Properties

Label 1338.2.a.j.1.5
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(1,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 18x^{5} - 8x^{4} + 51x^{3} + 47x^{2} - 2x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.369925\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.69148 q^{5} -1.00000 q^{6} +2.17419 q^{7} +1.00000 q^{8} +1.00000 q^{9} +2.69148 q^{10} -2.79991 q^{11} -1.00000 q^{12} +5.60736 q^{13} +2.17419 q^{14} -2.69148 q^{15} +1.00000 q^{16} -4.05158 q^{17} +1.00000 q^{18} +3.43987 q^{19} +2.69148 q^{20} -2.17419 q^{21} -2.79991 q^{22} -0.907338 q^{23} -1.00000 q^{24} +2.24408 q^{25} +5.60736 q^{26} -1.00000 q^{27} +2.17419 q^{28} +3.53306 q^{29} -2.69148 q^{30} +2.49443 q^{31} +1.00000 q^{32} +2.79991 q^{33} -4.05158 q^{34} +5.85180 q^{35} +1.00000 q^{36} +4.44606 q^{37} +3.43987 q^{38} -5.60736 q^{39} +2.69148 q^{40} -10.8990 q^{41} -2.17419 q^{42} -7.91186 q^{43} -2.79991 q^{44} +2.69148 q^{45} -0.907338 q^{46} -13.4073 q^{47} -1.00000 q^{48} -2.27289 q^{49} +2.24408 q^{50} +4.05158 q^{51} +5.60736 q^{52} +13.1947 q^{53} -1.00000 q^{54} -7.53592 q^{55} +2.17419 q^{56} -3.43987 q^{57} +3.53306 q^{58} +11.3491 q^{59} -2.69148 q^{60} +0.466941 q^{61} +2.49443 q^{62} +2.17419 q^{63} +1.00000 q^{64} +15.0921 q^{65} +2.79991 q^{66} +6.52324 q^{67} -4.05158 q^{68} +0.907338 q^{69} +5.85180 q^{70} +2.84960 q^{71} +1.00000 q^{72} +4.29281 q^{73} +4.44606 q^{74} -2.24408 q^{75} +3.43987 q^{76} -6.08755 q^{77} -5.60736 q^{78} -7.97329 q^{79} +2.69148 q^{80} +1.00000 q^{81} -10.8990 q^{82} -1.80391 q^{83} -2.17419 q^{84} -10.9048 q^{85} -7.91186 q^{86} -3.53306 q^{87} -2.79991 q^{88} +10.9572 q^{89} +2.69148 q^{90} +12.1915 q^{91} -0.907338 q^{92} -2.49443 q^{93} -13.4073 q^{94} +9.25835 q^{95} -1.00000 q^{96} +16.3978 q^{97} -2.27289 q^{98} -2.79991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 7 q^{3} + 7 q^{4} + 6 q^{5} - 7 q^{6} + 3 q^{7} + 7 q^{8} + 7 q^{9} + 6 q^{10} - q^{11} - 7 q^{12} + 8 q^{13} + 3 q^{14} - 6 q^{15} + 7 q^{16} + 16 q^{17} + 7 q^{18} + 2 q^{19} + 6 q^{20}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 2.69148 1.20367 0.601834 0.798621i \(-0.294437\pi\)
0.601834 + 0.798621i \(0.294437\pi\)
\(6\) −1.00000 −0.408248
\(7\) 2.17419 0.821767 0.410884 0.911688i \(-0.365220\pi\)
0.410884 + 0.911688i \(0.365220\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 2.69148 0.851122
\(11\) −2.79991 −0.844206 −0.422103 0.906548i \(-0.638708\pi\)
−0.422103 + 0.906548i \(0.638708\pi\)
\(12\) −1.00000 −0.288675
\(13\) 5.60736 1.55520 0.777601 0.628758i \(-0.216436\pi\)
0.777601 + 0.628758i \(0.216436\pi\)
\(14\) 2.17419 0.581077
\(15\) −2.69148 −0.694938
\(16\) 1.00000 0.250000
\(17\) −4.05158 −0.982654 −0.491327 0.870975i \(-0.663488\pi\)
−0.491327 + 0.870975i \(0.663488\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.43987 0.789160 0.394580 0.918861i \(-0.370890\pi\)
0.394580 + 0.918861i \(0.370890\pi\)
\(20\) 2.69148 0.601834
\(21\) −2.17419 −0.474448
\(22\) −2.79991 −0.596944
\(23\) −0.907338 −0.189193 −0.0945965 0.995516i \(-0.530156\pi\)
−0.0945965 + 0.995516i \(0.530156\pi\)
\(24\) −1.00000 −0.204124
\(25\) 2.24408 0.448816
\(26\) 5.60736 1.09969
\(27\) −1.00000 −0.192450
\(28\) 2.17419 0.410884
\(29\) 3.53306 0.656073 0.328036 0.944665i \(-0.393613\pi\)
0.328036 + 0.944665i \(0.393613\pi\)
\(30\) −2.69148 −0.491395
\(31\) 2.49443 0.448012 0.224006 0.974588i \(-0.428086\pi\)
0.224006 + 0.974588i \(0.428086\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.79991 0.487402
\(34\) −4.05158 −0.694841
\(35\) 5.85180 0.989135
\(36\) 1.00000 0.166667
\(37\) 4.44606 0.730928 0.365464 0.930826i \(-0.380910\pi\)
0.365464 + 0.930826i \(0.380910\pi\)
\(38\) 3.43987 0.558021
\(39\) −5.60736 −0.897896
\(40\) 2.69148 0.425561
\(41\) −10.8990 −1.70214 −0.851071 0.525050i \(-0.824047\pi\)
−0.851071 + 0.525050i \(0.824047\pi\)
\(42\) −2.17419 −0.335485
\(43\) −7.91186 −1.20655 −0.603274 0.797534i \(-0.706137\pi\)
−0.603274 + 0.797534i \(0.706137\pi\)
\(44\) −2.79991 −0.422103
\(45\) 2.69148 0.401223
\(46\) −0.907338 −0.133780
\(47\) −13.4073 −1.95566 −0.977829 0.209406i \(-0.932847\pi\)
−0.977829 + 0.209406i \(0.932847\pi\)
\(48\) −1.00000 −0.144338
\(49\) −2.27289 −0.324698
\(50\) 2.24408 0.317361
\(51\) 4.05158 0.567335
\(52\) 5.60736 0.777601
\(53\) 13.1947 1.81243 0.906213 0.422822i \(-0.138961\pi\)
0.906213 + 0.422822i \(0.138961\pi\)
\(54\) −1.00000 −0.136083
\(55\) −7.53592 −1.01614
\(56\) 2.17419 0.290539
\(57\) −3.43987 −0.455622
\(58\) 3.53306 0.463913
\(59\) 11.3491 1.47752 0.738762 0.673966i \(-0.235411\pi\)
0.738762 + 0.673966i \(0.235411\pi\)
\(60\) −2.69148 −0.347469
\(61\) 0.466941 0.0597857 0.0298928 0.999553i \(-0.490483\pi\)
0.0298928 + 0.999553i \(0.490483\pi\)
\(62\) 2.49443 0.316792
\(63\) 2.17419 0.273922
\(64\) 1.00000 0.125000
\(65\) 15.0921 1.87195
\(66\) 2.79991 0.344646
\(67\) 6.52324 0.796940 0.398470 0.917181i \(-0.369541\pi\)
0.398470 + 0.917181i \(0.369541\pi\)
\(68\) −4.05158 −0.491327
\(69\) 0.907338 0.109231
\(70\) 5.85180 0.699424
\(71\) 2.84960 0.338186 0.169093 0.985600i \(-0.445916\pi\)
0.169093 + 0.985600i \(0.445916\pi\)
\(72\) 1.00000 0.117851
\(73\) 4.29281 0.502435 0.251218 0.967931i \(-0.419169\pi\)
0.251218 + 0.967931i \(0.419169\pi\)
\(74\) 4.44606 0.516844
\(75\) −2.24408 −0.259124
\(76\) 3.43987 0.394580
\(77\) −6.08755 −0.693741
\(78\) −5.60736 −0.634908
\(79\) −7.97329 −0.897065 −0.448533 0.893766i \(-0.648053\pi\)
−0.448533 + 0.893766i \(0.648053\pi\)
\(80\) 2.69148 0.300917
\(81\) 1.00000 0.111111
\(82\) −10.8990 −1.20360
\(83\) −1.80391 −0.198005 −0.0990024 0.995087i \(-0.531565\pi\)
−0.0990024 + 0.995087i \(0.531565\pi\)
\(84\) −2.17419 −0.237224
\(85\) −10.9048 −1.18279
\(86\) −7.91186 −0.853158
\(87\) −3.53306 −0.378784
\(88\) −2.79991 −0.298472
\(89\) 10.9572 1.16146 0.580730 0.814096i \(-0.302767\pi\)
0.580730 + 0.814096i \(0.302767\pi\)
\(90\) 2.69148 0.283707
\(91\) 12.1915 1.27801
\(92\) −0.907338 −0.0945965
\(93\) −2.49443 −0.258660
\(94\) −13.4073 −1.38286
\(95\) 9.25835 0.949887
\(96\) −1.00000 −0.102062
\(97\) 16.3978 1.66495 0.832473 0.554066i \(-0.186924\pi\)
0.832473 + 0.554066i \(0.186924\pi\)
\(98\) −2.27289 −0.229596
\(99\) −2.79991 −0.281402
\(100\) 2.24408 0.224408
\(101\) 3.53689 0.351933 0.175967 0.984396i \(-0.443695\pi\)
0.175967 + 0.984396i \(0.443695\pi\)
\(102\) 4.05158 0.401167
\(103\) −5.03869 −0.496477 −0.248239 0.968699i \(-0.579852\pi\)
−0.248239 + 0.968699i \(0.579852\pi\)
\(104\) 5.60736 0.549847
\(105\) −5.85180 −0.571077
\(106\) 13.1947 1.28158
\(107\) −8.32832 −0.805129 −0.402565 0.915392i \(-0.631881\pi\)
−0.402565 + 0.915392i \(0.631881\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 2.72745 0.261242 0.130621 0.991432i \(-0.458303\pi\)
0.130621 + 0.991432i \(0.458303\pi\)
\(110\) −7.53592 −0.718522
\(111\) −4.44606 −0.422001
\(112\) 2.17419 0.205442
\(113\) 13.6313 1.28233 0.641165 0.767403i \(-0.278452\pi\)
0.641165 + 0.767403i \(0.278452\pi\)
\(114\) −3.43987 −0.322173
\(115\) −2.44208 −0.227725
\(116\) 3.53306 0.328036
\(117\) 5.60736 0.518401
\(118\) 11.3491 1.04477
\(119\) −8.80892 −0.807513
\(120\) −2.69148 −0.245698
\(121\) −3.16049 −0.287317
\(122\) 0.466941 0.0422749
\(123\) 10.8990 0.982733
\(124\) 2.49443 0.224006
\(125\) −7.41751 −0.663443
\(126\) 2.17419 0.193692
\(127\) −13.6128 −1.20794 −0.603969 0.797008i \(-0.706415\pi\)
−0.603969 + 0.797008i \(0.706415\pi\)
\(128\) 1.00000 0.0883883
\(129\) 7.91186 0.696601
\(130\) 15.0921 1.32367
\(131\) −17.7178 −1.54801 −0.774004 0.633181i \(-0.781749\pi\)
−0.774004 + 0.633181i \(0.781749\pi\)
\(132\) 2.79991 0.243701
\(133\) 7.47894 0.648506
\(134\) 6.52324 0.563522
\(135\) −2.69148 −0.231646
\(136\) −4.05158 −0.347420
\(137\) −15.2395 −1.30200 −0.650998 0.759079i \(-0.725649\pi\)
−0.650998 + 0.759079i \(0.725649\pi\)
\(138\) 0.907338 0.0772377
\(139\) −4.87274 −0.413300 −0.206650 0.978415i \(-0.566256\pi\)
−0.206650 + 0.978415i \(0.566256\pi\)
\(140\) 5.85180 0.494567
\(141\) 13.4073 1.12910
\(142\) 2.84960 0.239133
\(143\) −15.7001 −1.31291
\(144\) 1.00000 0.0833333
\(145\) 9.50917 0.789693
\(146\) 4.29281 0.355275
\(147\) 2.27289 0.187465
\(148\) 4.44606 0.365464
\(149\) −14.5888 −1.19516 −0.597579 0.801810i \(-0.703871\pi\)
−0.597579 + 0.801810i \(0.703871\pi\)
\(150\) −2.24408 −0.183228
\(151\) 12.6330 1.02806 0.514028 0.857773i \(-0.328153\pi\)
0.514028 + 0.857773i \(0.328153\pi\)
\(152\) 3.43987 0.279010
\(153\) −4.05158 −0.327551
\(154\) −6.08755 −0.490549
\(155\) 6.71371 0.539258
\(156\) −5.60736 −0.448948
\(157\) −12.0602 −0.962507 −0.481254 0.876581i \(-0.659818\pi\)
−0.481254 + 0.876581i \(0.659818\pi\)
\(158\) −7.97329 −0.634321
\(159\) −13.1947 −1.04640
\(160\) 2.69148 0.212780
\(161\) −1.97273 −0.155473
\(162\) 1.00000 0.0785674
\(163\) 0.156053 0.0122230 0.00611149 0.999981i \(-0.498055\pi\)
0.00611149 + 0.999981i \(0.498055\pi\)
\(164\) −10.8990 −0.851071
\(165\) 7.53592 0.586670
\(166\) −1.80391 −0.140011
\(167\) 1.39325 0.107813 0.0539065 0.998546i \(-0.482833\pi\)
0.0539065 + 0.998546i \(0.482833\pi\)
\(168\) −2.17419 −0.167743
\(169\) 18.4425 1.41865
\(170\) −10.9048 −0.836358
\(171\) 3.43987 0.263053
\(172\) −7.91186 −0.603274
\(173\) −16.6528 −1.26609 −0.633043 0.774117i \(-0.718194\pi\)
−0.633043 + 0.774117i \(0.718194\pi\)
\(174\) −3.53306 −0.267841
\(175\) 4.87906 0.368822
\(176\) −2.79991 −0.211051
\(177\) −11.3491 −0.853049
\(178\) 10.9572 0.821277
\(179\) −12.9554 −0.968331 −0.484165 0.874977i \(-0.660877\pi\)
−0.484165 + 0.874977i \(0.660877\pi\)
\(180\) 2.69148 0.200611
\(181\) −8.76887 −0.651785 −0.325892 0.945407i \(-0.605665\pi\)
−0.325892 + 0.945407i \(0.605665\pi\)
\(182\) 12.1915 0.903692
\(183\) −0.466941 −0.0345173
\(184\) −0.907338 −0.0668898
\(185\) 11.9665 0.879794
\(186\) −2.49443 −0.182900
\(187\) 11.3441 0.829562
\(188\) −13.4073 −0.977829
\(189\) −2.17419 −0.158149
\(190\) 9.25835 0.671672
\(191\) 2.78928 0.201825 0.100912 0.994895i \(-0.467824\pi\)
0.100912 + 0.994895i \(0.467824\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −11.6058 −0.835402 −0.417701 0.908585i \(-0.637164\pi\)
−0.417701 + 0.908585i \(0.637164\pi\)
\(194\) 16.3978 1.17729
\(195\) −15.0921 −1.08077
\(196\) −2.27289 −0.162349
\(197\) 20.5331 1.46293 0.731463 0.681881i \(-0.238838\pi\)
0.731463 + 0.681881i \(0.238838\pi\)
\(198\) −2.79991 −0.198981
\(199\) 17.9919 1.27541 0.637706 0.770280i \(-0.279883\pi\)
0.637706 + 0.770280i \(0.279883\pi\)
\(200\) 2.24408 0.158680
\(201\) −6.52324 −0.460114
\(202\) 3.53689 0.248855
\(203\) 7.68155 0.539139
\(204\) 4.05158 0.283668
\(205\) −29.3346 −2.04881
\(206\) −5.03869 −0.351062
\(207\) −0.907338 −0.0630643
\(208\) 5.60736 0.388800
\(209\) −9.63134 −0.666214
\(210\) −5.85180 −0.403813
\(211\) −3.08882 −0.212643 −0.106321 0.994332i \(-0.533907\pi\)
−0.106321 + 0.994332i \(0.533907\pi\)
\(212\) 13.1947 0.906213
\(213\) −2.84960 −0.195252
\(214\) −8.32832 −0.569312
\(215\) −21.2946 −1.45228
\(216\) −1.00000 −0.0680414
\(217\) 5.42336 0.368162
\(218\) 2.72745 0.184726
\(219\) −4.29281 −0.290081
\(220\) −7.53592 −0.508072
\(221\) −22.7187 −1.52822
\(222\) −4.44606 −0.298400
\(223\) −1.00000 −0.0669650
\(224\) 2.17419 0.145269
\(225\) 2.24408 0.149605
\(226\) 13.6313 0.906744
\(227\) −19.8177 −1.31535 −0.657675 0.753302i \(-0.728460\pi\)
−0.657675 + 0.753302i \(0.728460\pi\)
\(228\) −3.43987 −0.227811
\(229\) −25.3745 −1.67680 −0.838398 0.545058i \(-0.816508\pi\)
−0.838398 + 0.545058i \(0.816508\pi\)
\(230\) −2.44208 −0.161026
\(231\) 6.08755 0.400531
\(232\) 3.53306 0.231957
\(233\) 8.41472 0.551266 0.275633 0.961263i \(-0.411112\pi\)
0.275633 + 0.961263i \(0.411112\pi\)
\(234\) 5.60736 0.366565
\(235\) −36.0855 −2.35396
\(236\) 11.3491 0.738762
\(237\) 7.97329 0.517921
\(238\) −8.80892 −0.570998
\(239\) −28.9489 −1.87255 −0.936273 0.351272i \(-0.885749\pi\)
−0.936273 + 0.351272i \(0.885749\pi\)
\(240\) −2.69148 −0.173734
\(241\) 2.56905 0.165487 0.0827435 0.996571i \(-0.473632\pi\)
0.0827435 + 0.996571i \(0.473632\pi\)
\(242\) −3.16049 −0.203164
\(243\) −1.00000 −0.0641500
\(244\) 0.466941 0.0298928
\(245\) −6.11744 −0.390829
\(246\) 10.8990 0.694897
\(247\) 19.2886 1.22730
\(248\) 2.49443 0.158396
\(249\) 1.80391 0.114318
\(250\) −7.41751 −0.469125
\(251\) 14.7729 0.932456 0.466228 0.884665i \(-0.345613\pi\)
0.466228 + 0.884665i \(0.345613\pi\)
\(252\) 2.17419 0.136961
\(253\) 2.54047 0.159718
\(254\) −13.6128 −0.854140
\(255\) 10.9048 0.682883
\(256\) 1.00000 0.0625000
\(257\) −20.3220 −1.26765 −0.633827 0.773475i \(-0.718517\pi\)
−0.633827 + 0.773475i \(0.718517\pi\)
\(258\) 7.91186 0.492571
\(259\) 9.66659 0.600653
\(260\) 15.0921 0.935973
\(261\) 3.53306 0.218691
\(262\) −17.7178 −1.09461
\(263\) −13.9440 −0.859826 −0.429913 0.902870i \(-0.641456\pi\)
−0.429913 + 0.902870i \(0.641456\pi\)
\(264\) 2.79991 0.172323
\(265\) 35.5132 2.18156
\(266\) 7.47894 0.458563
\(267\) −10.9572 −0.670570
\(268\) 6.52324 0.398470
\(269\) −1.33483 −0.0813862 −0.0406931 0.999172i \(-0.512957\pi\)
−0.0406931 + 0.999172i \(0.512957\pi\)
\(270\) −2.69148 −0.163798
\(271\) 18.0818 1.09839 0.549197 0.835693i \(-0.314934\pi\)
0.549197 + 0.835693i \(0.314934\pi\)
\(272\) −4.05158 −0.245663
\(273\) −12.1915 −0.737862
\(274\) −15.2395 −0.920650
\(275\) −6.28323 −0.378893
\(276\) 0.907338 0.0546153
\(277\) 6.92461 0.416059 0.208030 0.978123i \(-0.433295\pi\)
0.208030 + 0.978123i \(0.433295\pi\)
\(278\) −4.87274 −0.292247
\(279\) 2.49443 0.149337
\(280\) 5.85180 0.349712
\(281\) 8.16492 0.487078 0.243539 0.969891i \(-0.421692\pi\)
0.243539 + 0.969891i \(0.421692\pi\)
\(282\) 13.4073 0.798394
\(283\) −13.9290 −0.827993 −0.413996 0.910279i \(-0.635867\pi\)
−0.413996 + 0.910279i \(0.635867\pi\)
\(284\) 2.84960 0.169093
\(285\) −9.25835 −0.548417
\(286\) −15.7001 −0.928368
\(287\) −23.6966 −1.39877
\(288\) 1.00000 0.0589256
\(289\) −0.584665 −0.0343921
\(290\) 9.50917 0.558398
\(291\) −16.3978 −0.961257
\(292\) 4.29281 0.251218
\(293\) −22.2675 −1.30088 −0.650439 0.759558i \(-0.725415\pi\)
−0.650439 + 0.759558i \(0.725415\pi\)
\(294\) 2.27289 0.132558
\(295\) 30.5459 1.77845
\(296\) 4.44606 0.258422
\(297\) 2.79991 0.162467
\(298\) −14.5888 −0.845105
\(299\) −5.08777 −0.294233
\(300\) −2.24408 −0.129562
\(301\) −17.2019 −0.991502
\(302\) 12.6330 0.726946
\(303\) −3.53689 −0.203189
\(304\) 3.43987 0.197290
\(305\) 1.25676 0.0719621
\(306\) −4.05158 −0.231614
\(307\) −8.05512 −0.459730 −0.229865 0.973222i \(-0.573829\pi\)
−0.229865 + 0.973222i \(0.573829\pi\)
\(308\) −6.08755 −0.346870
\(309\) 5.03869 0.286641
\(310\) 6.71371 0.381313
\(311\) 5.19327 0.294483 0.147242 0.989101i \(-0.452960\pi\)
0.147242 + 0.989101i \(0.452960\pi\)
\(312\) −5.60736 −0.317454
\(313\) 1.77635 0.100405 0.0502025 0.998739i \(-0.484013\pi\)
0.0502025 + 0.998739i \(0.484013\pi\)
\(314\) −12.0602 −0.680595
\(315\) 5.85180 0.329712
\(316\) −7.97329 −0.448533
\(317\) 16.7624 0.941470 0.470735 0.882275i \(-0.343989\pi\)
0.470735 + 0.882275i \(0.343989\pi\)
\(318\) −13.1947 −0.739920
\(319\) −9.89226 −0.553860
\(320\) 2.69148 0.150458
\(321\) 8.32832 0.464842
\(322\) −1.97273 −0.109936
\(323\) −13.9369 −0.775471
\(324\) 1.00000 0.0555556
\(325\) 12.5834 0.697999
\(326\) 0.156053 0.00864295
\(327\) −2.72745 −0.150828
\(328\) −10.8990 −0.601798
\(329\) −29.1501 −1.60710
\(330\) 7.53592 0.414839
\(331\) −3.10572 −0.170706 −0.0853530 0.996351i \(-0.527202\pi\)
−0.0853530 + 0.996351i \(0.527202\pi\)
\(332\) −1.80391 −0.0990024
\(333\) 4.44606 0.243643
\(334\) 1.39325 0.0762353
\(335\) 17.5572 0.959251
\(336\) −2.17419 −0.118612
\(337\) 16.0670 0.875225 0.437613 0.899164i \(-0.355824\pi\)
0.437613 + 0.899164i \(0.355824\pi\)
\(338\) 18.4425 1.00314
\(339\) −13.6313 −0.740353
\(340\) −10.9048 −0.591394
\(341\) −6.98418 −0.378214
\(342\) 3.43987 0.186007
\(343\) −20.1610 −1.08859
\(344\) −7.91186 −0.426579
\(345\) 2.44208 0.131477
\(346\) −16.6528 −0.895258
\(347\) 20.1398 1.08116 0.540580 0.841293i \(-0.318205\pi\)
0.540580 + 0.841293i \(0.318205\pi\)
\(348\) −3.53306 −0.189392
\(349\) 30.6684 1.64164 0.820821 0.571186i \(-0.193516\pi\)
0.820821 + 0.571186i \(0.193516\pi\)
\(350\) 4.87906 0.260797
\(351\) −5.60736 −0.299299
\(352\) −2.79991 −0.149236
\(353\) 26.7829 1.42551 0.712755 0.701413i \(-0.247447\pi\)
0.712755 + 0.701413i \(0.247447\pi\)
\(354\) −11.3491 −0.603197
\(355\) 7.66966 0.407063
\(356\) 10.9572 0.580730
\(357\) 8.80892 0.466218
\(358\) −12.9554 −0.684713
\(359\) 9.32994 0.492415 0.246208 0.969217i \(-0.420815\pi\)
0.246208 + 0.969217i \(0.420815\pi\)
\(360\) 2.69148 0.141854
\(361\) −7.16729 −0.377226
\(362\) −8.76887 −0.460881
\(363\) 3.16049 0.165882
\(364\) 12.1915 0.639007
\(365\) 11.5540 0.604765
\(366\) −0.466941 −0.0244074
\(367\) −19.3737 −1.01130 −0.505649 0.862739i \(-0.668747\pi\)
−0.505649 + 0.862739i \(0.668747\pi\)
\(368\) −0.907338 −0.0472983
\(369\) −10.8990 −0.567381
\(370\) 11.9665 0.622108
\(371\) 28.6877 1.48939
\(372\) −2.49443 −0.129330
\(373\) −24.5202 −1.26961 −0.634805 0.772672i \(-0.718920\pi\)
−0.634805 + 0.772672i \(0.718920\pi\)
\(374\) 11.3441 0.586589
\(375\) 7.41751 0.383039
\(376\) −13.4073 −0.691429
\(377\) 19.8111 1.02033
\(378\) −2.17419 −0.111828
\(379\) 27.5623 1.41578 0.707889 0.706323i \(-0.249647\pi\)
0.707889 + 0.706323i \(0.249647\pi\)
\(380\) 9.25835 0.474943
\(381\) 13.6128 0.697403
\(382\) 2.78928 0.142712
\(383\) −21.8176 −1.11483 −0.557414 0.830235i \(-0.688206\pi\)
−0.557414 + 0.830235i \(0.688206\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −16.3845 −0.835033
\(386\) −11.6058 −0.590718
\(387\) −7.91186 −0.402183
\(388\) 16.3978 0.832473
\(389\) −16.2181 −0.822290 −0.411145 0.911570i \(-0.634871\pi\)
−0.411145 + 0.911570i \(0.634871\pi\)
\(390\) −15.0921 −0.764219
\(391\) 3.67616 0.185911
\(392\) −2.27289 −0.114798
\(393\) 17.7178 0.893743
\(394\) 20.5331 1.03444
\(395\) −21.4600 −1.07977
\(396\) −2.79991 −0.140701
\(397\) 1.66612 0.0836200 0.0418100 0.999126i \(-0.486688\pi\)
0.0418100 + 0.999126i \(0.486688\pi\)
\(398\) 17.9919 0.901852
\(399\) −7.47894 −0.374415
\(400\) 2.24408 0.112204
\(401\) −33.0190 −1.64889 −0.824446 0.565940i \(-0.808513\pi\)
−0.824446 + 0.565940i \(0.808513\pi\)
\(402\) −6.52324 −0.325349
\(403\) 13.9871 0.696749
\(404\) 3.53689 0.175967
\(405\) 2.69148 0.133741
\(406\) 7.68155 0.381229
\(407\) −12.4486 −0.617053
\(408\) 4.05158 0.200583
\(409\) 33.0353 1.63349 0.816744 0.577000i \(-0.195777\pi\)
0.816744 + 0.577000i \(0.195777\pi\)
\(410\) −29.3346 −1.44873
\(411\) 15.2395 0.751708
\(412\) −5.03869 −0.248239
\(413\) 24.6751 1.21418
\(414\) −0.907338 −0.0445932
\(415\) −4.85519 −0.238332
\(416\) 5.60736 0.274923
\(417\) 4.87274 0.238619
\(418\) −9.63134 −0.471084
\(419\) −8.61709 −0.420972 −0.210486 0.977597i \(-0.567505\pi\)
−0.210486 + 0.977597i \(0.567505\pi\)
\(420\) −5.85180 −0.285539
\(421\) −13.7662 −0.670922 −0.335461 0.942054i \(-0.608892\pi\)
−0.335461 + 0.942054i \(0.608892\pi\)
\(422\) −3.08882 −0.150361
\(423\) −13.4073 −0.651886
\(424\) 13.1947 0.640789
\(425\) −9.09208 −0.441030
\(426\) −2.84960 −0.138064
\(427\) 1.01522 0.0491299
\(428\) −8.32832 −0.402565
\(429\) 15.7001 0.758009
\(430\) −21.2946 −1.02692
\(431\) 7.17551 0.345632 0.172816 0.984954i \(-0.444713\pi\)
0.172816 + 0.984954i \(0.444713\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 11.4852 0.551944 0.275972 0.961166i \(-0.411000\pi\)
0.275972 + 0.961166i \(0.411000\pi\)
\(434\) 5.42336 0.260330
\(435\) −9.50917 −0.455930
\(436\) 2.72745 0.130621
\(437\) −3.12112 −0.149304
\(438\) −4.29281 −0.205118
\(439\) −10.6077 −0.506279 −0.253139 0.967430i \(-0.581463\pi\)
−0.253139 + 0.967430i \(0.581463\pi\)
\(440\) −7.53592 −0.359261
\(441\) −2.27289 −0.108233
\(442\) −22.7187 −1.08062
\(443\) −23.6850 −1.12531 −0.562654 0.826693i \(-0.690220\pi\)
−0.562654 + 0.826693i \(0.690220\pi\)
\(444\) −4.44606 −0.211001
\(445\) 29.4911 1.39801
\(446\) −1.00000 −0.0473514
\(447\) 14.5888 0.690025
\(448\) 2.17419 0.102721
\(449\) 26.0448 1.22913 0.614565 0.788866i \(-0.289332\pi\)
0.614565 + 0.788866i \(0.289332\pi\)
\(450\) 2.24408 0.105787
\(451\) 30.5163 1.43696
\(452\) 13.6313 0.641165
\(453\) −12.6330 −0.593549
\(454\) −19.8177 −0.930093
\(455\) 32.8131 1.53830
\(456\) −3.43987 −0.161087
\(457\) 19.4587 0.910237 0.455119 0.890431i \(-0.349597\pi\)
0.455119 + 0.890431i \(0.349597\pi\)
\(458\) −25.3745 −1.18567
\(459\) 4.05158 0.189112
\(460\) −2.44208 −0.113863
\(461\) −1.34885 −0.0628221 −0.0314110 0.999507i \(-0.510000\pi\)
−0.0314110 + 0.999507i \(0.510000\pi\)
\(462\) 6.08755 0.283218
\(463\) −19.2142 −0.892958 −0.446479 0.894794i \(-0.647322\pi\)
−0.446479 + 0.894794i \(0.647322\pi\)
\(464\) 3.53306 0.164018
\(465\) −6.71371 −0.311341
\(466\) 8.41472 0.389804
\(467\) 30.1602 1.39565 0.697824 0.716269i \(-0.254152\pi\)
0.697824 + 0.716269i \(0.254152\pi\)
\(468\) 5.60736 0.259200
\(469\) 14.1828 0.654899
\(470\) −36.0855 −1.66450
\(471\) 12.0602 0.555704
\(472\) 11.3491 0.522384
\(473\) 22.1525 1.01857
\(474\) 7.97329 0.366225
\(475\) 7.71934 0.354188
\(476\) −8.80892 −0.403756
\(477\) 13.1947 0.604142
\(478\) −28.9489 −1.32409
\(479\) 10.4392 0.476979 0.238490 0.971145i \(-0.423348\pi\)
0.238490 + 0.971145i \(0.423348\pi\)
\(480\) −2.69148 −0.122849
\(481\) 24.9307 1.13674
\(482\) 2.56905 0.117017
\(483\) 1.97273 0.0897622
\(484\) −3.16049 −0.143658
\(485\) 44.1344 2.00404
\(486\) −1.00000 −0.0453609
\(487\) 18.5437 0.840297 0.420149 0.907455i \(-0.361978\pi\)
0.420149 + 0.907455i \(0.361978\pi\)
\(488\) 0.466941 0.0211374
\(489\) −0.156053 −0.00705694
\(490\) −6.11744 −0.276358
\(491\) 17.6989 0.798739 0.399370 0.916790i \(-0.369229\pi\)
0.399370 + 0.916790i \(0.369229\pi\)
\(492\) 10.8990 0.491366
\(493\) −14.3145 −0.644692
\(494\) 19.2886 0.867835
\(495\) −7.53592 −0.338714
\(496\) 2.49443 0.112003
\(497\) 6.19559 0.277910
\(498\) 1.80391 0.0808351
\(499\) −2.78926 −0.124864 −0.0624321 0.998049i \(-0.519886\pi\)
−0.0624321 + 0.998049i \(0.519886\pi\)
\(500\) −7.41751 −0.331721
\(501\) −1.39325 −0.0622458
\(502\) 14.7729 0.659346
\(503\) −26.2160 −1.16892 −0.584458 0.811424i \(-0.698693\pi\)
−0.584458 + 0.811424i \(0.698693\pi\)
\(504\) 2.17419 0.0968462
\(505\) 9.51947 0.423611
\(506\) 2.54047 0.112938
\(507\) −18.4425 −0.819059
\(508\) −13.6128 −0.603969
\(509\) 1.95494 0.0866510 0.0433255 0.999061i \(-0.486205\pi\)
0.0433255 + 0.999061i \(0.486205\pi\)
\(510\) 10.9048 0.482871
\(511\) 9.33339 0.412885
\(512\) 1.00000 0.0441942
\(513\) −3.43987 −0.151874
\(514\) −20.3220 −0.896367
\(515\) −13.5616 −0.597593
\(516\) 7.91186 0.348300
\(517\) 37.5393 1.65098
\(518\) 9.66659 0.424726
\(519\) 16.6528 0.730975
\(520\) 15.0921 0.661833
\(521\) 23.9402 1.04884 0.524420 0.851459i \(-0.324282\pi\)
0.524420 + 0.851459i \(0.324282\pi\)
\(522\) 3.53306 0.154638
\(523\) 33.6405 1.47100 0.735498 0.677527i \(-0.236948\pi\)
0.735498 + 0.677527i \(0.236948\pi\)
\(524\) −17.7178 −0.774004
\(525\) −4.87906 −0.212940
\(526\) −13.9440 −0.607989
\(527\) −10.1064 −0.440241
\(528\) 2.79991 0.121851
\(529\) −22.1767 −0.964206
\(530\) 35.5132 1.54259
\(531\) 11.3491 0.492508
\(532\) 7.47894 0.324253
\(533\) −61.1148 −2.64718
\(534\) −10.9572 −0.474164
\(535\) −22.4155 −0.969108
\(536\) 6.52324 0.281761
\(537\) 12.9554 0.559066
\(538\) −1.33483 −0.0575487
\(539\) 6.36389 0.274112
\(540\) −2.69148 −0.115823
\(541\) −28.9644 −1.24528 −0.622638 0.782510i \(-0.713939\pi\)
−0.622638 + 0.782510i \(0.713939\pi\)
\(542\) 18.0818 0.776681
\(543\) 8.76887 0.376308
\(544\) −4.05158 −0.173710
\(545\) 7.34088 0.314449
\(546\) −12.1915 −0.521747
\(547\) 40.6631 1.73863 0.869314 0.494260i \(-0.164561\pi\)
0.869314 + 0.494260i \(0.164561\pi\)
\(548\) −15.2395 −0.650998
\(549\) 0.466941 0.0199286
\(550\) −6.28323 −0.267918
\(551\) 12.1533 0.517747
\(552\) 0.907338 0.0386189
\(553\) −17.3355 −0.737179
\(554\) 6.92461 0.294198
\(555\) −11.9665 −0.507949
\(556\) −4.87274 −0.206650
\(557\) 33.3538 1.41325 0.706624 0.707590i \(-0.250217\pi\)
0.706624 + 0.707590i \(0.250217\pi\)
\(558\) 2.49443 0.105597
\(559\) −44.3647 −1.87643
\(560\) 5.85180 0.247284
\(561\) −11.3441 −0.478948
\(562\) 8.16492 0.344416
\(563\) 19.0344 0.802205 0.401102 0.916033i \(-0.368627\pi\)
0.401102 + 0.916033i \(0.368627\pi\)
\(564\) 13.4073 0.564550
\(565\) 36.6885 1.54350
\(566\) −13.9290 −0.585479
\(567\) 2.17419 0.0913075
\(568\) 2.84960 0.119567
\(569\) −36.6564 −1.53672 −0.768358 0.640020i \(-0.778926\pi\)
−0.768358 + 0.640020i \(0.778926\pi\)
\(570\) −9.25835 −0.387790
\(571\) −27.9181 −1.16833 −0.584167 0.811633i \(-0.698579\pi\)
−0.584167 + 0.811633i \(0.698579\pi\)
\(572\) −15.7001 −0.656455
\(573\) −2.78928 −0.116524
\(574\) −23.6966 −0.989076
\(575\) −2.03614 −0.0849128
\(576\) 1.00000 0.0416667
\(577\) 17.9442 0.747028 0.373514 0.927624i \(-0.378153\pi\)
0.373514 + 0.927624i \(0.378153\pi\)
\(578\) −0.584665 −0.0243189
\(579\) 11.6058 0.482319
\(580\) 9.50917 0.394847
\(581\) −3.92205 −0.162714
\(582\) −16.3978 −0.679711
\(583\) −36.9439 −1.53006
\(584\) 4.29281 0.177638
\(585\) 15.0921 0.623982
\(586\) −22.2675 −0.919860
\(587\) −26.5520 −1.09592 −0.547960 0.836505i \(-0.684595\pi\)
−0.547960 + 0.836505i \(0.684595\pi\)
\(588\) 2.27289 0.0937323
\(589\) 8.58051 0.353554
\(590\) 30.5459 1.25755
\(591\) −20.5331 −0.844620
\(592\) 4.44606 0.182732
\(593\) −13.9180 −0.571543 −0.285771 0.958298i \(-0.592250\pi\)
−0.285771 + 0.958298i \(0.592250\pi\)
\(594\) 2.79991 0.114882
\(595\) −23.7091 −0.971977
\(596\) −14.5888 −0.597579
\(597\) −17.9919 −0.736359
\(598\) −5.08777 −0.208054
\(599\) −3.31413 −0.135412 −0.0677059 0.997705i \(-0.521568\pi\)
−0.0677059 + 0.997705i \(0.521568\pi\)
\(600\) −2.24408 −0.0916142
\(601\) 24.4692 0.998118 0.499059 0.866568i \(-0.333679\pi\)
0.499059 + 0.866568i \(0.333679\pi\)
\(602\) −17.2019 −0.701098
\(603\) 6.52324 0.265647
\(604\) 12.6330 0.514028
\(605\) −8.50639 −0.345834
\(606\) −3.53689 −0.143676
\(607\) 37.4463 1.51990 0.759950 0.649981i \(-0.225223\pi\)
0.759950 + 0.649981i \(0.225223\pi\)
\(608\) 3.43987 0.139505
\(609\) −7.68155 −0.311272
\(610\) 1.25676 0.0508849
\(611\) −75.1796 −3.04144
\(612\) −4.05158 −0.163776
\(613\) −17.8819 −0.722241 −0.361121 0.932519i \(-0.617606\pi\)
−0.361121 + 0.932519i \(0.617606\pi\)
\(614\) −8.05512 −0.325078
\(615\) 29.3346 1.18288
\(616\) −6.08755 −0.245274
\(617\) 6.14776 0.247500 0.123750 0.992313i \(-0.460508\pi\)
0.123750 + 0.992313i \(0.460508\pi\)
\(618\) 5.03869 0.202686
\(619\) −21.3510 −0.858169 −0.429085 0.903264i \(-0.641164\pi\)
−0.429085 + 0.903264i \(0.641164\pi\)
\(620\) 6.71371 0.269629
\(621\) 0.907338 0.0364102
\(622\) 5.19327 0.208231
\(623\) 23.8231 0.954451
\(624\) −5.60736 −0.224474
\(625\) −31.1845 −1.24738
\(626\) 1.77635 0.0709971
\(627\) 9.63134 0.384639
\(628\) −12.0602 −0.481254
\(629\) −18.0136 −0.718249
\(630\) 5.85180 0.233141
\(631\) −40.9747 −1.63118 −0.815589 0.578632i \(-0.803587\pi\)
−0.815589 + 0.578632i \(0.803587\pi\)
\(632\) −7.97329 −0.317161
\(633\) 3.08882 0.122769
\(634\) 16.7624 0.665720
\(635\) −36.6385 −1.45395
\(636\) −13.1947 −0.523202
\(637\) −12.7449 −0.504971
\(638\) −9.89226 −0.391638
\(639\) 2.84960 0.112729
\(640\) 2.69148 0.106390
\(641\) −31.0690 −1.22715 −0.613575 0.789636i \(-0.710269\pi\)
−0.613575 + 0.789636i \(0.710269\pi\)
\(642\) 8.32832 0.328693
\(643\) 28.6129 1.12838 0.564192 0.825643i \(-0.309188\pi\)
0.564192 + 0.825643i \(0.309188\pi\)
\(644\) −1.97273 −0.0777363
\(645\) 21.2946 0.838476
\(646\) −13.9369 −0.548341
\(647\) 46.2606 1.81869 0.909346 0.416042i \(-0.136583\pi\)
0.909346 + 0.416042i \(0.136583\pi\)
\(648\) 1.00000 0.0392837
\(649\) −31.7764 −1.24733
\(650\) 12.5834 0.493560
\(651\) −5.42336 −0.212558
\(652\) 0.156053 0.00611149
\(653\) −39.3565 −1.54014 −0.770068 0.637961i \(-0.779778\pi\)
−0.770068 + 0.637961i \(0.779778\pi\)
\(654\) −2.72745 −0.106652
\(655\) −47.6870 −1.86329
\(656\) −10.8990 −0.425536
\(657\) 4.29281 0.167478
\(658\) −29.1501 −1.13639
\(659\) −19.6764 −0.766485 −0.383242 0.923648i \(-0.625193\pi\)
−0.383242 + 0.923648i \(0.625193\pi\)
\(660\) 7.53592 0.293335
\(661\) 38.9951 1.51673 0.758366 0.651829i \(-0.225998\pi\)
0.758366 + 0.651829i \(0.225998\pi\)
\(662\) −3.10572 −0.120707
\(663\) 22.7187 0.882321
\(664\) −1.80391 −0.0700053
\(665\) 20.1294 0.780586
\(666\) 4.44606 0.172281
\(667\) −3.20568 −0.124124
\(668\) 1.39325 0.0539065
\(669\) 1.00000 0.0386622
\(670\) 17.5572 0.678293
\(671\) −1.30739 −0.0504714
\(672\) −2.17419 −0.0838713
\(673\) 21.3800 0.824139 0.412069 0.911152i \(-0.364806\pi\)
0.412069 + 0.911152i \(0.364806\pi\)
\(674\) 16.0670 0.618878
\(675\) −2.24408 −0.0863747
\(676\) 18.4425 0.709326
\(677\) 21.4801 0.825548 0.412774 0.910833i \(-0.364560\pi\)
0.412774 + 0.910833i \(0.364560\pi\)
\(678\) −13.6313 −0.523509
\(679\) 35.6520 1.36820
\(680\) −10.9048 −0.418179
\(681\) 19.8177 0.759418
\(682\) −6.98418 −0.267438
\(683\) 43.7953 1.67578 0.837890 0.545839i \(-0.183789\pi\)
0.837890 + 0.545839i \(0.183789\pi\)
\(684\) 3.43987 0.131527
\(685\) −41.0168 −1.56717
\(686\) −20.1610 −0.769752
\(687\) 25.3745 0.968099
\(688\) −7.91186 −0.301637
\(689\) 73.9872 2.81869
\(690\) 2.44208 0.0929685
\(691\) −14.1162 −0.537007 −0.268504 0.963279i \(-0.586529\pi\)
−0.268504 + 0.963279i \(0.586529\pi\)
\(692\) −16.6528 −0.633043
\(693\) −6.08755 −0.231247
\(694\) 20.1398 0.764495
\(695\) −13.1149 −0.497476
\(696\) −3.53306 −0.133920
\(697\) 44.1583 1.67262
\(698\) 30.6684 1.16082
\(699\) −8.41472 −0.318274
\(700\) 4.87906 0.184411
\(701\) −45.2816 −1.71026 −0.855132 0.518411i \(-0.826524\pi\)
−0.855132 + 0.518411i \(0.826524\pi\)
\(702\) −5.60736 −0.211636
\(703\) 15.2939 0.576819
\(704\) −2.79991 −0.105526
\(705\) 36.0855 1.35906
\(706\) 26.7829 1.00799
\(707\) 7.68987 0.289207
\(708\) −11.3491 −0.426525
\(709\) −18.5070 −0.695046 −0.347523 0.937671i \(-0.612977\pi\)
−0.347523 + 0.937671i \(0.612977\pi\)
\(710\) 7.66966 0.287837
\(711\) −7.97329 −0.299022
\(712\) 10.9572 0.410638
\(713\) −2.26329 −0.0847608
\(714\) 8.80892 0.329666
\(715\) −42.2566 −1.58031
\(716\) −12.9554 −0.484165
\(717\) 28.9489 1.08112
\(718\) 9.32994 0.348190
\(719\) 25.6525 0.956675 0.478338 0.878176i \(-0.341240\pi\)
0.478338 + 0.878176i \(0.341240\pi\)
\(720\) 2.69148 0.100306
\(721\) −10.9551 −0.407989
\(722\) −7.16729 −0.266739
\(723\) −2.56905 −0.0955440
\(724\) −8.76887 −0.325892
\(725\) 7.92846 0.294456
\(726\) 3.16049 0.117297
\(727\) 5.95897 0.221006 0.110503 0.993876i \(-0.464754\pi\)
0.110503 + 0.993876i \(0.464754\pi\)
\(728\) 12.1915 0.451846
\(729\) 1.00000 0.0370370
\(730\) 11.5540 0.427633
\(731\) 32.0556 1.18562
\(732\) −0.466941 −0.0172586
\(733\) −5.21396 −0.192582 −0.0962910 0.995353i \(-0.530698\pi\)
−0.0962910 + 0.995353i \(0.530698\pi\)
\(734\) −19.3737 −0.715096
\(735\) 6.11744 0.225645
\(736\) −0.907338 −0.0334449
\(737\) −18.2645 −0.672781
\(738\) −10.8990 −0.401199
\(739\) −7.06983 −0.260068 −0.130034 0.991510i \(-0.541509\pi\)
−0.130034 + 0.991510i \(0.541509\pi\)
\(740\) 11.9665 0.439897
\(741\) −19.2886 −0.708584
\(742\) 28.6877 1.05316
\(743\) 12.7178 0.466572 0.233286 0.972408i \(-0.425052\pi\)
0.233286 + 0.972408i \(0.425052\pi\)
\(744\) −2.49443 −0.0914501
\(745\) −39.2654 −1.43857
\(746\) −24.5202 −0.897750
\(747\) −1.80391 −0.0660016
\(748\) 11.3441 0.414781
\(749\) −18.1074 −0.661629
\(750\) 7.41751 0.270849
\(751\) 28.0917 1.02508 0.512541 0.858663i \(-0.328704\pi\)
0.512541 + 0.858663i \(0.328704\pi\)
\(752\) −13.4073 −0.488914
\(753\) −14.7729 −0.538354
\(754\) 19.8111 0.721479
\(755\) 34.0014 1.23744
\(756\) −2.17419 −0.0790746
\(757\) −13.4644 −0.489373 −0.244687 0.969602i \(-0.578685\pi\)
−0.244687 + 0.969602i \(0.578685\pi\)
\(758\) 27.5623 1.00111
\(759\) −2.54047 −0.0922131
\(760\) 9.25835 0.335836
\(761\) 8.48297 0.307508 0.153754 0.988109i \(-0.450864\pi\)
0.153754 + 0.988109i \(0.450864\pi\)
\(762\) 13.6128 0.493138
\(763\) 5.93000 0.214680
\(764\) 2.78928 0.100912
\(765\) −10.9048 −0.394263
\(766\) −21.8176 −0.788303
\(767\) 63.6384 2.29785
\(768\) −1.00000 −0.0360844
\(769\) 48.5298 1.75003 0.875015 0.484096i \(-0.160851\pi\)
0.875015 + 0.484096i \(0.160851\pi\)
\(770\) −16.3845 −0.590458
\(771\) 20.3220 0.731881
\(772\) −11.6058 −0.417701
\(773\) 30.8916 1.11109 0.555546 0.831486i \(-0.312509\pi\)
0.555546 + 0.831486i \(0.312509\pi\)
\(774\) −7.91186 −0.284386
\(775\) 5.59769 0.201075
\(776\) 16.3978 0.588647
\(777\) −9.66659 −0.346787
\(778\) −16.2181 −0.581447
\(779\) −37.4913 −1.34326
\(780\) −15.0921 −0.540384
\(781\) −7.97864 −0.285498
\(782\) 3.67616 0.131459
\(783\) −3.53306 −0.126261
\(784\) −2.27289 −0.0811746
\(785\) −32.4598 −1.15854
\(786\) 17.7178 0.631971
\(787\) −11.2345 −0.400465 −0.200233 0.979748i \(-0.564170\pi\)
−0.200233 + 0.979748i \(0.564170\pi\)
\(788\) 20.5331 0.731463
\(789\) 13.9440 0.496421
\(790\) −21.4600 −0.763512
\(791\) 29.6372 1.05378
\(792\) −2.79991 −0.0994906
\(793\) 2.61831 0.0929788
\(794\) 1.66612 0.0591283
\(795\) −35.5132 −1.25952
\(796\) 17.9919 0.637706
\(797\) 24.3923 0.864020 0.432010 0.901869i \(-0.357805\pi\)
0.432010 + 0.901869i \(0.357805\pi\)
\(798\) −7.47894 −0.264752
\(799\) 54.3209 1.92173
\(800\) 2.24408 0.0793402
\(801\) 10.9572 0.387154
\(802\) −33.0190 −1.16594
\(803\) −12.0195 −0.424159
\(804\) −6.52324 −0.230057
\(805\) −5.30956 −0.187137
\(806\) 13.9871 0.492676
\(807\) 1.33483 0.0469883
\(808\) 3.53689 0.124427
\(809\) −29.6845 −1.04365 −0.521825 0.853052i \(-0.674749\pi\)
−0.521825 + 0.853052i \(0.674749\pi\)
\(810\) 2.69148 0.0945691
\(811\) −1.60658 −0.0564146 −0.0282073 0.999602i \(-0.508980\pi\)
−0.0282073 + 0.999602i \(0.508980\pi\)
\(812\) 7.68155 0.269570
\(813\) −18.0818 −0.634158
\(814\) −12.4486 −0.436323
\(815\) 0.420013 0.0147124
\(816\) 4.05158 0.141834
\(817\) −27.2158 −0.952160
\(818\) 33.0353 1.15505
\(819\) 12.1915 0.426005
\(820\) −29.3346 −1.02441
\(821\) 21.5725 0.752884 0.376442 0.926440i \(-0.377147\pi\)
0.376442 + 0.926440i \(0.377147\pi\)
\(822\) 15.2395 0.531538
\(823\) 30.3535 1.05806 0.529029 0.848604i \(-0.322556\pi\)
0.529029 + 0.848604i \(0.322556\pi\)
\(824\) −5.03869 −0.175531
\(825\) 6.28323 0.218754
\(826\) 24.6751 0.858556
\(827\) −6.69089 −0.232665 −0.116333 0.993210i \(-0.537114\pi\)
−0.116333 + 0.993210i \(0.537114\pi\)
\(828\) −0.907338 −0.0315322
\(829\) −21.3700 −0.742209 −0.371105 0.928591i \(-0.621021\pi\)
−0.371105 + 0.928591i \(0.621021\pi\)
\(830\) −4.85519 −0.168526
\(831\) −6.92461 −0.240212
\(832\) 5.60736 0.194400
\(833\) 9.20880 0.319066
\(834\) 4.87274 0.168729
\(835\) 3.74991 0.129771
\(836\) −9.63134 −0.333107
\(837\) −2.49443 −0.0862200
\(838\) −8.61709 −0.297672
\(839\) −25.5944 −0.883618 −0.441809 0.897109i \(-0.645663\pi\)
−0.441809 + 0.897109i \(0.645663\pi\)
\(840\) −5.85180 −0.201906
\(841\) −16.5175 −0.569569
\(842\) −13.7662 −0.474413
\(843\) −8.16492 −0.281215
\(844\) −3.08882 −0.106321
\(845\) 49.6376 1.70759
\(846\) −13.4073 −0.460953
\(847\) −6.87150 −0.236108
\(848\) 13.1947 0.453106
\(849\) 13.9290 0.478042
\(850\) −9.09208 −0.311856
\(851\) −4.03408 −0.138286
\(852\) −2.84960 −0.0976258
\(853\) 38.1839 1.30739 0.653696 0.756757i \(-0.273217\pi\)
0.653696 + 0.756757i \(0.273217\pi\)
\(854\) 1.01522 0.0347401
\(855\) 9.25835 0.316629
\(856\) −8.32832 −0.284656
\(857\) −2.35315 −0.0803820 −0.0401910 0.999192i \(-0.512797\pi\)
−0.0401910 + 0.999192i \(0.512797\pi\)
\(858\) 15.7001 0.535993
\(859\) −39.4562 −1.34623 −0.673115 0.739538i \(-0.735044\pi\)
−0.673115 + 0.739538i \(0.735044\pi\)
\(860\) −21.2946 −0.726141
\(861\) 23.6966 0.807578
\(862\) 7.17551 0.244399
\(863\) 37.5791 1.27921 0.639604 0.768704i \(-0.279098\pi\)
0.639604 + 0.768704i \(0.279098\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −44.8206 −1.52395
\(866\) 11.4852 0.390283
\(867\) 0.584665 0.0198563
\(868\) 5.42336 0.184081
\(869\) 22.3245 0.757308
\(870\) −9.50917 −0.322391
\(871\) 36.5781 1.23940
\(872\) 2.72745 0.0923630
\(873\) 16.3978 0.554982
\(874\) −3.12112 −0.105574
\(875\) −16.1271 −0.545195
\(876\) −4.29281 −0.145041
\(877\) −18.7077 −0.631714 −0.315857 0.948807i \(-0.602292\pi\)
−0.315857 + 0.948807i \(0.602292\pi\)
\(878\) −10.6077 −0.357993
\(879\) 22.2675 0.751063
\(880\) −7.53592 −0.254036
\(881\) −25.8200 −0.869897 −0.434949 0.900455i \(-0.643233\pi\)
−0.434949 + 0.900455i \(0.643233\pi\)
\(882\) −2.27289 −0.0765321
\(883\) 17.2777 0.581442 0.290721 0.956808i \(-0.406105\pi\)
0.290721 + 0.956808i \(0.406105\pi\)
\(884\) −22.7187 −0.764112
\(885\) −30.5459 −1.02679
\(886\) −23.6850 −0.795713
\(887\) 58.1805 1.95351 0.976754 0.214362i \(-0.0687672\pi\)
0.976754 + 0.214362i \(0.0687672\pi\)
\(888\) −4.44606 −0.149200
\(889\) −29.5968 −0.992643
\(890\) 29.4911 0.988544
\(891\) −2.79991 −0.0938006
\(892\) −1.00000 −0.0334825
\(893\) −46.1194 −1.54333
\(894\) 14.5888 0.487921
\(895\) −34.8692 −1.16555
\(896\) 2.17419 0.0726347
\(897\) 5.08777 0.169876
\(898\) 26.0448 0.869126
\(899\) 8.81296 0.293929
\(900\) 2.24408 0.0748026
\(901\) −53.4593 −1.78099
\(902\) 30.5163 1.01608
\(903\) 17.2019 0.572444
\(904\) 13.6313 0.453372
\(905\) −23.6012 −0.784532
\(906\) −12.6330 −0.419702
\(907\) 13.3120 0.442019 0.221009 0.975272i \(-0.429065\pi\)
0.221009 + 0.975272i \(0.429065\pi\)
\(908\) −19.8177 −0.657675
\(909\) 3.53689 0.117311
\(910\) 32.8131 1.08775
\(911\) 26.5194 0.878626 0.439313 0.898334i \(-0.355222\pi\)
0.439313 + 0.898334i \(0.355222\pi\)
\(912\) −3.43987 −0.113906
\(913\) 5.05079 0.167157
\(914\) 19.4587 0.643635
\(915\) −1.25676 −0.0415473
\(916\) −25.3745 −0.838398
\(917\) −38.5218 −1.27210
\(918\) 4.05158 0.133722
\(919\) −28.1795 −0.929555 −0.464777 0.885428i \(-0.653866\pi\)
−0.464777 + 0.885428i \(0.653866\pi\)
\(920\) −2.44208 −0.0805131
\(921\) 8.05512 0.265425
\(922\) −1.34885 −0.0444219
\(923\) 15.9788 0.525947
\(924\) 6.08755 0.200266
\(925\) 9.97731 0.328052
\(926\) −19.2142 −0.631417
\(927\) −5.03869 −0.165492
\(928\) 3.53306 0.115978
\(929\) −2.20228 −0.0722544 −0.0361272 0.999347i \(-0.511502\pi\)
−0.0361272 + 0.999347i \(0.511502\pi\)
\(930\) −6.71371 −0.220151
\(931\) −7.81844 −0.256239
\(932\) 8.41472 0.275633
\(933\) −5.19327 −0.170020
\(934\) 30.1602 0.986872
\(935\) 30.5324 0.998517
\(936\) 5.60736 0.183282
\(937\) 11.5251 0.376507 0.188254 0.982120i \(-0.439717\pi\)
0.188254 + 0.982120i \(0.439717\pi\)
\(938\) 14.1828 0.463084
\(939\) −1.77635 −0.0579689
\(940\) −36.0855 −1.17698
\(941\) 30.5023 0.994345 0.497173 0.867652i \(-0.334372\pi\)
0.497173 + 0.867652i \(0.334372\pi\)
\(942\) 12.0602 0.392942
\(943\) 9.88910 0.322033
\(944\) 11.3491 0.369381
\(945\) −5.85180 −0.190359
\(946\) 22.1525 0.720241
\(947\) 19.5995 0.636899 0.318450 0.947940i \(-0.396838\pi\)
0.318450 + 0.947940i \(0.396838\pi\)
\(948\) 7.97329 0.258960
\(949\) 24.0713 0.781388
\(950\) 7.71934 0.250449
\(951\) −16.7624 −0.543558
\(952\) −8.80892 −0.285499
\(953\) −9.62406 −0.311754 −0.155877 0.987776i \(-0.549820\pi\)
−0.155877 + 0.987776i \(0.549820\pi\)
\(954\) 13.1947 0.427193
\(955\) 7.50729 0.242930
\(956\) −28.9489 −0.936273
\(957\) 9.89226 0.319771
\(958\) 10.4392 0.337275
\(959\) −33.1336 −1.06994
\(960\) −2.69148 −0.0868672
\(961\) −24.7778 −0.799285
\(962\) 24.9307 0.803797
\(963\) −8.32832 −0.268376
\(964\) 2.56905 0.0827435
\(965\) −31.2367 −1.00555
\(966\) 1.97273 0.0634714
\(967\) −31.2488 −1.00489 −0.502447 0.864608i \(-0.667567\pi\)
−0.502447 + 0.864608i \(0.667567\pi\)
\(968\) −3.16049 −0.101582
\(969\) 13.9369 0.447719
\(970\) 44.1344 1.41707
\(971\) 34.3885 1.10358 0.551789 0.833984i \(-0.313945\pi\)
0.551789 + 0.833984i \(0.313945\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −10.5943 −0.339637
\(974\) 18.5437 0.594180
\(975\) −12.5834 −0.402990
\(976\) 0.466941 0.0149464
\(977\) 14.9389 0.477939 0.238970 0.971027i \(-0.423190\pi\)
0.238970 + 0.971027i \(0.423190\pi\)
\(978\) −0.156053 −0.00499001
\(979\) −30.6792 −0.980512
\(980\) −6.11744 −0.195414
\(981\) 2.72745 0.0870807
\(982\) 17.6989 0.564794
\(983\) 58.4046 1.86282 0.931409 0.363975i \(-0.118581\pi\)
0.931409 + 0.363975i \(0.118581\pi\)
\(984\) 10.8990 0.347448
\(985\) 55.2646 1.76088
\(986\) −14.3145 −0.455866
\(987\) 29.1501 0.927857
\(988\) 19.2886 0.613652
\(989\) 7.17873 0.228270
\(990\) −7.53592 −0.239507
\(991\) 5.49611 0.174590 0.0872949 0.996183i \(-0.472178\pi\)
0.0872949 + 0.996183i \(0.472178\pi\)
\(992\) 2.49443 0.0791981
\(993\) 3.10572 0.0985571
\(994\) 6.19559 0.196512
\(995\) 48.4249 1.53517
\(996\) 1.80391 0.0571591
\(997\) 34.0412 1.07809 0.539047 0.842275i \(-0.318784\pi\)
0.539047 + 0.842275i \(0.318784\pi\)
\(998\) −2.78926 −0.0882924
\(999\) −4.44606 −0.140667
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.j.1.5 7
3.2 odd 2 4014.2.a.v.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.j.1.5 7 1.1 even 1 trivial
4014.2.a.v.1.3 7 3.2 odd 2