Properties

Label 1338.2.a.j.1.6
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(1,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 18x^{5} - 8x^{4} + 51x^{3} + 47x^{2} - 2x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-3.57857\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +3.27125 q^{5} -1.00000 q^{6} +3.11004 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.27125 q^{10} +5.01780 q^{11} -1.00000 q^{12} -2.25689 q^{13} +3.11004 q^{14} -3.27125 q^{15} +1.00000 q^{16} +1.75903 q^{17} +1.00000 q^{18} -7.20855 q^{19} +3.27125 q^{20} -3.11004 q^{21} +5.01780 q^{22} +4.20547 q^{23} -1.00000 q^{24} +5.70110 q^{25} -2.25689 q^{26} -1.00000 q^{27} +3.11004 q^{28} -10.3333 q^{29} -3.27125 q^{30} -5.41158 q^{31} +1.00000 q^{32} -5.01780 q^{33} +1.75903 q^{34} +10.1737 q^{35} +1.00000 q^{36} +5.01681 q^{37} -7.20855 q^{38} +2.25689 q^{39} +3.27125 q^{40} +3.29171 q^{41} -3.11004 q^{42} -12.3131 q^{43} +5.01780 q^{44} +3.27125 q^{45} +4.20547 q^{46} -5.32237 q^{47} -1.00000 q^{48} +2.67235 q^{49} +5.70110 q^{50} -1.75903 q^{51} -2.25689 q^{52} -10.9467 q^{53} -1.00000 q^{54} +16.4145 q^{55} +3.11004 q^{56} +7.20855 q^{57} -10.3333 q^{58} +1.70199 q^{59} -3.27125 q^{60} +14.3333 q^{61} -5.41158 q^{62} +3.11004 q^{63} +1.00000 q^{64} -7.38284 q^{65} -5.01780 q^{66} -9.78502 q^{67} +1.75903 q^{68} -4.20547 q^{69} +10.1737 q^{70} -0.0747454 q^{71} +1.00000 q^{72} +8.00222 q^{73} +5.01681 q^{74} -5.70110 q^{75} -7.20855 q^{76} +15.6055 q^{77} +2.25689 q^{78} +7.81235 q^{79} +3.27125 q^{80} +1.00000 q^{81} +3.29171 q^{82} +6.06193 q^{83} -3.11004 q^{84} +5.75425 q^{85} -12.3131 q^{86} +10.3333 q^{87} +5.01780 q^{88} +7.54971 q^{89} +3.27125 q^{90} -7.01900 q^{91} +4.20547 q^{92} +5.41158 q^{93} -5.32237 q^{94} -23.5810 q^{95} -1.00000 q^{96} +7.00311 q^{97} +2.67235 q^{98} +5.01780 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 7 q^{3} + 7 q^{4} + 6 q^{5} - 7 q^{6} + 3 q^{7} + 7 q^{8} + 7 q^{9} + 6 q^{10} - q^{11} - 7 q^{12} + 8 q^{13} + 3 q^{14} - 6 q^{15} + 7 q^{16} + 16 q^{17} + 7 q^{18} + 2 q^{19} + 6 q^{20}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 3.27125 1.46295 0.731475 0.681869i \(-0.238833\pi\)
0.731475 + 0.681869i \(0.238833\pi\)
\(6\) −1.00000 −0.408248
\(7\) 3.11004 1.17548 0.587742 0.809048i \(-0.300017\pi\)
0.587742 + 0.809048i \(0.300017\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 3.27125 1.03446
\(11\) 5.01780 1.51292 0.756461 0.654038i \(-0.226927\pi\)
0.756461 + 0.654038i \(0.226927\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.25689 −0.625947 −0.312974 0.949762i \(-0.601325\pi\)
−0.312974 + 0.949762i \(0.601325\pi\)
\(14\) 3.11004 0.831193
\(15\) −3.27125 −0.844634
\(16\) 1.00000 0.250000
\(17\) 1.75903 0.426628 0.213314 0.976984i \(-0.431574\pi\)
0.213314 + 0.976984i \(0.431574\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.20855 −1.65376 −0.826878 0.562382i \(-0.809885\pi\)
−0.826878 + 0.562382i \(0.809885\pi\)
\(20\) 3.27125 0.731475
\(21\) −3.11004 −0.678666
\(22\) 5.01780 1.06980
\(23\) 4.20547 0.876901 0.438451 0.898755i \(-0.355527\pi\)
0.438451 + 0.898755i \(0.355527\pi\)
\(24\) −1.00000 −0.204124
\(25\) 5.70110 1.14022
\(26\) −2.25689 −0.442612
\(27\) −1.00000 −0.192450
\(28\) 3.11004 0.587742
\(29\) −10.3333 −1.91885 −0.959423 0.281970i \(-0.909012\pi\)
−0.959423 + 0.281970i \(0.909012\pi\)
\(30\) −3.27125 −0.597246
\(31\) −5.41158 −0.971949 −0.485974 0.873973i \(-0.661535\pi\)
−0.485974 + 0.873973i \(0.661535\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.01780 −0.873486
\(34\) 1.75903 0.301672
\(35\) 10.1737 1.71967
\(36\) 1.00000 0.166667
\(37\) 5.01681 0.824759 0.412379 0.911012i \(-0.364698\pi\)
0.412379 + 0.911012i \(0.364698\pi\)
\(38\) −7.20855 −1.16938
\(39\) 2.25689 0.361391
\(40\) 3.27125 0.517231
\(41\) 3.29171 0.514079 0.257039 0.966401i \(-0.417253\pi\)
0.257039 + 0.966401i \(0.417253\pi\)
\(42\) −3.11004 −0.479890
\(43\) −12.3131 −1.87773 −0.938863 0.344292i \(-0.888119\pi\)
−0.938863 + 0.344292i \(0.888119\pi\)
\(44\) 5.01780 0.756461
\(45\) 3.27125 0.487650
\(46\) 4.20547 0.620063
\(47\) −5.32237 −0.776348 −0.388174 0.921586i \(-0.626894\pi\)
−0.388174 + 0.921586i \(0.626894\pi\)
\(48\) −1.00000 −0.144338
\(49\) 2.67235 0.381764
\(50\) 5.70110 0.806257
\(51\) −1.75903 −0.246314
\(52\) −2.25689 −0.312974
\(53\) −10.9467 −1.50364 −0.751822 0.659366i \(-0.770825\pi\)
−0.751822 + 0.659366i \(0.770825\pi\)
\(54\) −1.00000 −0.136083
\(55\) 16.4145 2.21333
\(56\) 3.11004 0.415597
\(57\) 7.20855 0.954796
\(58\) −10.3333 −1.35683
\(59\) 1.70199 0.221580 0.110790 0.993844i \(-0.464662\pi\)
0.110790 + 0.993844i \(0.464662\pi\)
\(60\) −3.27125 −0.422317
\(61\) 14.3333 1.83519 0.917596 0.397515i \(-0.130127\pi\)
0.917596 + 0.397515i \(0.130127\pi\)
\(62\) −5.41158 −0.687271
\(63\) 3.11004 0.391828
\(64\) 1.00000 0.125000
\(65\) −7.38284 −0.915729
\(66\) −5.01780 −0.617648
\(67\) −9.78502 −1.19543 −0.597716 0.801708i \(-0.703925\pi\)
−0.597716 + 0.801708i \(0.703925\pi\)
\(68\) 1.75903 0.213314
\(69\) −4.20547 −0.506279
\(70\) 10.1737 1.21599
\(71\) −0.0747454 −0.00887065 −0.00443532 0.999990i \(-0.501412\pi\)
−0.00443532 + 0.999990i \(0.501412\pi\)
\(72\) 1.00000 0.117851
\(73\) 8.00222 0.936589 0.468295 0.883572i \(-0.344869\pi\)
0.468295 + 0.883572i \(0.344869\pi\)
\(74\) 5.01681 0.583192
\(75\) −5.70110 −0.658306
\(76\) −7.20855 −0.826878
\(77\) 15.6055 1.77842
\(78\) 2.25689 0.255542
\(79\) 7.81235 0.878957 0.439479 0.898253i \(-0.355163\pi\)
0.439479 + 0.898253i \(0.355163\pi\)
\(80\) 3.27125 0.365737
\(81\) 1.00000 0.111111
\(82\) 3.29171 0.363509
\(83\) 6.06193 0.665383 0.332691 0.943036i \(-0.392043\pi\)
0.332691 + 0.943036i \(0.392043\pi\)
\(84\) −3.11004 −0.339333
\(85\) 5.75425 0.624136
\(86\) −12.3131 −1.32775
\(87\) 10.3333 1.10785
\(88\) 5.01780 0.534899
\(89\) 7.54971 0.800268 0.400134 0.916457i \(-0.368964\pi\)
0.400134 + 0.916457i \(0.368964\pi\)
\(90\) 3.27125 0.344820
\(91\) −7.01900 −0.735791
\(92\) 4.20547 0.438451
\(93\) 5.41158 0.561155
\(94\) −5.32237 −0.548961
\(95\) −23.5810 −2.41936
\(96\) −1.00000 −0.102062
\(97\) 7.00311 0.711058 0.355529 0.934665i \(-0.384301\pi\)
0.355529 + 0.934665i \(0.384301\pi\)
\(98\) 2.67235 0.269948
\(99\) 5.01780 0.504308
\(100\) 5.70110 0.570110
\(101\) 10.7033 1.06502 0.532510 0.846424i \(-0.321249\pi\)
0.532510 + 0.846424i \(0.321249\pi\)
\(102\) −1.75903 −0.174170
\(103\) 10.1428 0.999397 0.499698 0.866199i \(-0.333444\pi\)
0.499698 + 0.866199i \(0.333444\pi\)
\(104\) −2.25689 −0.221306
\(105\) −10.1737 −0.992854
\(106\) −10.9467 −1.06324
\(107\) −1.78715 −0.172770 −0.0863851 0.996262i \(-0.527532\pi\)
−0.0863851 + 0.996262i \(0.527532\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −12.5753 −1.20449 −0.602246 0.798311i \(-0.705727\pi\)
−0.602246 + 0.798311i \(0.705727\pi\)
\(110\) 16.4145 1.56506
\(111\) −5.01681 −0.476175
\(112\) 3.11004 0.293871
\(113\) −16.2276 −1.52656 −0.763280 0.646068i \(-0.776412\pi\)
−0.763280 + 0.646068i \(0.776412\pi\)
\(114\) 7.20855 0.675143
\(115\) 13.7572 1.28286
\(116\) −10.3333 −0.959423
\(117\) −2.25689 −0.208649
\(118\) 1.70199 0.156681
\(119\) 5.47067 0.501495
\(120\) −3.27125 −0.298623
\(121\) 14.1783 1.28893
\(122\) 14.3333 1.29768
\(123\) −3.29171 −0.296804
\(124\) −5.41158 −0.485974
\(125\) 2.29347 0.205134
\(126\) 3.11004 0.277064
\(127\) −14.9452 −1.32617 −0.663086 0.748543i \(-0.730754\pi\)
−0.663086 + 0.748543i \(0.730754\pi\)
\(128\) 1.00000 0.0883883
\(129\) 12.3131 1.08411
\(130\) −7.38284 −0.647518
\(131\) −8.50744 −0.743298 −0.371649 0.928373i \(-0.621208\pi\)
−0.371649 + 0.928373i \(0.621208\pi\)
\(132\) −5.01780 −0.436743
\(133\) −22.4189 −1.94396
\(134\) −9.78502 −0.845297
\(135\) −3.27125 −0.281545
\(136\) 1.75903 0.150836
\(137\) 3.64306 0.311248 0.155624 0.987816i \(-0.450261\pi\)
0.155624 + 0.987816i \(0.450261\pi\)
\(138\) −4.20547 −0.357993
\(139\) −17.2902 −1.46654 −0.733268 0.679940i \(-0.762006\pi\)
−0.733268 + 0.679940i \(0.762006\pi\)
\(140\) 10.1737 0.859837
\(141\) 5.32237 0.448225
\(142\) −0.0747454 −0.00627250
\(143\) −11.3246 −0.947010
\(144\) 1.00000 0.0833333
\(145\) −33.8029 −2.80717
\(146\) 8.00222 0.662269
\(147\) −2.67235 −0.220411
\(148\) 5.01681 0.412379
\(149\) 11.9004 0.974916 0.487458 0.873146i \(-0.337924\pi\)
0.487458 + 0.873146i \(0.337924\pi\)
\(150\) −5.70110 −0.465493
\(151\) 14.0944 1.14699 0.573495 0.819209i \(-0.305587\pi\)
0.573495 + 0.819209i \(0.305587\pi\)
\(152\) −7.20855 −0.584691
\(153\) 1.75903 0.142209
\(154\) 15.6055 1.25753
\(155\) −17.7027 −1.42191
\(156\) 2.25689 0.180695
\(157\) 6.30275 0.503014 0.251507 0.967855i \(-0.419074\pi\)
0.251507 + 0.967855i \(0.419074\pi\)
\(158\) 7.81235 0.621517
\(159\) 10.9467 0.868130
\(160\) 3.27125 0.258615
\(161\) 13.0792 1.03078
\(162\) 1.00000 0.0785674
\(163\) −3.84555 −0.301206 −0.150603 0.988594i \(-0.548122\pi\)
−0.150603 + 0.988594i \(0.548122\pi\)
\(164\) 3.29171 0.257039
\(165\) −16.4145 −1.27787
\(166\) 6.06193 0.470497
\(167\) −7.21959 −0.558669 −0.279334 0.960194i \(-0.590114\pi\)
−0.279334 + 0.960194i \(0.590114\pi\)
\(168\) −3.11004 −0.239945
\(169\) −7.90647 −0.608190
\(170\) 5.75425 0.441331
\(171\) −7.20855 −0.551252
\(172\) −12.3131 −0.938863
\(173\) 8.24128 0.626573 0.313287 0.949659i \(-0.398570\pi\)
0.313287 + 0.949659i \(0.398570\pi\)
\(174\) 10.3333 0.783366
\(175\) 17.7306 1.34031
\(176\) 5.01780 0.378231
\(177\) −1.70199 −0.127929
\(178\) 7.54971 0.565875
\(179\) 1.76632 0.132021 0.0660105 0.997819i \(-0.478973\pi\)
0.0660105 + 0.997819i \(0.478973\pi\)
\(180\) 3.27125 0.243825
\(181\) 21.0143 1.56198 0.780990 0.624544i \(-0.214715\pi\)
0.780990 + 0.624544i \(0.214715\pi\)
\(182\) −7.01900 −0.520283
\(183\) −14.3333 −1.05955
\(184\) 4.20547 0.310031
\(185\) 16.4113 1.20658
\(186\) 5.41158 0.396796
\(187\) 8.82648 0.645456
\(188\) −5.32237 −0.388174
\(189\) −3.11004 −0.226222
\(190\) −23.5810 −1.71075
\(191\) −16.3741 −1.18479 −0.592394 0.805648i \(-0.701817\pi\)
−0.592394 + 0.805648i \(0.701817\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 19.9818 1.43832 0.719162 0.694843i \(-0.244526\pi\)
0.719162 + 0.694843i \(0.244526\pi\)
\(194\) 7.00311 0.502794
\(195\) 7.38284 0.528697
\(196\) 2.67235 0.190882
\(197\) −27.9554 −1.99174 −0.995871 0.0907781i \(-0.971065\pi\)
−0.995871 + 0.0907781i \(0.971065\pi\)
\(198\) 5.01780 0.356599
\(199\) −4.56995 −0.323955 −0.161977 0.986794i \(-0.551787\pi\)
−0.161977 + 0.986794i \(0.551787\pi\)
\(200\) 5.70110 0.403129
\(201\) 9.78502 0.690182
\(202\) 10.7033 0.753083
\(203\) −32.1370 −2.25557
\(204\) −1.75903 −0.123157
\(205\) 10.7680 0.752071
\(206\) 10.1428 0.706680
\(207\) 4.20547 0.292300
\(208\) −2.25689 −0.156487
\(209\) −36.1711 −2.50200
\(210\) −10.1737 −0.702054
\(211\) 0.0340811 0.00234624 0.00117312 0.999999i \(-0.499627\pi\)
0.00117312 + 0.999999i \(0.499627\pi\)
\(212\) −10.9467 −0.751822
\(213\) 0.0747454 0.00512147
\(214\) −1.78715 −0.122167
\(215\) −40.2792 −2.74702
\(216\) −1.00000 −0.0680414
\(217\) −16.8302 −1.14251
\(218\) −12.5753 −0.851704
\(219\) −8.00222 −0.540740
\(220\) 16.4145 1.10666
\(221\) −3.96994 −0.267047
\(222\) −5.01681 −0.336706
\(223\) −1.00000 −0.0669650
\(224\) 3.11004 0.207798
\(225\) 5.70110 0.380073
\(226\) −16.2276 −1.07944
\(227\) 15.4023 1.02228 0.511142 0.859496i \(-0.329223\pi\)
0.511142 + 0.859496i \(0.329223\pi\)
\(228\) 7.20855 0.477398
\(229\) −2.84010 −0.187679 −0.0938396 0.995587i \(-0.529914\pi\)
−0.0938396 + 0.995587i \(0.529914\pi\)
\(230\) 13.7572 0.907120
\(231\) −15.6055 −1.02677
\(232\) −10.3333 −0.678415
\(233\) −4.45436 −0.291815 −0.145907 0.989298i \(-0.546610\pi\)
−0.145907 + 0.989298i \(0.546610\pi\)
\(234\) −2.25689 −0.147537
\(235\) −17.4108 −1.13576
\(236\) 1.70199 0.110790
\(237\) −7.81235 −0.507466
\(238\) 5.47067 0.354611
\(239\) −15.3887 −0.995411 −0.497705 0.867346i \(-0.665824\pi\)
−0.497705 + 0.867346i \(0.665824\pi\)
\(240\) −3.27125 −0.211158
\(241\) 7.60381 0.489805 0.244902 0.969548i \(-0.421244\pi\)
0.244902 + 0.969548i \(0.421244\pi\)
\(242\) 14.1783 0.911415
\(243\) −1.00000 −0.0641500
\(244\) 14.3333 0.917596
\(245\) 8.74192 0.558501
\(246\) −3.29171 −0.209872
\(247\) 16.2689 1.03516
\(248\) −5.41158 −0.343636
\(249\) −6.06193 −0.384159
\(250\) 2.29347 0.145052
\(251\) −9.96260 −0.628834 −0.314417 0.949285i \(-0.601809\pi\)
−0.314417 + 0.949285i \(0.601809\pi\)
\(252\) 3.11004 0.195914
\(253\) 21.1022 1.32668
\(254\) −14.9452 −0.937745
\(255\) −5.75425 −0.360345
\(256\) 1.00000 0.0625000
\(257\) 24.1357 1.50554 0.752772 0.658281i \(-0.228716\pi\)
0.752772 + 0.658281i \(0.228716\pi\)
\(258\) 12.3131 0.766578
\(259\) 15.6025 0.969491
\(260\) −7.38284 −0.457865
\(261\) −10.3333 −0.639616
\(262\) −8.50744 −0.525591
\(263\) −16.9293 −1.04391 −0.521953 0.852974i \(-0.674796\pi\)
−0.521953 + 0.852974i \(0.674796\pi\)
\(264\) −5.01780 −0.308824
\(265\) −35.8094 −2.19976
\(266\) −22.4189 −1.37459
\(267\) −7.54971 −0.462035
\(268\) −9.78502 −0.597716
\(269\) −7.14497 −0.435637 −0.217818 0.975989i \(-0.569894\pi\)
−0.217818 + 0.975989i \(0.569894\pi\)
\(270\) −3.27125 −0.199082
\(271\) −1.20312 −0.0730846 −0.0365423 0.999332i \(-0.511634\pi\)
−0.0365423 + 0.999332i \(0.511634\pi\)
\(272\) 1.75903 0.106657
\(273\) 7.01900 0.424809
\(274\) 3.64306 0.220085
\(275\) 28.6070 1.72506
\(276\) −4.20547 −0.253140
\(277\) 24.9595 1.49967 0.749834 0.661626i \(-0.230133\pi\)
0.749834 + 0.661626i \(0.230133\pi\)
\(278\) −17.2902 −1.03700
\(279\) −5.41158 −0.323983
\(280\) 10.1737 0.607996
\(281\) −0.597109 −0.0356206 −0.0178103 0.999841i \(-0.505669\pi\)
−0.0178103 + 0.999841i \(0.505669\pi\)
\(282\) 5.32237 0.316943
\(283\) 11.4252 0.679157 0.339578 0.940578i \(-0.389716\pi\)
0.339578 + 0.940578i \(0.389716\pi\)
\(284\) −0.0747454 −0.00443532
\(285\) 23.5810 1.39682
\(286\) −11.3246 −0.669637
\(287\) 10.2374 0.604292
\(288\) 1.00000 0.0589256
\(289\) −13.9058 −0.817988
\(290\) −33.8029 −1.98497
\(291\) −7.00311 −0.410530
\(292\) 8.00222 0.468295
\(293\) 18.6579 1.09000 0.545002 0.838435i \(-0.316529\pi\)
0.545002 + 0.838435i \(0.316529\pi\)
\(294\) −2.67235 −0.155854
\(295\) 5.56764 0.324160
\(296\) 5.01681 0.291596
\(297\) −5.01780 −0.291162
\(298\) 11.9004 0.689370
\(299\) −9.49126 −0.548894
\(300\) −5.70110 −0.329153
\(301\) −38.2941 −2.20724
\(302\) 14.0944 0.811044
\(303\) −10.7033 −0.614890
\(304\) −7.20855 −0.413439
\(305\) 46.8879 2.68479
\(306\) 1.75903 0.100557
\(307\) −6.04278 −0.344880 −0.172440 0.985020i \(-0.555165\pi\)
−0.172440 + 0.985020i \(0.555165\pi\)
\(308\) 15.6055 0.889208
\(309\) −10.1428 −0.577002
\(310\) −17.7027 −1.00544
\(311\) −23.0971 −1.30972 −0.654858 0.755752i \(-0.727272\pi\)
−0.654858 + 0.755752i \(0.727272\pi\)
\(312\) 2.25689 0.127771
\(313\) 15.4613 0.873927 0.436963 0.899479i \(-0.356054\pi\)
0.436963 + 0.899479i \(0.356054\pi\)
\(314\) 6.30275 0.355685
\(315\) 10.1737 0.573225
\(316\) 7.81235 0.439479
\(317\) −23.5816 −1.32447 −0.662236 0.749295i \(-0.730393\pi\)
−0.662236 + 0.749295i \(0.730393\pi\)
\(318\) 10.9467 0.613860
\(319\) −51.8504 −2.90307
\(320\) 3.27125 0.182869
\(321\) 1.78715 0.0997490
\(322\) 13.0792 0.728874
\(323\) −12.6801 −0.705539
\(324\) 1.00000 0.0555556
\(325\) −12.8667 −0.713718
\(326\) −3.84555 −0.212985
\(327\) 12.5753 0.695413
\(328\) 3.29171 0.181754
\(329\) −16.5528 −0.912585
\(330\) −16.4145 −0.903588
\(331\) 3.49155 0.191913 0.0959565 0.995386i \(-0.469409\pi\)
0.0959565 + 0.995386i \(0.469409\pi\)
\(332\) 6.06193 0.332691
\(333\) 5.01681 0.274920
\(334\) −7.21959 −0.395038
\(335\) −32.0093 −1.74885
\(336\) −3.11004 −0.169667
\(337\) 33.8121 1.84187 0.920933 0.389722i \(-0.127429\pi\)
0.920933 + 0.389722i \(0.127429\pi\)
\(338\) −7.90647 −0.430055
\(339\) 16.2276 0.881360
\(340\) 5.75425 0.312068
\(341\) −27.1542 −1.47048
\(342\) −7.20855 −0.389794
\(343\) −13.4592 −0.726727
\(344\) −12.3131 −0.663876
\(345\) −13.7572 −0.740660
\(346\) 8.24128 0.443054
\(347\) −7.87613 −0.422813 −0.211407 0.977398i \(-0.567804\pi\)
−0.211407 + 0.977398i \(0.567804\pi\)
\(348\) 10.3333 0.553923
\(349\) −24.1375 −1.29205 −0.646024 0.763317i \(-0.723570\pi\)
−0.646024 + 0.763317i \(0.723570\pi\)
\(350\) 17.7306 0.947743
\(351\) 2.25689 0.120464
\(352\) 5.01780 0.267449
\(353\) 7.82351 0.416403 0.208202 0.978086i \(-0.433239\pi\)
0.208202 + 0.978086i \(0.433239\pi\)
\(354\) −1.70199 −0.0904597
\(355\) −0.244511 −0.0129773
\(356\) 7.54971 0.400134
\(357\) −5.47067 −0.289538
\(358\) 1.76632 0.0933529
\(359\) 5.84778 0.308634 0.154317 0.988021i \(-0.450682\pi\)
0.154317 + 0.988021i \(0.450682\pi\)
\(360\) 3.27125 0.172410
\(361\) 32.9632 1.73491
\(362\) 21.0143 1.10449
\(363\) −14.1783 −0.744167
\(364\) −7.01900 −0.367896
\(365\) 26.1773 1.37018
\(366\) −14.3333 −0.749214
\(367\) 22.2229 1.16003 0.580013 0.814607i \(-0.303048\pi\)
0.580013 + 0.814607i \(0.303048\pi\)
\(368\) 4.20547 0.219225
\(369\) 3.29171 0.171360
\(370\) 16.4113 0.853181
\(371\) −34.0447 −1.76751
\(372\) 5.41158 0.280577
\(373\) −34.0109 −1.76102 −0.880509 0.474029i \(-0.842799\pi\)
−0.880509 + 0.474029i \(0.842799\pi\)
\(374\) 8.82648 0.456406
\(375\) −2.29347 −0.118434
\(376\) −5.32237 −0.274480
\(377\) 23.3211 1.20110
\(378\) −3.11004 −0.159963
\(379\) −10.3035 −0.529257 −0.264628 0.964350i \(-0.585249\pi\)
−0.264628 + 0.964350i \(0.585249\pi\)
\(380\) −23.5810 −1.20968
\(381\) 14.9452 0.765666
\(382\) −16.3741 −0.837772
\(383\) 6.63837 0.339205 0.169602 0.985513i \(-0.445752\pi\)
0.169602 + 0.985513i \(0.445752\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 51.0497 2.60173
\(386\) 19.9818 1.01705
\(387\) −12.3131 −0.625908
\(388\) 7.00311 0.355529
\(389\) 20.4264 1.03566 0.517830 0.855483i \(-0.326740\pi\)
0.517830 + 0.855483i \(0.326740\pi\)
\(390\) 7.38284 0.373845
\(391\) 7.39756 0.374111
\(392\) 2.67235 0.134974
\(393\) 8.50744 0.429144
\(394\) −27.9554 −1.40837
\(395\) 25.5562 1.28587
\(396\) 5.01780 0.252154
\(397\) 37.9844 1.90638 0.953192 0.302367i \(-0.0977768\pi\)
0.953192 + 0.302367i \(0.0977768\pi\)
\(398\) −4.56995 −0.229071
\(399\) 22.4189 1.12235
\(400\) 5.70110 0.285055
\(401\) −4.37080 −0.218268 −0.109134 0.994027i \(-0.534808\pi\)
−0.109134 + 0.994027i \(0.534808\pi\)
\(402\) 9.78502 0.488033
\(403\) 12.2133 0.608389
\(404\) 10.7033 0.532510
\(405\) 3.27125 0.162550
\(406\) −32.1370 −1.59493
\(407\) 25.1733 1.24780
\(408\) −1.75903 −0.0870852
\(409\) −13.8293 −0.683817 −0.341908 0.939733i \(-0.611073\pi\)
−0.341908 + 0.939733i \(0.611073\pi\)
\(410\) 10.7680 0.531795
\(411\) −3.64306 −0.179699
\(412\) 10.1428 0.499698
\(413\) 5.29325 0.260464
\(414\) 4.20547 0.206688
\(415\) 19.8301 0.973421
\(416\) −2.25689 −0.110653
\(417\) 17.2902 0.846705
\(418\) −36.1711 −1.76918
\(419\) −15.7703 −0.770429 −0.385215 0.922827i \(-0.625873\pi\)
−0.385215 + 0.922827i \(0.625873\pi\)
\(420\) −10.1737 −0.496427
\(421\) 40.1185 1.95526 0.977628 0.210341i \(-0.0674575\pi\)
0.977628 + 0.210341i \(0.0674575\pi\)
\(422\) 0.0340811 0.00165904
\(423\) −5.32237 −0.258783
\(424\) −10.9467 −0.531619
\(425\) 10.0284 0.486450
\(426\) 0.0747454 0.00362143
\(427\) 44.5771 2.15724
\(428\) −1.78715 −0.0863851
\(429\) 11.3246 0.546757
\(430\) −40.2792 −1.94243
\(431\) 19.6960 0.948722 0.474361 0.880330i \(-0.342679\pi\)
0.474361 + 0.880330i \(0.342679\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −8.75740 −0.420854 −0.210427 0.977610i \(-0.567485\pi\)
−0.210427 + 0.977610i \(0.567485\pi\)
\(434\) −16.8302 −0.807877
\(435\) 33.8029 1.62072
\(436\) −12.5753 −0.602246
\(437\) −30.3154 −1.45018
\(438\) −8.00222 −0.382361
\(439\) −11.4726 −0.547559 −0.273779 0.961793i \(-0.588274\pi\)
−0.273779 + 0.961793i \(0.588274\pi\)
\(440\) 16.4145 0.782530
\(441\) 2.67235 0.127255
\(442\) −3.96994 −0.188831
\(443\) 37.1871 1.76681 0.883405 0.468610i \(-0.155245\pi\)
0.883405 + 0.468610i \(0.155245\pi\)
\(444\) −5.01681 −0.238087
\(445\) 24.6970 1.17075
\(446\) −1.00000 −0.0473514
\(447\) −11.9004 −0.562868
\(448\) 3.11004 0.146936
\(449\) −15.9340 −0.751974 −0.375987 0.926625i \(-0.622696\pi\)
−0.375987 + 0.926625i \(0.622696\pi\)
\(450\) 5.70110 0.268752
\(451\) 16.5171 0.777762
\(452\) −16.2276 −0.763280
\(453\) −14.0944 −0.662215
\(454\) 15.4023 0.722864
\(455\) −22.9609 −1.07643
\(456\) 7.20855 0.337571
\(457\) 7.42897 0.347512 0.173756 0.984789i \(-0.444410\pi\)
0.173756 + 0.984789i \(0.444410\pi\)
\(458\) −2.84010 −0.132709
\(459\) −1.75903 −0.0821047
\(460\) 13.7572 0.641431
\(461\) −28.5862 −1.33139 −0.665695 0.746224i \(-0.731865\pi\)
−0.665695 + 0.746224i \(0.731865\pi\)
\(462\) −15.6055 −0.726036
\(463\) 24.1021 1.12012 0.560059 0.828452i \(-0.310778\pi\)
0.560059 + 0.828452i \(0.310778\pi\)
\(464\) −10.3333 −0.479712
\(465\) 17.7027 0.820941
\(466\) −4.45436 −0.206344
\(467\) 20.0021 0.925585 0.462792 0.886467i \(-0.346848\pi\)
0.462792 + 0.886467i \(0.346848\pi\)
\(468\) −2.25689 −0.104325
\(469\) −30.4318 −1.40521
\(470\) −17.4108 −0.803101
\(471\) −6.30275 −0.290415
\(472\) 1.70199 0.0783404
\(473\) −61.7845 −2.84085
\(474\) −7.81235 −0.358833
\(475\) −41.0967 −1.88564
\(476\) 5.47067 0.250748
\(477\) −10.9467 −0.501215
\(478\) −15.3887 −0.703862
\(479\) −13.3758 −0.611156 −0.305578 0.952167i \(-0.598850\pi\)
−0.305578 + 0.952167i \(0.598850\pi\)
\(480\) −3.27125 −0.149312
\(481\) −11.3224 −0.516255
\(482\) 7.60381 0.346344
\(483\) −13.0792 −0.595123
\(484\) 14.1783 0.644467
\(485\) 22.9090 1.04024
\(486\) −1.00000 −0.0453609
\(487\) −25.4804 −1.15463 −0.577314 0.816522i \(-0.695899\pi\)
−0.577314 + 0.816522i \(0.695899\pi\)
\(488\) 14.3333 0.648838
\(489\) 3.84555 0.173902
\(490\) 8.74192 0.394920
\(491\) 22.4454 1.01295 0.506473 0.862256i \(-0.330949\pi\)
0.506473 + 0.862256i \(0.330949\pi\)
\(492\) −3.29171 −0.148402
\(493\) −18.1766 −0.818635
\(494\) 16.2689 0.731972
\(495\) 16.4145 0.737776
\(496\) −5.41158 −0.242987
\(497\) −0.232461 −0.0104273
\(498\) −6.06193 −0.271641
\(499\) 34.9827 1.56604 0.783021 0.621995i \(-0.213678\pi\)
0.783021 + 0.621995i \(0.213678\pi\)
\(500\) 2.29347 0.102567
\(501\) 7.21959 0.322547
\(502\) −9.96260 −0.444653
\(503\) 10.9861 0.489845 0.244922 0.969543i \(-0.421238\pi\)
0.244922 + 0.969543i \(0.421238\pi\)
\(504\) 3.11004 0.138532
\(505\) 35.0133 1.55807
\(506\) 21.1022 0.938107
\(507\) 7.90647 0.351139
\(508\) −14.9452 −0.663086
\(509\) 19.3410 0.857275 0.428637 0.903477i \(-0.358994\pi\)
0.428637 + 0.903477i \(0.358994\pi\)
\(510\) −5.75425 −0.254802
\(511\) 24.8872 1.10095
\(512\) 1.00000 0.0441942
\(513\) 7.20855 0.318265
\(514\) 24.1357 1.06458
\(515\) 33.1796 1.46207
\(516\) 12.3131 0.542053
\(517\) −26.7066 −1.17455
\(518\) 15.6025 0.685534
\(519\) −8.24128 −0.361752
\(520\) −7.38284 −0.323759
\(521\) −19.1494 −0.838949 −0.419474 0.907767i \(-0.637786\pi\)
−0.419474 + 0.907767i \(0.637786\pi\)
\(522\) −10.3333 −0.452277
\(523\) 31.3698 1.37170 0.685852 0.727741i \(-0.259430\pi\)
0.685852 + 0.727741i \(0.259430\pi\)
\(524\) −8.50744 −0.371649
\(525\) −17.7306 −0.773829
\(526\) −16.9293 −0.738153
\(527\) −9.51915 −0.414661
\(528\) −5.01780 −0.218372
\(529\) −5.31403 −0.231045
\(530\) −35.8094 −1.55546
\(531\) 1.70199 0.0738600
\(532\) −22.4189 −0.971982
\(533\) −7.42902 −0.321786
\(534\) −7.54971 −0.326708
\(535\) −5.84622 −0.252754
\(536\) −9.78502 −0.422649
\(537\) −1.76632 −0.0762224
\(538\) −7.14497 −0.308042
\(539\) 13.4093 0.577579
\(540\) −3.27125 −0.140772
\(541\) −35.5504 −1.52843 −0.764215 0.644961i \(-0.776873\pi\)
−0.764215 + 0.644961i \(0.776873\pi\)
\(542\) −1.20312 −0.0516786
\(543\) −21.0143 −0.901809
\(544\) 1.75903 0.0754180
\(545\) −41.1369 −1.76211
\(546\) 7.01900 0.300386
\(547\) −4.50929 −0.192803 −0.0964016 0.995343i \(-0.530733\pi\)
−0.0964016 + 0.995343i \(0.530733\pi\)
\(548\) 3.64306 0.155624
\(549\) 14.3333 0.611731
\(550\) 28.6070 1.21980
\(551\) 74.4882 3.17330
\(552\) −4.20547 −0.178997
\(553\) 24.2967 1.03320
\(554\) 24.9595 1.06043
\(555\) −16.4113 −0.696619
\(556\) −17.2902 −0.733268
\(557\) 8.72524 0.369700 0.184850 0.982767i \(-0.440820\pi\)
0.184850 + 0.982767i \(0.440820\pi\)
\(558\) −5.41158 −0.229090
\(559\) 27.7892 1.17536
\(560\) 10.1737 0.429918
\(561\) −8.82648 −0.372654
\(562\) −0.597109 −0.0251875
\(563\) −11.5480 −0.486688 −0.243344 0.969940i \(-0.578244\pi\)
−0.243344 + 0.969940i \(0.578244\pi\)
\(564\) 5.32237 0.224112
\(565\) −53.0845 −2.23328
\(566\) 11.4252 0.480236
\(567\) 3.11004 0.130609
\(568\) −0.0747454 −0.00313625
\(569\) −21.5937 −0.905255 −0.452628 0.891700i \(-0.649513\pi\)
−0.452628 + 0.891700i \(0.649513\pi\)
\(570\) 23.5810 0.987700
\(571\) 3.77657 0.158044 0.0790222 0.996873i \(-0.474820\pi\)
0.0790222 + 0.996873i \(0.474820\pi\)
\(572\) −11.3246 −0.473505
\(573\) 16.3741 0.684038
\(574\) 10.2374 0.427299
\(575\) 23.9758 0.999860
\(576\) 1.00000 0.0416667
\(577\) 2.70883 0.112770 0.0563851 0.998409i \(-0.482043\pi\)
0.0563851 + 0.998409i \(0.482043\pi\)
\(578\) −13.9058 −0.578405
\(579\) −19.9818 −0.830417
\(580\) −33.8029 −1.40359
\(581\) 18.8528 0.782147
\(582\) −7.00311 −0.290288
\(583\) −54.9283 −2.27490
\(584\) 8.00222 0.331134
\(585\) −7.38284 −0.305243
\(586\) 18.6579 0.770749
\(587\) −24.8743 −1.02667 −0.513337 0.858187i \(-0.671591\pi\)
−0.513337 + 0.858187i \(0.671591\pi\)
\(588\) −2.67235 −0.110206
\(589\) 39.0097 1.60737
\(590\) 5.56764 0.229216
\(591\) 27.9554 1.14993
\(592\) 5.01681 0.206190
\(593\) 14.6929 0.603365 0.301683 0.953408i \(-0.402452\pi\)
0.301683 + 0.953408i \(0.402452\pi\)
\(594\) −5.01780 −0.205883
\(595\) 17.8959 0.733662
\(596\) 11.9004 0.487458
\(597\) 4.56995 0.187035
\(598\) −9.49126 −0.388127
\(599\) −20.1347 −0.822683 −0.411342 0.911481i \(-0.634940\pi\)
−0.411342 + 0.911481i \(0.634940\pi\)
\(600\) −5.70110 −0.232746
\(601\) −4.29457 −0.175179 −0.0875896 0.996157i \(-0.527916\pi\)
−0.0875896 + 0.996157i \(0.527916\pi\)
\(602\) −38.2941 −1.56075
\(603\) −9.78502 −0.398477
\(604\) 14.0944 0.573495
\(605\) 46.3808 1.88565
\(606\) −10.7033 −0.434793
\(607\) −10.0890 −0.409501 −0.204750 0.978814i \(-0.565638\pi\)
−0.204750 + 0.978814i \(0.565638\pi\)
\(608\) −7.20855 −0.292345
\(609\) 32.1370 1.30226
\(610\) 46.8879 1.89843
\(611\) 12.0120 0.485953
\(612\) 1.75903 0.0711047
\(613\) −11.9776 −0.483771 −0.241886 0.970305i \(-0.577766\pi\)
−0.241886 + 0.970305i \(0.577766\pi\)
\(614\) −6.04278 −0.243867
\(615\) −10.7680 −0.434209
\(616\) 15.6055 0.628765
\(617\) −11.1459 −0.448716 −0.224358 0.974507i \(-0.572029\pi\)
−0.224358 + 0.974507i \(0.572029\pi\)
\(618\) −10.1428 −0.408002
\(619\) −39.8046 −1.59988 −0.799940 0.600080i \(-0.795135\pi\)
−0.799940 + 0.600080i \(0.795135\pi\)
\(620\) −17.7027 −0.710956
\(621\) −4.20547 −0.168760
\(622\) −23.0971 −0.926109
\(623\) 23.4799 0.940703
\(624\) 2.25689 0.0903477
\(625\) −21.0030 −0.840119
\(626\) 15.4613 0.617960
\(627\) 36.1711 1.44453
\(628\) 6.30275 0.251507
\(629\) 8.82474 0.351865
\(630\) 10.1737 0.405331
\(631\) 40.7835 1.62356 0.811782 0.583961i \(-0.198498\pi\)
0.811782 + 0.583961i \(0.198498\pi\)
\(632\) 7.81235 0.310758
\(633\) −0.0340811 −0.00135460
\(634\) −23.5816 −0.936544
\(635\) −48.8895 −1.94012
\(636\) 10.9467 0.434065
\(637\) −6.03118 −0.238964
\(638\) −51.8504 −2.05278
\(639\) −0.0747454 −0.00295688
\(640\) 3.27125 0.129308
\(641\) −35.4113 −1.39866 −0.699331 0.714798i \(-0.746519\pi\)
−0.699331 + 0.714798i \(0.746519\pi\)
\(642\) 1.78715 0.0705332
\(643\) 33.2796 1.31242 0.656209 0.754579i \(-0.272159\pi\)
0.656209 + 0.754579i \(0.272159\pi\)
\(644\) 13.0792 0.515392
\(645\) 40.2792 1.58599
\(646\) −12.6801 −0.498892
\(647\) 31.1506 1.22466 0.612329 0.790603i \(-0.290233\pi\)
0.612329 + 0.790603i \(0.290233\pi\)
\(648\) 1.00000 0.0392837
\(649\) 8.54024 0.335234
\(650\) −12.8667 −0.504675
\(651\) 16.8302 0.659629
\(652\) −3.84555 −0.150603
\(653\) 48.7883 1.90923 0.954617 0.297837i \(-0.0962651\pi\)
0.954617 + 0.297837i \(0.0962651\pi\)
\(654\) 12.5753 0.491732
\(655\) −27.8300 −1.08741
\(656\) 3.29171 0.128520
\(657\) 8.00222 0.312196
\(658\) −16.5528 −0.645295
\(659\) −11.2361 −0.437696 −0.218848 0.975759i \(-0.570230\pi\)
−0.218848 + 0.975759i \(0.570230\pi\)
\(660\) −16.4145 −0.638933
\(661\) −24.0571 −0.935714 −0.467857 0.883804i \(-0.654974\pi\)
−0.467857 + 0.883804i \(0.654974\pi\)
\(662\) 3.49155 0.135703
\(663\) 3.96994 0.154180
\(664\) 6.06193 0.235248
\(665\) −73.3379 −2.84392
\(666\) 5.01681 0.194397
\(667\) −43.4564 −1.68264
\(668\) −7.21959 −0.279334
\(669\) 1.00000 0.0386622
\(670\) −32.0093 −1.23663
\(671\) 71.9216 2.77650
\(672\) −3.11004 −0.119972
\(673\) 20.5088 0.790555 0.395277 0.918562i \(-0.370648\pi\)
0.395277 + 0.918562i \(0.370648\pi\)
\(674\) 33.8121 1.30240
\(675\) −5.70110 −0.219435
\(676\) −7.90647 −0.304095
\(677\) −17.9714 −0.690695 −0.345348 0.938475i \(-0.612239\pi\)
−0.345348 + 0.938475i \(0.612239\pi\)
\(678\) 16.2276 0.623216
\(679\) 21.7800 0.835838
\(680\) 5.75425 0.220665
\(681\) −15.4023 −0.590216
\(682\) −27.1542 −1.03979
\(683\) 42.1183 1.61161 0.805806 0.592179i \(-0.201732\pi\)
0.805806 + 0.592179i \(0.201732\pi\)
\(684\) −7.20855 −0.275626
\(685\) 11.9174 0.455340
\(686\) −13.4592 −0.513874
\(687\) 2.84010 0.108357
\(688\) −12.3131 −0.469431
\(689\) 24.7055 0.941203
\(690\) −13.7572 −0.523726
\(691\) −2.46310 −0.0937007 −0.0468503 0.998902i \(-0.514918\pi\)
−0.0468503 + 0.998902i \(0.514918\pi\)
\(692\) 8.24128 0.313287
\(693\) 15.6055 0.592806
\(694\) −7.87613 −0.298974
\(695\) −56.5606 −2.14547
\(696\) 10.3333 0.391683
\(697\) 5.79023 0.219321
\(698\) −24.1375 −0.913616
\(699\) 4.45436 0.168479
\(700\) 17.7306 0.670155
\(701\) −25.1740 −0.950809 −0.475405 0.879767i \(-0.657698\pi\)
−0.475405 + 0.879767i \(0.657698\pi\)
\(702\) 2.25689 0.0851807
\(703\) −36.1639 −1.36395
\(704\) 5.01780 0.189115
\(705\) 17.4108 0.655730
\(706\) 7.82351 0.294442
\(707\) 33.2878 1.25191
\(708\) −1.70199 −0.0639647
\(709\) 23.7385 0.891519 0.445760 0.895153i \(-0.352934\pi\)
0.445760 + 0.895153i \(0.352934\pi\)
\(710\) −0.244511 −0.00917634
\(711\) 7.81235 0.292986
\(712\) 7.54971 0.282938
\(713\) −22.7582 −0.852303
\(714\) −5.47067 −0.204735
\(715\) −37.0456 −1.38543
\(716\) 1.76632 0.0660105
\(717\) 15.3887 0.574701
\(718\) 5.84778 0.218237
\(719\) −40.5322 −1.51160 −0.755798 0.654805i \(-0.772751\pi\)
−0.755798 + 0.654805i \(0.772751\pi\)
\(720\) 3.27125 0.121912
\(721\) 31.5444 1.17478
\(722\) 32.9632 1.22676
\(723\) −7.60381 −0.282789
\(724\) 21.0143 0.780990
\(725\) −58.9112 −2.18791
\(726\) −14.1783 −0.526205
\(727\) 33.4553 1.24079 0.620394 0.784291i \(-0.286973\pi\)
0.620394 + 0.784291i \(0.286973\pi\)
\(728\) −7.01900 −0.260142
\(729\) 1.00000 0.0370370
\(730\) 26.1773 0.968865
\(731\) −21.6591 −0.801091
\(732\) −14.3333 −0.529774
\(733\) −30.6796 −1.13318 −0.566589 0.824001i \(-0.691737\pi\)
−0.566589 + 0.824001i \(0.691737\pi\)
\(734\) 22.2229 0.820262
\(735\) −8.74192 −0.322451
\(736\) 4.20547 0.155016
\(737\) −49.0993 −1.80859
\(738\) 3.29171 0.121170
\(739\) 35.3510 1.30041 0.650203 0.759760i \(-0.274684\pi\)
0.650203 + 0.759760i \(0.274684\pi\)
\(740\) 16.4113 0.603290
\(741\) −16.2689 −0.597652
\(742\) −34.0447 −1.24982
\(743\) −42.5668 −1.56162 −0.780812 0.624766i \(-0.785194\pi\)
−0.780812 + 0.624766i \(0.785194\pi\)
\(744\) 5.41158 0.198398
\(745\) 38.9291 1.42625
\(746\) −34.0109 −1.24523
\(747\) 6.06193 0.221794
\(748\) 8.82648 0.322728
\(749\) −5.55811 −0.203089
\(750\) −2.29347 −0.0837458
\(751\) −18.5767 −0.677872 −0.338936 0.940809i \(-0.610067\pi\)
−0.338936 + 0.940809i \(0.610067\pi\)
\(752\) −5.32237 −0.194087
\(753\) 9.96260 0.363057
\(754\) 23.3211 0.849304
\(755\) 46.1065 1.67799
\(756\) −3.11004 −0.113111
\(757\) −1.40756 −0.0511585 −0.0255793 0.999673i \(-0.508143\pi\)
−0.0255793 + 0.999673i \(0.508143\pi\)
\(758\) −10.3035 −0.374241
\(759\) −21.1022 −0.765961
\(760\) −23.5810 −0.855373
\(761\) 6.58828 0.238825 0.119413 0.992845i \(-0.461899\pi\)
0.119413 + 0.992845i \(0.461899\pi\)
\(762\) 14.9452 0.541407
\(763\) −39.1095 −1.41586
\(764\) −16.3741 −0.592394
\(765\) 5.75425 0.208045
\(766\) 6.63837 0.239854
\(767\) −3.84120 −0.138698
\(768\) −1.00000 −0.0360844
\(769\) 30.7297 1.10814 0.554070 0.832470i \(-0.313074\pi\)
0.554070 + 0.832470i \(0.313074\pi\)
\(770\) 51.0497 1.83970
\(771\) −24.1357 −0.869226
\(772\) 19.9818 0.719162
\(773\) 29.0705 1.04559 0.522797 0.852457i \(-0.324889\pi\)
0.522797 + 0.852457i \(0.324889\pi\)
\(774\) −12.3131 −0.442584
\(775\) −30.8520 −1.10823
\(776\) 7.00311 0.251397
\(777\) −15.6025 −0.559736
\(778\) 20.4264 0.732322
\(779\) −23.7285 −0.850161
\(780\) 7.38284 0.264348
\(781\) −0.375057 −0.0134206
\(782\) 7.39756 0.264536
\(783\) 10.3333 0.369282
\(784\) 2.67235 0.0954409
\(785\) 20.6179 0.735884
\(786\) 8.50744 0.303450
\(787\) −43.8451 −1.56291 −0.781455 0.623961i \(-0.785522\pi\)
−0.781455 + 0.623961i \(0.785522\pi\)
\(788\) −27.9554 −0.995871
\(789\) 16.9293 0.602699
\(790\) 25.5562 0.909247
\(791\) −50.4683 −1.79445
\(792\) 5.01780 0.178300
\(793\) −32.3486 −1.14873
\(794\) 37.9844 1.34802
\(795\) 35.8094 1.27003
\(796\) −4.56995 −0.161977
\(797\) −21.6122 −0.765544 −0.382772 0.923843i \(-0.625030\pi\)
−0.382772 + 0.923843i \(0.625030\pi\)
\(798\) 22.4189 0.793620
\(799\) −9.36223 −0.331212
\(800\) 5.70110 0.201564
\(801\) 7.54971 0.266756
\(802\) −4.37080 −0.154338
\(803\) 40.1535 1.41699
\(804\) 9.78502 0.345091
\(805\) 42.7853 1.50798
\(806\) 12.2133 0.430196
\(807\) 7.14497 0.251515
\(808\) 10.7033 0.376542
\(809\) 32.0006 1.12508 0.562540 0.826770i \(-0.309824\pi\)
0.562540 + 0.826770i \(0.309824\pi\)
\(810\) 3.27125 0.114940
\(811\) −55.7756 −1.95855 −0.979273 0.202543i \(-0.935079\pi\)
−0.979273 + 0.202543i \(0.935079\pi\)
\(812\) −32.1370 −1.12779
\(813\) 1.20312 0.0421954
\(814\) 25.1733 0.882325
\(815\) −12.5798 −0.440650
\(816\) −1.75903 −0.0615785
\(817\) 88.7594 3.10530
\(818\) −13.8293 −0.483531
\(819\) −7.01900 −0.245264
\(820\) 10.7680 0.376036
\(821\) −23.7910 −0.830313 −0.415157 0.909750i \(-0.636273\pi\)
−0.415157 + 0.909750i \(0.636273\pi\)
\(822\) −3.64306 −0.127066
\(823\) 24.1272 0.841023 0.420511 0.907287i \(-0.361851\pi\)
0.420511 + 0.907287i \(0.361851\pi\)
\(824\) 10.1428 0.353340
\(825\) −28.6070 −0.995966
\(826\) 5.29325 0.184176
\(827\) −7.51262 −0.261239 −0.130620 0.991433i \(-0.541697\pi\)
−0.130620 + 0.991433i \(0.541697\pi\)
\(828\) 4.20547 0.146150
\(829\) −30.8250 −1.07060 −0.535298 0.844663i \(-0.679801\pi\)
−0.535298 + 0.844663i \(0.679801\pi\)
\(830\) 19.8301 0.688313
\(831\) −24.9595 −0.865834
\(832\) −2.25689 −0.0782434
\(833\) 4.70075 0.162871
\(834\) 17.2902 0.598711
\(835\) −23.6171 −0.817304
\(836\) −36.1711 −1.25100
\(837\) 5.41158 0.187052
\(838\) −15.7703 −0.544776
\(839\) 34.8573 1.20341 0.601703 0.798720i \(-0.294489\pi\)
0.601703 + 0.798720i \(0.294489\pi\)
\(840\) −10.1737 −0.351027
\(841\) 77.7772 2.68197
\(842\) 40.1185 1.38257
\(843\) 0.597109 0.0205655
\(844\) 0.0340811 0.00117312
\(845\) −25.8641 −0.889751
\(846\) −5.32237 −0.182987
\(847\) 44.0950 1.51512
\(848\) −10.9467 −0.375911
\(849\) −11.4252 −0.392111
\(850\) 10.0284 0.343972
\(851\) 21.0980 0.723232
\(852\) 0.0747454 0.00256074
\(853\) −32.5835 −1.11564 −0.557819 0.829963i \(-0.688362\pi\)
−0.557819 + 0.829963i \(0.688362\pi\)
\(854\) 44.5771 1.52540
\(855\) −23.5810 −0.806453
\(856\) −1.78715 −0.0610835
\(857\) 26.7989 0.915433 0.457717 0.889098i \(-0.348667\pi\)
0.457717 + 0.889098i \(0.348667\pi\)
\(858\) 11.3246 0.386615
\(859\) −32.3965 −1.10536 −0.552678 0.833395i \(-0.686394\pi\)
−0.552678 + 0.833395i \(0.686394\pi\)
\(860\) −40.2792 −1.37351
\(861\) −10.2374 −0.348888
\(862\) 19.6960 0.670848
\(863\) 6.82638 0.232373 0.116186 0.993227i \(-0.462933\pi\)
0.116186 + 0.993227i \(0.462933\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 26.9593 0.916645
\(866\) −8.75740 −0.297589
\(867\) 13.9058 0.472266
\(868\) −16.8302 −0.571255
\(869\) 39.2008 1.32979
\(870\) 33.8029 1.14602
\(871\) 22.0837 0.748277
\(872\) −12.5753 −0.425852
\(873\) 7.00311 0.237019
\(874\) −30.3154 −1.02543
\(875\) 7.13279 0.241132
\(876\) −8.00222 −0.270370
\(877\) −23.8938 −0.806838 −0.403419 0.915015i \(-0.632178\pi\)
−0.403419 + 0.915015i \(0.632178\pi\)
\(878\) −11.4726 −0.387182
\(879\) −18.6579 −0.629314
\(880\) 16.4145 0.553332
\(881\) 32.9039 1.10856 0.554280 0.832330i \(-0.312994\pi\)
0.554280 + 0.832330i \(0.312994\pi\)
\(882\) 2.67235 0.0899825
\(883\) 24.7641 0.833380 0.416690 0.909049i \(-0.363190\pi\)
0.416690 + 0.909049i \(0.363190\pi\)
\(884\) −3.96994 −0.133523
\(885\) −5.56764 −0.187154
\(886\) 37.1871 1.24932
\(887\) 35.7133 1.19913 0.599567 0.800324i \(-0.295339\pi\)
0.599567 + 0.800324i \(0.295339\pi\)
\(888\) −5.01681 −0.168353
\(889\) −46.4801 −1.55889
\(890\) 24.6970 0.827846
\(891\) 5.01780 0.168103
\(892\) −1.00000 −0.0334825
\(893\) 38.3666 1.28389
\(894\) −11.9004 −0.398008
\(895\) 5.77808 0.193140
\(896\) 3.11004 0.103899
\(897\) 9.49126 0.316904
\(898\) −15.9340 −0.531726
\(899\) 55.9195 1.86502
\(900\) 5.70110 0.190037
\(901\) −19.2556 −0.641498
\(902\) 16.5171 0.549961
\(903\) 38.2941 1.27435
\(904\) −16.2276 −0.539721
\(905\) 68.7431 2.28510
\(906\) −14.0944 −0.468257
\(907\) 4.31143 0.143159 0.0715793 0.997435i \(-0.477196\pi\)
0.0715793 + 0.997435i \(0.477196\pi\)
\(908\) 15.4023 0.511142
\(909\) 10.7033 0.355007
\(910\) −22.9609 −0.761148
\(911\) −11.1292 −0.368727 −0.184364 0.982858i \(-0.559022\pi\)
−0.184364 + 0.982858i \(0.559022\pi\)
\(912\) 7.20855 0.238699
\(913\) 30.4175 1.00667
\(914\) 7.42897 0.245728
\(915\) −46.8879 −1.55007
\(916\) −2.84010 −0.0938396
\(917\) −26.4585 −0.873736
\(918\) −1.75903 −0.0580568
\(919\) 26.4793 0.873472 0.436736 0.899590i \(-0.356134\pi\)
0.436736 + 0.899590i \(0.356134\pi\)
\(920\) 13.7572 0.453560
\(921\) 6.04278 0.199116
\(922\) −28.5862 −0.941435
\(923\) 0.168692 0.00555256
\(924\) −15.6055 −0.513385
\(925\) 28.6013 0.940406
\(926\) 24.1021 0.792044
\(927\) 10.1428 0.333132
\(928\) −10.3333 −0.339207
\(929\) −4.16163 −0.136539 −0.0682694 0.997667i \(-0.521748\pi\)
−0.0682694 + 0.997667i \(0.521748\pi\)
\(930\) 17.7027 0.580493
\(931\) −19.2637 −0.631344
\(932\) −4.45436 −0.145907
\(933\) 23.0971 0.756165
\(934\) 20.0021 0.654487
\(935\) 28.8736 0.944269
\(936\) −2.25689 −0.0737686
\(937\) −53.5209 −1.74845 −0.874227 0.485518i \(-0.838631\pi\)
−0.874227 + 0.485518i \(0.838631\pi\)
\(938\) −30.4318 −0.993634
\(939\) −15.4613 −0.504562
\(940\) −17.4108 −0.567878
\(941\) 7.45231 0.242938 0.121469 0.992595i \(-0.461239\pi\)
0.121469 + 0.992595i \(0.461239\pi\)
\(942\) −6.30275 −0.205355
\(943\) 13.8432 0.450796
\(944\) 1.70199 0.0553950
\(945\) −10.1737 −0.330951
\(946\) −61.7845 −2.00879
\(947\) 28.8887 0.938756 0.469378 0.882997i \(-0.344478\pi\)
0.469378 + 0.882997i \(0.344478\pi\)
\(948\) −7.81235 −0.253733
\(949\) −18.0601 −0.586256
\(950\) −41.0967 −1.33335
\(951\) 23.5816 0.764685
\(952\) 5.47067 0.177305
\(953\) 28.3803 0.919328 0.459664 0.888093i \(-0.347970\pi\)
0.459664 + 0.888093i \(0.347970\pi\)
\(954\) −10.9467 −0.354413
\(955\) −53.5638 −1.73329
\(956\) −15.3887 −0.497705
\(957\) 51.8504 1.67609
\(958\) −13.3758 −0.432153
\(959\) 11.3301 0.365867
\(960\) −3.27125 −0.105579
\(961\) −1.71480 −0.0553160
\(962\) −11.3224 −0.365048
\(963\) −1.78715 −0.0575901
\(964\) 7.60381 0.244902
\(965\) 65.3656 2.10419
\(966\) −13.0792 −0.420816
\(967\) 16.9049 0.543625 0.271812 0.962350i \(-0.412377\pi\)
0.271812 + 0.962350i \(0.412377\pi\)
\(968\) 14.1783 0.455707
\(969\) 12.6801 0.407343
\(970\) 22.9090 0.735562
\(971\) −9.61604 −0.308593 −0.154297 0.988025i \(-0.549311\pi\)
−0.154297 + 0.988025i \(0.549311\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −53.7732 −1.72389
\(974\) −25.4804 −0.816446
\(975\) 12.8667 0.412065
\(976\) 14.3333 0.458798
\(977\) 18.0948 0.578904 0.289452 0.957193i \(-0.406527\pi\)
0.289452 + 0.957193i \(0.406527\pi\)
\(978\) 3.84555 0.122967
\(979\) 37.8829 1.21074
\(980\) 8.74192 0.279250
\(981\) −12.5753 −0.401497
\(982\) 22.4454 0.716261
\(983\) 35.4606 1.13102 0.565508 0.824743i \(-0.308680\pi\)
0.565508 + 0.824743i \(0.308680\pi\)
\(984\) −3.29171 −0.104936
\(985\) −91.4493 −2.91382
\(986\) −18.1766 −0.578862
\(987\) 16.5528 0.526881
\(988\) 16.2689 0.517582
\(989\) −51.7822 −1.64658
\(990\) 16.4145 0.521687
\(991\) −6.42746 −0.204175 −0.102087 0.994775i \(-0.532552\pi\)
−0.102087 + 0.994775i \(0.532552\pi\)
\(992\) −5.41158 −0.171818
\(993\) −3.49155 −0.110801
\(994\) −0.232461 −0.00737322
\(995\) −14.9495 −0.473929
\(996\) −6.06193 −0.192080
\(997\) −26.9300 −0.852881 −0.426440 0.904516i \(-0.640233\pi\)
−0.426440 + 0.904516i \(0.640233\pi\)
\(998\) 34.9827 1.10736
\(999\) −5.01681 −0.158725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.j.1.6 7
3.2 odd 2 4014.2.a.v.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.j.1.6 7 1.1 even 1 trivial
4014.2.a.v.1.2 7 3.2 odd 2