(750\) 0 0
\(751\) 5.07180 0.185072 0.0925362 0.995709i \(-0.470503\pi\)
0.0925362 + 0.995709i \(0.470503\pi\)
\(752\) 0 0
\(753\) 23.3205 0.849847
\(754\) 0 0
\(755\) 0.784610i 0.0285549i
\(756\) 0 0
\(757\) 16.0000i 0.581530i 0.956795 + 0.290765i \(0.0939098\pi\)
−0.956795 + 0.290765i \(0.906090\pi\)
\(758\) 0 0
\(759\) 12.9282 0.469264
\(760\) 0 0
\(761\) 13.2679 0.480963 0.240481 0.970654i \(-0.422695\pi\)
0.240481 + 0.970654i \(0.422695\pi\)
\(762\) 0 0
\(763\) − 10.9282i − 0.395628i
\(764\) 0 0
\(765\) − 3.07180i − 0.111061i
\(766\) 0 0
\(767\) 32.0000 1.15545
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 3.80385i 0.136992i
\(772\) 0 0
\(773\) 27.3731i 0.984541i 0.870442 + 0.492270i \(0.163833\pi\)
−0.870442 + 0.492270i \(0.836167\pi\)
\(774\) 0 0
\(775\) −8.92820 −0.320711
\(776\) 0 0
\(777\) 2.00000 0.0717496
\(778\) 0 0
\(779\) 33.4641i 1.19898i
\(780\) 0 0
\(781\) 10.0000i 0.357828i
\(782\) 0 0
\(783\) −7.46410 −0.266745
\(784\) 0 0
\(785\) 6.14359 0.219274
\(786\) 0 0
\(787\) 13.0718i 0.465959i 0.972482 + 0.232980i \(0.0748475\pi\)
−0.972482 + 0.232980i \(0.925152\pi\)
\(788\) 0 0
\(789\) 6.19615i 0.220589i
\(790\) 0 0
\(791\) 6.39230 0.227284
\(792\) 0 0
\(793\) 33.5692 1.19208
\(794\) 0 0
\(795\) 2.53590i 0.0899390i
\(796\) 0 0
\(797\) 4.33975i 0.153722i 0.997042 + 0.0768608i \(0.0244897\pi\)
−0.997042 + 0.0768608i \(0.975510\pi\)
\(798\) 0 0
\(799\) −16.7846 −0.593797
\(800\) 0 0
\(801\) −12.1962 −0.430930
\(802\) 0 0
\(803\) 23.3205i 0.822963i
\(804\) 0 0
\(805\) 3.46410i 0.122094i
\(806\) 0 0
\(807\) −19.2679 −0.678264
\(808\) 0 0
\(809\) 6.67949 0.234838 0.117419 0.993082i \(-0.462538\pi\)
0.117419 + 0.993082i \(0.462538\pi\)
\(810\) 0 0
\(811\) − 20.7846i − 0.729846i −0.931038 0.364923i \(-0.881095\pi\)
0.931038 0.364923i \(-0.118905\pi\)
\(812\) 0 0
\(813\) − 15.0718i − 0.528591i
\(814\) 0 0
\(815\) −3.32051 −0.116312
\(816\) 0 0
\(817\) −30.9282 −1.08204
\(818\) 0 0
\(819\) 4.00000i 0.139771i
\(820\) 0 0
\(821\) 53.3205i 1.86090i 0.366421 + 0.930449i \(0.380583\pi\)
−0.366421 + 0.930449i \(0.619417\pi\)
\(822\) 0 0
\(823\) −0.392305 −0.0136749 −0.00683744 0.999977i \(-0.502176\pi\)
−0.00683744 + 0.999977i \(0.502176\pi\)
\(824\) 0 0
\(825\) 12.1962 0.424616
\(826\) 0 0
\(827\) 4.98076i 0.173198i 0.996243 + 0.0865990i \(0.0275999\pi\)
−0.996243 + 0.0865990i \(0.972400\pi\)
\(828\) 0 0
\(829\) − 32.7846i − 1.13866i −0.822110 0.569328i \(-0.807203\pi\)
0.822110 0.569328i \(-0.192797\pi\)
\(830\) 0 0
\(831\) −16.9282 −0.587233
\(832\) 0 0
\(833\) 4.19615 0.145388
\(834\) 0 0
\(835\) 12.0000i 0.415277i
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 0 0
\(839\) 32.1051 1.10839 0.554196 0.832386i \(-0.313026\pi\)
0.554196 + 0.832386i \(0.313026\pi\)
\(840\) 0 0
\(841\) −26.7128 −0.921131
\(842\) 0 0
\(843\) − 28.9282i − 0.996340i
\(844\) 0 0
\(845\) − 2.19615i − 0.0755499i
\(846\) 0 0
\(847\) 3.53590 0.121495
\(848\) 0 0
\(849\) −2.39230 −0.0821037
\(850\) 0 0
\(851\) − 9.46410i − 0.324425i
\(852\) 0 0
\(853\) 18.2487i 0.624824i 0.949947 + 0.312412i \(0.101137\pi\)
−0.949947 + 0.312412i \(0.898863\pi\)
\(854\) 0 0
\(855\) 2.53590 0.0867259
\(856\) 0 0
\(857\) −2.73205 −0.0933251 −0.0466625 0.998911i \(-0.514859\pi\)
−0.0466625 + 0.998911i \(0.514859\pi\)
\(858\) 0 0
\(859\) 51.1769i 1.74613i 0.487600 + 0.873067i \(0.337872\pi\)
−0.487600 + 0.873067i \(0.662128\pi\)
\(860\) 0 0
\(861\) 9.66025i 0.329221i
\(862\) 0 0
\(863\) 26.8756 0.914858 0.457429 0.889246i \(-0.348770\pi\)
0.457429 + 0.889246i \(0.348770\pi\)
\(864\) 0 0
\(865\) −11.7513 −0.399556
\(866\) 0 0
\(867\) 0.607695i 0.0206384i
\(868\) 0 0
\(869\) − 33.8564i − 1.14850i
\(870\) 0 0
\(871\) 25.5692 0.866380
\(872\) 0 0
\(873\) 2.39230 0.0809673
\(874\) 0 0
\(875\) 6.92820i 0.234216i
\(876\) 0 0
\(877\) − 9.07180i − 0.306333i −0.988200 0.153166i \(-0.951053\pi\)
0.988200 0.153166i \(-0.0489471\pi\)
\(878\) 0 0
\(879\) 13.8038 0.465592
\(880\) 0 0
\(881\) 8.87564 0.299028 0.149514 0.988760i \(-0.452229\pi\)
0.149514 + 0.988760i \(0.452229\pi\)
\(882\) 0 0
\(883\) − 12.9282i − 0.435069i −0.976053 0.217534i \(-0.930199\pi\)
0.976053 0.217534i \(-0.0698014\pi\)
\(884\) 0 0
\(885\) − 5.85641i − 0.196861i
\(886\) 0 0
\(887\) 6.24871 0.209811 0.104906 0.994482i \(-0.466546\pi\)
0.104906 + 0.994482i \(0.466546\pi\)
\(888\) 0 0
\(889\) −19.3205 −0.647989
\(890\) 0 0
\(891\) − 2.73205i − 0.0915271i
\(892\) 0 0
\(893\) − 13.8564i − 0.463687i
\(894\) 0 0
\(895\) 15.0718 0.503795
\(896\) 0 0
\(897\) 18.9282 0.631994
\(898\) 0 0
\(899\) 14.9282i 0.497883i
\(900\) 0 0
\(901\) − 14.5359i − 0.484261i
\(902\) 0 0
\(903\) −8.92820 −0.297112
\(904\) 0 0
\(905\) −13.8564 −0.460603
\(906\) 0 0
\(907\) 15.8564i 0.526503i 0.964727 + 0.263252i \(0.0847950\pi\)
−0.964727 + 0.263252i \(0.915205\pi\)
\(908\) 0 0
\(909\) 11.2679i 0.373734i
\(910\) 0 0
\(911\) 33.9090 1.12345 0.561727 0.827323i \(-0.310137\pi\)
0.561727 + 0.827323i \(0.310137\pi\)
\(912\) 0 0
\(913\) −6.92820 −0.229290
\(914\) 0 0
\(915\) − 6.14359i − 0.203101i
\(916\) 0 0
\(917\) − 4.39230i − 0.145047i
\(918\) 0 0
\(919\) −10.9282 −0.360488 −0.180244 0.983622i \(-0.557689\pi\)
−0.180244 + 0.983622i \(0.557689\pi\)
\(920\) 0 0
\(921\) 25.3205 0.834339
\(922\) 0 0
\(923\) 14.6410i 0.481915i
\(924\) 0 0
\(925\) − 8.92820i − 0.293558i
\(926\) 0 0
\(927\) −14.0000 −0.459820
\(928\) 0 0
\(929\) −44.5885 −1.46290 −0.731450 0.681895i \(-0.761156\pi\)
−0.731450 + 0.681895i \(0.761156\pi\)
\(930\) 0 0
\(931\) 3.46410i 0.113531i
\(932\) 0 0
\(933\) − 31.7128i − 1.03823i
\(934\) 0 0
\(935\) 8.39230 0.274458
\(936\) 0 0
\(937\) −12.1436 −0.396714 −0.198357 0.980130i \(-0.563561\pi\)
−0.198357 + 0.980130i \(0.563561\pi\)
\(938\) 0 0
\(939\) − 0.928203i − 0.0302908i
\(940\) 0 0
\(941\) 57.2295i 1.86563i 0.360359 + 0.932814i \(0.382654\pi\)
−0.360359 + 0.932814i \(0.617346\pi\)
\(942\) 0 0
\(943\) 45.7128 1.48861
\(944\) 0 0
\(945\) 0.732051 0.0238136
\(946\) 0 0
\(947\) 4.58846i 0.149105i 0.997217 + 0.0745524i \(0.0237528\pi\)
−0.997217 + 0.0745524i \(0.976247\pi\)
\(948\) 0 0
\(949\) 34.1436i 1.10835i
\(950\) 0 0
\(951\) −18.3923 −0.596411
\(952\) 0 0
\(953\) −26.7846 −0.867639 −0.433819 0.901000i \(-0.642834\pi\)
−0.433819 + 0.901000i \(0.642834\pi\)
\(954\) 0 0
\(955\) − 18.1051i − 0.585868i
\(956\) 0 0
\(957\) − 20.3923i − 0.659190i
\(958\) 0 0
\(959\) −3.46410 −0.111862
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 8.19615i 0.264117i
\(964\) 0 0
\(965\) − 17.8564i − 0.574818i
\(966\) 0 0
\(967\) −34.5359 −1.11060 −0.555300 0.831650i \(-0.687396\pi\)
−0.555300 + 0.831650i \(0.687396\pi\)
\(968\) 0 0
\(969\) −14.5359 −0.466960
\(970\) 0 0
\(971\) 8.78461i 0.281912i 0.990016 + 0.140956i \(0.0450175\pi\)
−0.990016 + 0.140956i \(0.954982\pi\)
\(972\) 0 0
\(973\) 10.9282i 0.350342i
\(974\) 0 0
\(975\) 17.8564 0.571863
\(976\) 0 0
\(977\) −54.4974 −1.74353 −0.871764 0.489927i \(-0.837023\pi\)
−0.871764 + 0.489927i \(0.837023\pi\)
\(978\) 0 0
\(979\) − 33.3205i − 1.06493i
\(980\) 0 0
\(981\) 10.9282i 0.348911i
\(982\) 0 0
\(983\) −4.78461 −0.152605 −0.0763027 0.997085i \(-0.524312\pi\)
−0.0763027 + 0.997085i \(0.524312\pi\)
\(984\) 0 0
\(985\) 19.6077 0.624753
\(986\) 0 0
\(987\) − 4.00000i − 0.127321i
\(988\) 0 0
\(989\) 42.2487i 1.34343i
\(990\) 0 0
\(991\) −52.7846 −1.67676 −0.838379 0.545087i \(-0.816496\pi\)
−0.838379 + 0.545087i \(0.816496\pi\)
\(992\) 0 0
\(993\) 12.9282 0.410264
\(994\) 0 0
\(995\) 5.85641i 0.185661i
\(996\) 0 0
\(997\) − 31.3205i − 0.991930i −0.868342 0.495965i \(-0.834814\pi\)
0.868342 0.495965i \(-0.165186\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.2.c.h.673.4 yes 4
3.2 odd 2 4032.2.c.o.2017.2 4
4.3 odd 2 1344.2.c.e.673.2 4
8.3 odd 2 1344.2.c.e.673.3 yes 4
8.5 even 2 inner 1344.2.c.h.673.1 yes 4
12.11 even 2 4032.2.c.l.2017.2 4
16.3 odd 4 5376.2.a.z.1.2 2
16.5 even 4 5376.2.a.bd.1.1 2
16.11 odd 4 5376.2.a.t.1.1 2
16.13 even 4 5376.2.a.n.1.2 2
24.5 odd 2 4032.2.c.o.2017.3 4
24.11 even 2 4032.2.c.l.2017.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1344.2.c.e.673.2 4 4.3 odd 2
1344.2.c.e.673.3 yes 4 8.3 odd 2
1344.2.c.h.673.1 yes 4 8.5 even 2 inner
1344.2.c.h.673.4 yes 4 1.1 even 1 trivial
4032.2.c.l.2017.2 4 12.11 even 2
4032.2.c.l.2017.3 4 24.11 even 2
4032.2.c.o.2017.2 4 3.2 odd 2
4032.2.c.o.2017.3 4 24.5 odd 2
5376.2.a.n.1.2 2 16.13 even 4
5376.2.a.t.1.1 2 16.11 odd 4
5376.2.a.z.1.2 2 16.3 odd 4
5376.2.a.bd.1.1 2 16.5 even 4